One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability
Corresponding Author: Qi Yang
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 19
Abstract
Nanowire coordination polymer cobalt–terephthalonitrile (Co-BDCN) was successfully synthesized using a simple solvothermal method and applied as anode material for lithium-ion batteries (LIBs). A reversible capacity of 1132 mAh g−1 was retained after 100 cycles at a rate of 100 mA g−1, which should be one of the best LIBs performances among metal organic frameworks and coordination polymers-based anode materials at such a rate. On the basis of the comprehensive structural and morphology characterizations including fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and scanning electron microscopy, we demonstrated that the great electrochemical performance of the as-synthesized Co-BDCN coordination polymer can be attributed to the synergistic effect of metal centers and organic ligands, as well as the stability of the nanowire morphology during cycling.
Highlights:
1 Amide-group-coordinated cobalt–terephthalonitrile (Co-BDCN) coordination polymers, with a diameter distribution of 45–55 nm, were synthesized by a one-pot solvothermal method.
2 Reversible capacity of 1132 mAh g−1 was achieved at a current density of 100 mA g−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
- A. Banerjee, V. Aravindan, S. Bhatnagar, D. Mhamane, S. Madhavi, S. Ogale, Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy 2(5), 890–896 (2013). https://doi.org/10.1016/j.nanoen.2013.03.006
- W. Yin, Y. Shen, F. Zou, X. Hu, B. Chi, Y. Huang, Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. ACS Appl. Mater. Interfaces 7(8), 4947–4954 (2015). https://doi.org/10.1021/am509143t
- F. Zheng, D. Zhu, X. Shi, Q. Chen, Metal-organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 3(6), 2815–2824 (2015). https://doi.org/10.1039/C4TA06150K
- C. Li, T. Chen, W. Xu, X. Lou, L. Pan, Q. Chen, B. Hu, Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 3(10), 5585–5591 (2015). https://doi.org/10.1039/C4TA06914E
- X. Hu, C. Li, X. Lou, X. Yan, Y. Ning, Q. Chen, B. Hu, Controlled synthesis of CoxMn3-xO4 nanoparticles with a tunable composition and size for high performance lithium-ion batteries. RSC Adv. 6(59), 54270–54276 (2016). https://doi.org/10.1039/C6RA08700K
- X. Hu, C. Li, X. Lou, Q. Yang, B. Hu, Hierarchical CuO octahedra inherited from copper metal-organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance. J. Mater. Chem. A 5(25), 12828–12837 (2017). https://doi.org/10.1039/C7TA02953E
- J. Guo, B. Jiang, X. Zhang, H. Liu, Monodisperse SnO2 anchored reduced graphene oxide nanocomposites as negative electrode with high rate capability and long cyclability for lithium-ion batteries. J. Power Sources 262, 15–22 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.085
- X. Zhang, H. Chen, Y. Xie, J. Guo, Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core-shell nanorods. J. Mater. Chem. A 2(11), 3912–3918 (2014). https://doi.org/10.1039/c3ta14317a
- J. Guo, H. Zhu, Y. Sun, L. Tang, X. Zhang, Pie-like free-standing paper of graphene paper@Fe3O4 nanorod array@carbon as integrated anode for robust lithium storage. Chem. Eng. J. 309, 272–277 (2017). https://doi.org/10.1016/j.cej.2016.10.041
- C. Guan, X. Wang, Q. Zhang, Z. Fan, H. Zhang, H.J. Fan, Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett. 14(8), 4852–4858 (2014). https://doi.org/10.1021/nl502192p
- C. Wu, J. Maier, Y. Yu, Sn-based nanoparticles encapsulated in a porous 3D graphene network: advanced anodes for high-rate and long life Li-ion batteries. Adv. Funct. Mater. 25(23), 3488–3496 (2015). https://doi.org/10.1002/adfm.201500514
- H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1, 1036–1039 (2011). https://doi.org/10.1002/aenm.201100485
- D. Ma, Z. Cao, A. Hu, Si-based anode materials for Li-ion batteries: a mini review. Nano Micro Lett. 6(4), 347–358 (2014). https://doi.org/10.1007/s40820-014-0008-2
