Boosting Alcohol Oxidation Electrocatalysis with Multifactorial Engineered Pd1/Pt Single-Atom Alloy-BiOx Adatoms Surface
Corresponding Author: Shuiping Luo
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 172
Abstract
Engineering nanomaterials at single-atomic sites could enable unprecedented catalytic properties for broad applications, yet it remains challenging to do so on the surface of multimetallic nanocrystals. Herein, we present the multifactorial engineering (size, shape, phase, and composition) of the fully ordered PtBi nanoplates at atomic level, achieving a unique catalyst surface where the face-centered cubic (fcc) Pt edges are modified by the isolated Pd atoms and BiOx adatoms. This Pd1/Pt-BiOx electrocatalyst exhibits an ultrahigh mass activity of 16.01 A mg−1Pt+Pd toward ethanol oxidation in alkaline electrolyte and enables a direct ethanol fuel cell of peak power density of 56.7 mW cm−2. The surrounding BiOx adatoms are critical for mitigating CO-poisoning on the Pt surface, and the Pd1/Pt single-atom alloy further facilitates the electrooxidation of CH3CH2OH. This work offers new insights into the rational design and construction of sophisticated catalyst surface at single-atomic sites for highly efficient electrocatalysis.
Highlights:
1 A unique catalyst surface where ultrathin Pt edges are modified by the isolated Pd atoms and BiOx adatoms is rational designed and achieved.
2 The Pd1/Pt-BiOx electrocatalyst exhibits an ultrahigh mass activity of 16.01 A mg−1Pt+Pd toward ethanol oxidation and enables a direct ethanol fuel cell of peak power density of 56.7 mW cm−2.
3 The surrounding BiOx adatoms are critical for mitigating CO-poisoning on Pt surface, and the Pd1/Pt single-atom alloy further facilitates the electrooxidation of CH3CH2OH.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Berretti, L. Osmieri, V. Baglio, H.A. Miller, J. Filippi et al., Direct alcohol fuel cells: a comparative review of acidic and alkaline systems. Electrochem. Energy Rev. 6, 30 (2023). https://doi.org/10.1007/s41918-023-00189-3
- X. Fu, C. Wan, Y. Huang, X. Duan, Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media. Adv. Funct. Mater. 32, 2106401 (2022). https://doi.org/10.1002/adfm.202106401
- Z. Xia, X. Zhang, H. Sun, S. Wang, G. Sun, Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy 65, 104048 (2019). https://doi.org/10.1016/j.nanoen.2019.104048
- H.-L. Liu, F. Nosheen, X. Wang, Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chem. Soc. Rev. 44, 3056–3078 (2015). https://doi.org/10.1039/c4cs00478g
- J. Chang, G. Wang, C. Li, Y. He, Y. Zhu et al., Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule 7, 587–602 (2023). https://doi.org/10.1016/j.joule.2023.02.011
- M. Tang, M. Sun, W. Chen, Y. Ding, X. Fan et al., Atomic diffusion engineered PtSnCu nanoframes with high-index facets boost ethanol oxidation. Adv. Mater. 36, e2311731 (2024). https://doi.org/10.1002/adma.202311731
- H. Fu, N. Zhang, F. Lai, L. Zhang, S. Chen et al., Surface-regulated platinum–copper nanoframes in electrochemical reforming of ethanol for efficient hydrogen production. ACS Catal. 12, 11402–11411 (2022). https://doi.org/10.1021/acscatal.2c03022
- A. Kowal, M. Li, M. Shao, K. Sasaki, M.B. Vukmirovic et al., Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 8, 325–330 (2009). https://doi.org/10.1038/nmat2359
- L. Cao, W. Liu, Q. Luo, R. Yin, B. Wang et al., Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019). https://doi.org/10.1038/s41586-018-0869-5
- X. Fan, W. Chen, L. Xie, X. Liu, Y. Ding et al., Surface-enriched single-Bi-atoms tailoring of Pt nanorings for direct methanol fuel cells with ultralow-Pt-loading. Adv. Mater. 36, 2313179 (2024). https://doi.org/10.1002/adma.202313179