- X. Yu, J.B. Bates, G.E. Jellison, F.X. Hart, A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144(2), 524–532 (1997). https://doi.org/10.1149/1.1837443
- L. Wang, X. He, J. Li, W. Sun, J. Gao, J. Guo, C. Jiang, Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem. Int. Ed. 51(36), 9034–9037 (2012). https://doi.org/10.1002/anie.201204591
- L. Sun, M. Li, K. Sun, S. Yu, R. Wang, H. Xie, Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J. Phy. Chem. C 116(28), 14772–14779 (2012). https://doi.org/10.1021/jp302265n
- Y. Kim, Y. Park, A. Choi, N.S. Choi, J. Kim, J. Lee, J.H. Ryu, S.M. Oh, K.T. Lee, An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 25(22), 3045–3049 (2013). https://doi.org/10.1002/adma.201204877
- P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000). https://doi.org/10.1038/35035045
- D. Deng, J.Y. Lee, Reversible storage of lithium in a rambutan-like tin–carbon electrode. Angew. Chem. Int. Ed. 48(9), 1660–1663 (2009). https://doi.org/10.1002/anie.200803420
- W. Zhang, J. Hu, Y. Guo, S. Zheng, L. Zhong, W. Song, L. Wan, Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 20(6), 1160–1165 (2008). https://doi.org/10.1002/adma.200701364
- S. Yang, X. Feng, S. Ivanovici, K. Müllen, Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. 49(45), 8408–8411 (2010). https://doi.org/10.1002/anie.201003485
- H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759), 276–279 (1999). https://doi.org/10.1038/46248
- M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539(7627), 76–80 (2016). https://doi.org/10.1038/nature19763
- H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
- P. Falcaro, R. Ricco, C.M. Doherty, K. Liang, A.J. Hill, M.J. Styles, MOF positioning technology and device fabrication. Chem. Soc. Rev. 43(16), 5513–5560 (2014). https://doi.org/10.1039/C4CS00089G
- Q. Zhu, X. Qiang, Metal-organic framework composites. Chem. Soc. Rev. 43(16), 5468–5512 (2014). https://doi.org/10.1039/C3CS60472A
- A. Fateeva, P. Horcajada, T. Devic, C. Serre, J. Marrot et al., Synthesis, structure, characterization, and redox properties of the porous MIL-68(Fe) solid. Eur. J. Inorg. Chem. 24, 3789–3794 (2010). https://doi.org/10.1002/ejic.201000486
- J. Shin, M. Kim, J. Cirera, S. Chen, G.J. Halder, T.A. Yersak, F. Paesani, S.M. Cohen, Y.S. Meng, MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion. J. Mater. Chem. A 3(8), 4738–4744 (2015). https://doi.org/10.1039/C4TA06694D
- Z. Zhang, H. Yoshikawa, K. Awaga, Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = Anthraquinone Dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework. J. Am. Chem. Soc. 136(46), 16112–16115 (2014). https://doi.org/10.1021/ja508197w
- L. Hu, X. Lin, J. Mo, J. Lin, H. Gan, X. Yang, Y. Cai, Lead-based metal-organic framework with stable lithium anodic performance. Inorg. Chem. 56(8), 4289–4295 (2017). https://doi.org/10.1021/acs.inorgchem.6b02663
- S. Li, Q. Xu, Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci. 6(6), 1656–1683 (2013). https://doi.org/10.1039/c3ee40507a
- T. Gong, X. Lou, E. Gao, B. Hu, Pillared-layer metal-organic frameworks for improved lithium-ion storage performance. ACS Appl. Mater. Interfaces 9(26), 21839–21847 (2017). https://doi.org/10.1021/acsami.7b05889
- D. Ji, H. Zhou, Y. Tong, J. Wang, M. Zhu, T. Chen, A. Yuan, Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chem. Eng. J. 313, 1623–1632 (2017). https://doi.org/10.1016/j.cej.2016.11.063
- D. Ji, H. Zhou, J. Zhang, Y. Dan, H. Yang, A. Yuan, Facile synthesis of a metal-organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes. J. Mater. Chem. A 4(21), 8283–8290 (2016). https://doi.org/10.1039/C6TA01377E
- X. Li, F. Cheng, S. Zhang, J. Chen, Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2. J. Power Sources 160(1), 542–547 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.015
- K. Saravanan, M. Nagarathinam, P. Balaya, J.J. Vittal, Lithium storage in a metal organic framework with diamondoid topology—a case study on metal formats. J. Mater. Chem. 20(38), 8329–8335 (2010). https://doi.org/10.1039/c0jm01671c
- Q. Liu, L. Yu, Y. Wang, Y. Ji, J. Horvat, M. Cheng, X. Jia, G. Wang, Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries. Inorg. Chem. 52(6), 2817–2822 (2013). https://doi.org/10.1021/ic301579g
- S. Maiti, A. Pramanik, U. Manju, S. Mahanty, Reversible lithium storage in manganese 1,3,5-benzenetricarboxylate metal-organic framework with high capacity and rate performance. ACS Appl. Mater. Interfaces 7(30), 16357–16363 (2015). https://doi.org/10.1021/acsami.5b03414
- L. Gou, L. Hao, Y.X. Shi, S. Ma, X. Fan, L. Xu, D. Li, K. Wang, One-pot synthesis of a metal-organic framework as an anode for Li-ion batteries with improved capacity and cycling stability. J. Solid State Chem. 210(1), 121–124 (2014). https://doi.org/10.1016/j.jssc.2013.11.014
- C. Li, X. Hu, X. Lou, Q. Chen, B. Hu, Bimetallic coordination polymer as a promising anode material for lithium-ion batteries. Chem. Commun. 52(10), 2035–2038 (2016). https://doi.org/10.1039/C5CC07151H
- C. Li, X. Lou, M. Shen, X. Hu, Z. Guo, Y. Wang, B. Hu, Q. Chen, High anodic performance of Co 1,3,5-benzenetricarboxylate coordination polymers for Li-ion battery. ACS Appl. Mater. Interfaces 8(24), 15352–15360 (2016). https://doi.org/10.1021/acsami.6b03648
- M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribière, P. Poizot, J.M. Tarascon, Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 8(2), 120–125 (2009). https://doi.org/10.1038/nmat2372
- X. Ma, Y. He, Y. Hu, M. Lu, Copper(II)-catalyzed hydration of nitriles with the aid of acetaldoxime. Tetrahedron Lett. 53(4), 449–452 (2012). https://doi.org/10.1016/j.tetlet.2011.11.075
- R.J. Abraham, L. Griffiths, M. Perez, 1H NMR spectra. Part 30:1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group. Magn. Reson. Chem. 51(3), 143–155 (2013). https://doi.org/10.1002/mrc.3920
- W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8(7), 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C
References
M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
A. Banerjee, V. Aravindan, S. Bhatnagar, D. Mhamane, S. Madhavi, S. Ogale, Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy 2(5), 890–896 (2013). https://doi.org/10.1016/j.nanoen.2013.03.006
W. Yin, Y. Shen, F. Zou, X. Hu, B. Chi, Y. Huang, Metal-organic framework derived ZnO/ZnFe2O4/C nanocages as stable cathode material for reversible lithium-oxygen batteries. ACS Appl. Mater. Interfaces 7(8), 4947–4954 (2015). https://doi.org/10.1021/am509143t
F. Zheng, D. Zhu, X. Shi, Q. Chen, Metal-organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 3(6), 2815–2824 (2015). https://doi.org/10.1039/C4TA06150K
C. Li, T. Chen, W. Xu, X. Lou, L. Pan, Q. Chen, B. Hu, Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 3(10), 5585–5591 (2015). https://doi.org/10.1039/C4TA06914E
X. Hu, C. Li, X. Lou, X. Yan, Y. Ning, Q. Chen, B. Hu, Controlled synthesis of CoxMn3-xO4 nanoparticles with a tunable composition and size for high performance lithium-ion batteries. RSC Adv. 6(59), 54270–54276 (2016). https://doi.org/10.1039/C6RA08700K
X. Hu, C. Li, X. Lou, Q. Yang, B. Hu, Hierarchical CuO octahedra inherited from copper metal-organic frameworks: high-rate and high-capacity lithium-ion storage materials stimulated by pseudocapacitance. J. Mater. Chem. A 5(25), 12828–12837 (2017). https://doi.org/10.1039/C7TA02953E
J. Guo, B. Jiang, X. Zhang, H. Liu, Monodisperse SnO2 anchored reduced graphene oxide nanocomposites as negative electrode with high rate capability and long cyclability for lithium-ion batteries. J. Power Sources 262, 15–22 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.085
X. Zhang, H. Chen, Y. Xie, J. Guo, Ultralong life lithium-ion battery anode with superior high-rate capability and excellent cyclic stability from mesoporous Fe2O3@TiO2 core-shell nanorods. J. Mater. Chem. A 2(11), 3912–3918 (2014). https://doi.org/10.1039/c3ta14317a
J. Guo, H. Zhu, Y. Sun, L. Tang, X. Zhang, Pie-like free-standing paper of graphene paper@Fe3O4 nanorod array@carbon as integrated anode for robust lithium storage. Chem. Eng. J. 309, 272–277 (2017). https://doi.org/10.1016/j.cej.2016.10.041