- H. Cheng, R. Gui, H. Yu, C. Wang, S. Liu et al., Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proc. Natl. Acad. Sci. U.S.A. 118, e2104026118 (2021). https://doi.org/10.1073/pnas.2104026118
- S. Luo, M. Tang, P.K. Shen, S. Ye, Atomic-scale preparation of octopod nanoframes with high-index facets as highly active and stable catalysts. Adv. Mater. 29, 1601687 (2017). https://doi.org/10.1002/adma.201601687
- Y. Wang, L. Cao, N.J. Libretto, X. Li, C. Li et al., Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16635–16642 (2019). https://doi.org/10.1021/jacs.9b05766
- W.Y. Zhao, B. Ni, Q. Yuan, P.L. He, Y. Gong, L. Gu, X. Wang, Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm ps for methanol oxidation. Adv. Energy Mater. 7(8), 1601593 (2017). https://doi.org/10.1002/aenm.201601593
- C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang et al., Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014). https://doi.org/10.1126/science.1249061
- S. Luo, P.K. Shen, Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 11, 11946–11953 (2017). https://doi.org/10.1021/acsnano.6b04458
- X. Yuan, X. Jiang, M. Cao, L. Chen, K. Nie et al., Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Res. 12, 429–436 (2019). https://doi.org/10.1007/s12274-018-2234-2
- W. Zhang, Y. Yang, B. Huang, F. Lv, K. Wang et al., Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 31, 1805833 (2019). https://doi.org/10.1002/adma.201805833
- H. Zhang, Q. Li, B. Li, B. Weng, Z. Tian et al., Atomically dispersed Pt sites on porous metal–organic frameworks to enable dual reaction mechanisms for enhanced photocatalytic hydrogen conversion. J. Catal. 407, 1–9 (2022). https://doi.org/10.1016/j.jcat.2022.01.017
- J. Wang, F. Pan, W. Chen, B. Li, D. Yang et al., Pt-based intermetallic compound catalysts for the oxygen reduction reaction: structural control at the atomic scale to achieve a win–win situation between catalytic activity and stability. Electrochem. Energy Rev. 6, 6 (2023). https://doi.org/10.1007/s41918-022-00141-x
- Q. Zhao, B. Zhao, X. Long, R. Feng, M. Shakouri et al., Interfacial electronic modulation of dual-monodispersed Pt-Ni3S2 as efficacious bi-functional electrocatalysts for concurrent H2 evolution and methanol selective oxidation. Nano-Micro Lett. 16, 80 (2024). https://doi.org/10.1007/s40820-023-01282-4
- M. Wu, X. Yang, X. Cui, N. Chen, L. Du et al., Engineering Fe-N4 electronic structure with adjacent Co–N2C2 and co nanoclusters on carbon nanotubes for efficient oxygen electrocatalysis. Nano-Micro Lett. 15, 232 (2023). https://doi.org/10.1007/s40820-023-01195-2
- F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
- J. Zhuang, D. Wang, Recent advances of single-atom alloy catalyst: properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2, 100009 (2023). https://doi.org/10.1016/j.mtcata.2023.100009
- X. Yang, Y. Wang, X. Wang, B. Mei, E. Luo et al., CO-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanops. Angew. Chem. Int. Ed. 60, 26177–26183 (2021). https://doi.org/10.1002/anie.202110900
- M. Tang, W. Chen, S. Luo, X. Wu, X. Fan et al., Trace Pd modified intermetallic PtBi nanoplates towards efficient formic acid electrocatalysis. J. Mater. Chem. A 9, 9602–9608 (2021). https://doi.org/10.1039/D1TA01123E
- W. Chen, S. Luo, M. Sun, M. Tang, X. Fan et al., Hexagonal PtBi intermetallic inlaid with sub-monolayer Pb oxyhydroxide boosts methanol oxidation. Small 18, e2107803 (2022). https://doi.org/10.1002/smll.202107803
- T. Shen, S. Chen, R. Zeng, M. Gong, T. Zhao et al., Tailoring the antipoisoning performance of Pd for formic acid electrooxidation via an ordered PdBi intermetallic. ACS Catal. 10, 9977–9985 (2020). https://doi.org/10.1021/acscatal.0c01537
- X. Fan, M. Tang, X. Wu, S. Luo, W. Chen et al., SnO2 patched ultrathin PtRh nanowires as efficient catalysts for ethanol electrooxidation. J. Mater. Chem. A 7, 27377–27382 (2019). https://doi.org/10.1039/C9TA10941B
- X. Yuan, B. Jiang, M. Cao, C. Zhang, X. Liu et al., Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Res. 13, 265–272 (2020). https://doi.org/10.1007/s12274-019-2609-z
- W. Huang, H. Wang, J. Zhou, J. Wang, P.N. Duchesne et al., Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 6, 10035 (2015). https://doi.org/10.1038/ncomms10035
- S.-H. Han, H.-M. Liu, P. Chen, J.-X. Jiang, Y. Chen, Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation. Adv. Energy Mater. 8, 1801326 (2018). https://doi.org/10.1002/aenm.201801326
- S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu et al., Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 31, e1903683 (2019). https://doi.org/10.1002/adma.201903683
- X. Wang, M. Xie, F. Lyu, Y.-M. Yiu, Z. Wang et al., Bismuth oxyhydroxide-Pt inverse interface for enhanced methanol electrooxidation performance. Nano Lett. 20, 7751–7759 (2020). https://doi.org/10.1021/acs.nanolett.0c03340
- C. Xie, Z. Niu, D. Kim, M. Li, P. Yang, Surface and interface control in nanop catalysis. Chem. Rev. 120, 1184–1249 (2020). https://doi.org/10.1021/acs.chemrev.9b00220
- P.-C. Chen, M. Liu, J.S. Du, B. Meckes, S. Wang et al., Interface and heterostructure design in polyelemental nanops. Science 363, 959–964 (2019). https://doi.org/10.1126/science.aav4302
- C. Vogt, B.M. Weckhuysen, The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022). https://doi.org/10.1038/s41570-021-00340-y
- L. Xiao, G. Li, Z. Yang, K. Chen, R. Zhou et al., Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis. Adv. Funct. Mater. 31, 2100982 (2021). https://doi.org/10.1002/adfm.202100982
- J. Song, Y. Chen, H. Huang, J. Wang, S.-C. Huang et al., Heterointerface engineering of hierarchically assembling layered double hydroxides on cobalt selenide as efficient trifunctional electrocatalysts for water splitting and zinc-air battery. Adv. Sci. 9, 2104522 (2022). https://doi.org/10.1002/advs.202104522
- J. Lv, L. Wang, R. Li, K. Zhang, D. Zhao et al., Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline–amorphous NiFe–LDH for oxygen evolution reaction. ACS Catal. 11, 14338–14351 (2021). https://doi.org/10.1021/acscatal.1c03960
- A. Dasgupta, H. He, R. Gong, S.-L. Shang, E.K. Zimmerer et al., Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nat. Chem. 14, 523–529 (2022). https://doi.org/10.1038/s41557-021-00855-3
- X. Huang, J. Feng, S. Hu, B. Xu, M. Hao et al., Regioselective epitaxial growth of metallic heterostructures. Nat. Nanotechnol. 19, 1306–1315 (2024). https://doi.org/10.1038/s41565-024-01696-0
- G. Luo, M. Song, Q. Zhang, L. An, T. Shen et al., Advances of synergistic electrocatalysis between single atoms and nanops/clusters. Nano-Micro Lett. 16, 241 (2024). https://doi.org/10.1007/s40820-024-01463-9
- H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15, 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
- Q. Yang, Y. Jiang, H. Zhuo, E.M. Mitchell, Q. Yu, Recent progress of metal single-atom catalysts for energy applications. Nano Energy 111, 108404 (2023). https://doi.org/10.1016/j.nanoen.2023.108404
- S. Luo, L. Zhang, Y. Liao, L. Li, Q. Yang et al., A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 33, e2008508 (2021). https://doi.org/10.1002/adma.202008508
- A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova et al., Self-supported Pd(x)Bi catalysts for the electrooxidation of glycerol in alkaline media. J. Am. Chem. Soc. 136, 3937–3945 (2014). https://doi.org/10.1021/ja412429f
- J. Ge, P. Yin, Y. Chen, H. Cheng, J. Liu et al., Ultrathin amorphous/crystalline heterophase Rh and Rh alloy nanosheets as tandem catalysts for direct indole synthesis. Adv. Mater. 33, e2006711 (2021). https://doi.org/10.1002/adma.202006711
- H. Cheng, N. Yang, G. Liu, Y. Ge, J. Huang et al., Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 32, 1902964 (2020). https://doi.org/10.1002/adma.201902964
- H. Xu, Z. Zhang, J. Liu, C.-L. Do-Thanh, H. Chen et al., Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 11, 3908 (2020). https://doi.org/10.1038/s41467-020-17738-9
- Q. Chang, Y. Hong, H.J. Lee, J.H. Lee, D. Ologunagba et al., Achieving complete electrooxidation of ethanol by single atomic Rh decoration of Pt nanocubes. Proc. Natl. Acad. Sci. U.S.A. 119, e2112109119 (2022). https://doi.org/10.1073/pnas.2112109119
- W. Ao, H. Ren, C. Cheng, Z. Fan, P. Yin et al., Mesoporous PtPb nanosheets as efficient electrocatalysts for hydrogen evolution and ethanol oxidation. Angew. Chem. Int. Ed. 62, e202305158 (2023). https://doi.org/10.1002/anie.202305158
- M. Chu, J. Huang, J. Gong, Y. Qu, G. Chen et al., Synergistic combination of Pd nanosheets and porous Bi(OH)3 boosts activity and durability for ethanol oxidation reaction. Nano Res. 15, 3920–3926 (2022). https://doi.org/10.1007/s12274-021-4049-9
- V.R. Stamenkovic, B.S. Mun, K.J. Mayrhofer, P.N. Ross, N.M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006). https://doi.org/10.1021/ja0600476
- H. Tian, D. Wu, J. Li, J. Luo, C. Jia et al., Rational design ternary platinum based electrocatalysts for effective methanol oxidation reaction. J. Energy Chem. 70, 230–235 (2022). https://doi.org/10.1016/j.jechem.2022.02.021
- D. Su, Z. Lam, Y. Wang, F. Han, M. Zhang et al., Ultralong durability of ethanol oxidation reaction via morphological design. Joule 7, 2568–2582 (2023). https://doi.org/10.1016/j.joule.2023.09.008
- X. Yang, Q. Wang, S. Qing, Z. Gao, X. Tong et al., Modulating electronic structure of an Au-nanorod-core–PdPt-alloy-shell catalyst for efficient alcohol electro-oxidation. Adv. Energy Mater. 11, 2100812 (2021). https://doi.org/10.1002/aenm.202100812
- W. Liang, Y. Wang, L. Zhao, W. Guo, D. Li et al., 3D anisotropic Au@Pt-Pd hemispherical nanostructures as efficient electrocatalysts for methanol, ethanol, and formic acid oxidation reaction. Adv. Mater. 33, e2100713 (2021). https://doi.org/10.1002/adma.202100713
- X. Yuan, Y. Zhang, M. Cao, T. Zhou, X. Jiang et al., Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation. Nano Lett. 19, 4752–4759 (2019). https://doi.org/10.1021/acs.nanolett.9b01843
- W. Huang, X.-Y. Ma, H. Wang, R. Feng, J. Zhou et al., Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 29, 1703057 (2017). https://doi.org/10.1002/adma.201703057
- J. Chang, G. Wang, M. Wang, Q. Wang, B. Li et al., Improving Pd–N–C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. Nat. Energy 6, 1144–1153 (2021). https://doi.org/10.1038/s41560-021-00940-4
- H. Li, H. Huang, Y. Chen, F. Lai, H. Fu et al., High-entropy alloy aerogels: a new platform for carbon dioxide reduction. Adv. Mater. 35, e2209242 (2023). https://doi.org/10.1002/adma.202209242
- N. Fujiwara, Z. Siroma, S.-I. Yamazaki, T. Ioroi, H. Senoh et al., Direct ethanol fuel cells using an anion exchange membrane. J. Power Sources 185, 621–626 (2008). https://doi.org/10.1016/j.jpowsour.2008.09.024
- S. Li, J. Wang, X. Lin, G. Xie, Y. Huang et al., Flexible solid-state direct ethanol fuel cell catalyzed by nanoporous high-entropy Al-Pd-Ni-Cu-Mo anode and spinel (AlMnCo)3O4 cathode. Adv. Funct. Mater. 31, 2007129 (2021). https://doi.org/10.1002/adfm.202007129
- N. Shaari, S.K. Kamarudin, R. Bahru, S.H. Osman, N.A.I.M. Ishak, Progress and challenges: review for direct liquid fuel cell. Int. J. Energy Res. 45, 6644–6688 (2021). https://doi.org/10.1002/er.6353
- K. Bhunia, K.S. Bejigo, S.J. Kim, Palladium nanops integrated ternary nickel cobalt iron hydroxide as an efficient bifunctional electrocatalyst for direct ethanol fuel cell. Chem. Eng. J. 484, 149306 (2024). https://doi.org/10.1016/j.cej.2024.149306
References
E. Berretti, L. Osmieri, V. Baglio, H.A. Miller, J. Filippi et al., Direct alcohol fuel cells: a comparative review of acidic and alkaline systems. Electrochem. Energy Rev. 6, 30 (2023). https://doi.org/10.1007/s41918-023-00189-3
X. Fu, C. Wan, Y. Huang, X. Duan, Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media. Adv. Funct. Mater. 32, 2106401 (2022). https://doi.org/10.1002/adfm.202106401
Z. Xia, X. Zhang, H. Sun, S. Wang, G. Sun, Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy 65, 104048 (2019). https://doi.org/10.1016/j.nanoen.2019.104048
H.-L. Liu, F. Nosheen, X. Wang, Noble metal alloy complex nanostructures: controllable synthesis and their electrochemical property. Chem. Soc. Rev. 44, 3056–3078 (2015). https://doi.org/10.1039/c4cs00478g
J. Chang, G. Wang, C. Li, Y. He, Y. Zhu et al., Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule 7, 587–602 (2023). https://doi.org/10.1016/j.joule.2023.02.011
M. Tang, M. Sun, W. Chen, Y. Ding, X. Fan et al., Atomic diffusion engineered PtSnCu nanoframes with high-index facets boost ethanol oxidation. Adv. Mater. 36, e2311731 (2024). https://doi.org/10.1002/adma.202311731
H. Fu, N. Zhang, F. Lai, L. Zhang, S. Chen et al., Surface-regulated platinum–copper nanoframes in electrochemical reforming of ethanol for efficient hydrogen production. ACS Catal. 12, 11402–11411 (2022). https://doi.org/10.1021/acscatal.2c03022
A. Kowal, M. Li, M. Shao, K. Sasaki, M.B. Vukmirovic et al., Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat. Mater. 8, 325–330 (2009). https://doi.org/10.1038/nmat2359
L. Cao, W. Liu, Q. Luo, R. Yin, B. Wang et al., Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019). https://doi.org/10.1038/s41586-018-0869-5
X. Fan, W. Chen, L. Xie, X. Liu, Y. Ding et al., Surface-enriched single-Bi-atoms tailoring of Pt nanorings for direct methanol fuel cells with ultralow-Pt-loading. Adv. Mater. 36, 2313179 (2024). https://doi.org/10.1002/adma.202313179
H. Cheng, R. Gui, H. Yu, C. Wang, S. Liu et al., Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proc. Natl. Acad. Sci. U.S.A. 118, e2104026118 (2021). https://doi.org/10.1073/pnas.2104026118
S. Luo, M. Tang, P.K. Shen, S. Ye, Atomic-scale preparation of octopod nanoframes with high-index facets as highly active and stable catalysts. Adv. Mater. 29, 1601687 (2017). https://doi.org/10.1002/adma.201601687
Y. Wang, L. Cao, N.J. Libretto, X. Li, C. Li et al., Ensemble effect in bimetallic electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16635–16642 (2019). https://doi.org/10.1021/jacs.9b05766
W.Y. Zhao, B. Ni, Q. Yuan, P.L. He, Y. Gong, L. Gu, X. Wang, Highly active and durable Pt72Ru28 porous nanoalloy assembled with sub-4.0 nm ps for methanol oxidation. Adv. Energy Mater. 7(8), 1601593 (2017). https://doi.org/10.1002/aenm.201601593
C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang et al., Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014). https://doi.org/10.1126/science.1249061
S. Luo, P.K. Shen, Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis. ACS Nano 11, 11946–11953 (2017). https://doi.org/10.1021/acsnano.6b04458
X. Yuan, X. Jiang, M. Cao, L. Chen, K. Nie et al., Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Res. 12, 429–436 (2019). https://doi.org/10.1007/s12274-018-2234-2
W. Zhang, Y. Yang, B. Huang, F. Lv, K. Wang et al., Ultrathin PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 31, 1805833 (2019). https://doi.org/10.1002/adma.201805833
H. Zhang, Q. Li, B. Li, B. Weng, Z. Tian et al., Atomically dispersed Pt sites on porous metal–organic frameworks to enable dual reaction mechanisms for enhanced photocatalytic hydrogen conversion. J. Catal. 407, 1–9 (2022). https://doi.org/10.1016/j.jcat.2022.01.017
J. Wang, F. Pan, W. Chen, B. Li, D. Yang et al., Pt-based intermetallic compound catalysts for the oxygen reduction reaction: structural control at the atomic scale to achieve a win–win situation between catalytic activity and stability. Electrochem. Energy Rev. 6, 6 (2023). https://doi.org/10.1007/s41918-022-00141-x
Q. Zhao, B. Zhao, X. Long, R. Feng, M. Shakouri et al., Interfacial electronic modulation of dual-monodispersed Pt-Ni3S2 as efficacious bi-functional electrocatalysts for concurrent H2 evolution and methanol selective oxidation. Nano-Micro Lett. 16, 80 (2024). https://doi.org/10.1007/s40820-023-01282-4
M. Wu, X. Yang, X. Cui, N. Chen, L. Du et al., Engineering Fe-N4 electronic structure with adjacent Co–N2C2 and co nanoclusters on carbon nanotubes for efficient oxygen electrocatalysis. Nano-Micro Lett. 15, 232 (2023). https://doi.org/10.1007/s40820-023-01195-2
F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
J. Zhuang, D. Wang, Recent advances of single-atom alloy catalyst: properties, synthetic methods and electrocatalytic applications. Mater. Today Catal. 2, 100009 (2023). https://doi.org/10.1016/j.mtcata.2023.100009
X. Yang, Y. Wang, X. Wang, B. Mei, E. Luo et al., CO-tolerant PEMFC anodes enabled by synergistic catalysis between iridium single-atom sites and nanops. Angew. Chem. Int. Ed. 60, 26177–26183 (2021). https://doi.org/10.1002/anie.202110900
M. Tang, W. Chen, S. Luo, X. Wu, X. Fan et al., Trace Pd modified intermetallic PtBi nanoplates towards efficient formic acid electrocatalysis. J. Mater. Chem. A 9, 9602–9608 (2021). https://doi.org/10.1039/D1TA01123E
W. Chen, S. Luo, M. Sun, M. Tang, X. Fan et al., Hexagonal PtBi intermetallic inlaid with sub-monolayer Pb oxyhydroxide boosts methanol oxidation. Small 18, e2107803 (2022). https://doi.org/10.1002/smll.202107803
T. Shen, S. Chen, R. Zeng, M. Gong, T. Zhao et al., Tailoring the antipoisoning performance of Pd for formic acid electrooxidation via an ordered PdBi intermetallic. ACS Catal. 10, 9977–9985 (2020). https://doi.org/10.1021/acscatal.0c01537
X. Fan, M. Tang, X. Wu, S. Luo, W. Chen et al., SnO2 patched ultrathin PtRh nanowires as efficient catalysts for ethanol electrooxidation. J. Mater. Chem. A 7, 27377–27382 (2019). https://doi.org/10.1039/C9TA10941B
X. Yuan, B. Jiang, M. Cao, C. Zhang, X. Liu et al., Porous Pt nanoframes decorated with Bi(OH)3 as highly efficient and stable electrocatalyst for ethanol oxidation reaction. Nano Res. 13, 265–272 (2020). https://doi.org/10.1007/s12274-019-2609-z
W. Huang, H. Wang, J. Zhou, J. Wang, P.N. Duchesne et al., Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 6, 10035 (2015). https://doi.org/10.1038/ncomms10035
S.-H. Han, H.-M. Liu, P. Chen, J.-X. Jiang, Y. Chen, Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation. Adv. Energy Mater. 8, 1801326 (2018). https://doi.org/10.1002/aenm.201801326
S. Luo, W. Chen, Y. Cheng, X. Song, Q. Wu et al., Trimetallic synergy in intermetallic PtSnBi nanoplates boosts formic acid oxidation. Adv. Mater. 31, e1903683 (2019). https://doi.org/10.1002/adma.201903683
X. Wang, M. Xie, F. Lyu, Y.-M. Yiu, Z. Wang et al., Bismuth oxyhydroxide-Pt inverse interface for enhanced methanol electrooxidation performance. Nano Lett. 20, 7751–7759 (2020). https://doi.org/10.1021/acs.nanolett.0c03340
C. Xie, Z. Niu, D. Kim, M. Li, P. Yang, Surface and interface control in nanop catalysis. Chem. Rev. 120, 1184–1249 (2020). https://doi.org/10.1021/acs.chemrev.9b00220
P.-C. Chen, M. Liu, J.S. Du, B. Meckes, S. Wang et al., Interface and heterostructure design in polyelemental nanops. Science 363, 959–964 (2019). https://doi.org/10.1126/science.aav4302
C. Vogt, B.M. Weckhuysen, The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022). https://doi.org/10.1038/s41570-021-00340-y
L. Xiao, G. Li, Z. Yang, K. Chen, R. Zhou et al., Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis. Adv. Funct. Mater. 31, 2100982 (2021). https://doi.org/10.1002/adfm.202100982
J. Song, Y. Chen, H. Huang, J. Wang, S.-C. Huang et al., Heterointerface engineering of hierarchically assembling layered double hydroxides on cobalt selenide as efficient trifunctional electrocatalysts for water splitting and zinc-air battery. Adv. Sci. 9, 2104522 (2022). https://doi.org/10.1002/advs.202104522
J. Lv, L. Wang, R. Li, K. Zhang, D. Zhao et al., Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline–amorphous NiFe–LDH for oxygen evolution reaction. ACS Catal. 11, 14338–14351 (2021). https://doi.org/10.1021/acscatal.1c03960
A. Dasgupta, H. He, R. Gong, S.-L. Shang, E.K. Zimmerer et al., Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nat. Chem. 14, 523–529 (2022). https://doi.org/10.1038/s41557-021-00855-3
X. Huang, J. Feng, S. Hu, B. Xu, M. Hao et al., Regioselective epitaxial growth of metallic heterostructures. Nat. Nanotechnol. 19, 1306–1315 (2024). https://doi.org/10.1038/s41565-024-01696-0
G. Luo, M. Song, Q. Zhang, L. An, T. Shen et al., Advances of synergistic electrocatalysis between single atoms and nanops/clusters. Nano-Micro Lett. 16, 241 (2024). https://doi.org/10.1007/s40820-024-01463-9
H. Wang, J. Gao, C. Chen, W. Zhao, Z. Zhang et al., PtNi-W/C with atomically dispersed tungsten sites toward boosted ORR in proton exchange membrane fuel cell devices. Nano-Micro Lett. 15, 143 (2023). https://doi.org/10.1007/s40820-023-01102-9
Q. Yang, Y. Jiang, H. Zhuo, E.M. Mitchell, Q. Yu, Recent progress of metal single-atom catalysts for energy applications. Nano Energy 111, 108404 (2023). https://doi.org/10.1016/j.nanoen.2023.108404
S. Luo, L. Zhang, Y. Liao, L. Li, Q. Yang et al., A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 33, e2008508 (2021). https://doi.org/10.1002/adma.202008508
A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova et al., Self-supported Pd(x)Bi catalysts for the electrooxidation of glycerol in alkaline media. J. Am. Chem. Soc. 136, 3937–3945 (2014). https://doi.org/10.1021/ja412429f
J. Ge, P. Yin, Y. Chen, H. Cheng, J. Liu et al., Ultrathin amorphous/crystalline heterophase Rh and Rh alloy nanosheets as tandem catalysts for direct indole synthesis. Adv. Mater. 33, e2006711 (2021). https://doi.org/10.1002/adma.202006711
H. Cheng, N. Yang, G. Liu, Y. Ge, J. Huang et al., Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 32, 1902964 (2020). https://doi.org/10.1002/adma.201902964
H. Xu, Z. Zhang, J. Liu, C.-L. Do-Thanh, H. Chen et al., Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 11, 3908 (2020). https://doi.org/10.1038/s41467-020-17738-9
Q. Chang, Y. Hong, H.J. Lee, J.H. Lee, D. Ologunagba et al., Achieving complete electrooxidation of ethanol by single atomic Rh decoration of Pt nanocubes. Proc. Natl. Acad. Sci. U.S.A. 119, e2112109119 (2022). https://doi.org/10.1073/pnas.2112109119
W. Ao, H. Ren, C. Cheng, Z. Fan, P. Yin et al., Mesoporous PtPb nanosheets as efficient electrocatalysts for hydrogen evolution and ethanol oxidation. Angew. Chem. Int. Ed. 62, e202305158 (2023). https://doi.org/10.1002/anie.202305158
M. Chu, J. Huang, J. Gong, Y. Qu, G. Chen et al., Synergistic combination of Pd nanosheets and porous Bi(OH)3 boosts activity and durability for ethanol oxidation reaction. Nano Res. 15, 3920–3926 (2022). https://doi.org/10.1007/s12274-021-4049-9
V.R. Stamenkovic, B.S. Mun, K.J. Mayrhofer, P.N. Ross, N.M. Markovic, Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 128, 8813–8819 (2006). https://doi.org/10.1021/ja0600476
H. Tian, D. Wu, J. Li, J. Luo, C. Jia et al., Rational design ternary platinum based electrocatalysts for effective methanol oxidation reaction. J. Energy Chem. 70, 230–235 (2022). https://doi.org/10.1016/j.jechem.2022.02.021
D. Su, Z. Lam, Y. Wang, F. Han, M. Zhang et al., Ultralong durability of ethanol oxidation reaction via morphological design. Joule 7, 2568–2582 (2023). https://doi.org/10.1016/j.joule.2023.09.008
X. Yang, Q. Wang, S. Qing, Z. Gao, X. Tong et al., Modulating electronic structure of an Au-nanorod-core–PdPt-alloy-shell catalyst for efficient alcohol electro-oxidation. Adv. Energy Mater. 11, 2100812 (2021). https://doi.org/10.1002/aenm.202100812
W. Liang, Y. Wang, L. Zhao, W. Guo, D. Li et al., 3D anisotropic Au@Pt-Pd hemispherical nanostructures as efficient electrocatalysts for methanol, ethanol, and formic acid oxidation reaction. Adv. Mater. 33, e2100713 (2021). https://doi.org/10.1002/adma.202100713
X. Yuan, Y. Zhang, M. Cao, T. Zhou, X. Jiang et al., Bi(OH)3/PdBi composite nanochains as highly active and durable electrocatalysts for ethanol oxidation. Nano Lett. 19, 4752–4759 (2019). https://doi.org/10.1021/acs.nanolett.9b01843
W. Huang, X.-Y. Ma, H. Wang, R. Feng, J. Zhou et al., Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 29, 1703057 (2017). https://doi.org/10.1002/adma.201703057
J. Chang, G. Wang, M. Wang, Q. Wang, B. Li et al., Improving Pd–N–C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. Nat. Energy 6, 1144–1153 (2021). https://doi.org/10.1038/s41560-021-00940-4
H. Li, H. Huang, Y. Chen, F. Lai, H. Fu et al., High-entropy alloy aerogels: a new platform for carbon dioxide reduction. Adv. Mater. 35, e2209242 (2023). https://doi.org/10.1002/adma.202209242
N. Fujiwara, Z. Siroma, S.-I. Yamazaki, T. Ioroi, H. Senoh et al., Direct ethanol fuel cells using an anion exchange membrane. J. Power Sources 185, 621–626 (2008). https://doi.org/10.1016/j.jpowsour.2008.09.024
S. Li, J. Wang, X. Lin, G. Xie, Y. Huang et al., Flexible solid-state direct ethanol fuel cell catalyzed by nanoporous high-entropy Al-Pd-Ni-Cu-Mo anode and spinel (AlMnCo)3O4 cathode. Adv. Funct. Mater. 31, 2007129 (2021). https://doi.org/10.1002/adfm.202007129
N. Shaari, S.K. Kamarudin, R. Bahru, S.H. Osman, N.A.I.M. Ishak, Progress and challenges: review for direct liquid fuel cell. Int. J. Energy Res. 45, 6644–6688 (2021). https://doi.org/10.1002/er.6353
K. Bhunia, K.S. Bejigo, S.J. Kim, Palladium nanops integrated ternary nickel cobalt iron hydroxide as an efficient bifunctional electrocatalyst for direct ethanol fuel cell. Chem. Eng. J. 484, 149306 (2024). https://doi.org/10.1016/j.cej.2024.149306