C. Guan, X. Wang, Q. Zhang, Z. Fan, H. Zhang, H.J. Fan, Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett. 14(8), 4852–4858 (2014). https://doi.org/10.1021/nl502192p
C. Wu, J. Maier, Y. Yu, Sn-based nanoparticles encapsulated in a porous 3D graphene network: advanced anodes for high-rate and long life Li-ion batteries. Adv. Funct. Mater. 25(23), 3488–3496 (2015). https://doi.org/10.1002/adfm.201500514
H. Jia, P. Gao, J. Yang, J. Wang, Y. Nuli, Z. Yang, Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv. Energy Mater. 1, 1036–1039 (2011). https://doi.org/10.1002/aenm.201100485
D. Ma, Z. Cao, A. Hu, Si-based anode materials for Li-ion batteries: a mini review. Nano Micro Lett. 6(4), 347–358 (2014). https://doi.org/10.1007/s40820-014-0008-2
X. Yu, J.B. Bates, G.E. Jellison, F.X. Hart, A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144(2), 524–532 (1997). https://doi.org/10.1149/1.1837443
L. Wang, X. He, J. Li, W. Sun, J. Gao, J. Guo, C. Jiang, Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries. Angew. Chem. Int. Ed. 51(36), 9034–9037 (2012). https://doi.org/10.1002/anie.201204591
L. Sun, M. Li, K. Sun, S. Yu, R. Wang, H. Xie, Electrochemical activity of black phosphorus as an anode material for lithium-ion batteries. J. Phy. Chem. C 116(28), 14772–14779 (2012). https://doi.org/10.1021/jp302265n
Y. Kim, Y. Park, A. Choi, N.S. Choi, J. Kim, J. Lee, J.H. Ryu, S.M. Oh, K.T. Lee, An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 25(22), 3045–3049 (2013). https://doi.org/10.1002/adma.201204877
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803), 496–499 (2000). https://doi.org/10.1038/35035045
D. Deng, J.Y. Lee, Reversible storage of lithium in a rambutan-like tin–carbon electrode. Angew. Chem. Int. Ed. 48(9), 1660–1663 (2009). https://doi.org/10.1002/anie.200803420
W. Zhang, J. Hu, Y. Guo, S. Zheng, L. Zhong, W. Song, L. Wan, Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 20(6), 1160–1165 (2008). https://doi.org/10.1002/adma.200701364
S. Yang, X. Feng, S. Ivanovici, K. Müllen, Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew. Chem. Int. Ed. 49(45), 8408–8411 (2010). https://doi.org/10.1002/anie.201003485
H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759), 276–279 (1999). https://doi.org/10.1038/46248
M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539(7627), 76–80 (2016). https://doi.org/10.1038/nature19763
H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6
P. Falcaro, R. Ricco, C.M. Doherty, K. Liang, A.J. Hill, M.J. Styles, MOF positioning technology and device fabrication. Chem. Soc. Rev. 43(16), 5513–5560 (2014). https://doi.org/10.1039/C4CS00089G
Q. Zhu, X. Qiang, Metal-organic framework composites. Chem. Soc. Rev. 43(16), 5468–5512 (2014). https://doi.org/10.1039/C3CS60472A
A. Fateeva, P. Horcajada, T. Devic, C. Serre, J. Marrot et al., Synthesis, structure, characterization, and redox properties of the porous MIL-68(Fe) solid. Eur. J. Inorg. Chem. 24, 3789–3794 (2010). https://doi.org/10.1002/ejic.201000486
J. Shin, M. Kim, J. Cirera, S. Chen, G.J. Halder, T.A. Yersak, F. Paesani, S.M. Cohen, Y.S. Meng, MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion. J. Mater. Chem. A 3(8), 4738–4744 (2015). https://doi.org/10.1039/C4TA06694D
Z. Zhang, H. Yoshikawa, K. Awaga, Monitoring the solid-state electrochemistry of Cu(2,7-AQDC) (AQDC = Anthraquinone Dicarboxylate) in a lithium battery: coexistence of metal and ligand redox activities in a metal-organic framework. J. Am. Chem. Soc. 136(46), 16112–16115 (2014). https://doi.org/10.1021/ja508197w
L. Hu, X. Lin, J. Mo, J. Lin, H. Gan, X. Yang, Y. Cai, Lead-based metal-organic framework with stable lithium anodic performance. Inorg. Chem. 56(8), 4289–4295 (2017). https://doi.org/10.1021/acs.inorgchem.6b02663
S. Li, Q. Xu, Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci. 6(6), 1656–1683 (2013). https://doi.org/10.1039/c3ee40507a
T. Gong, X. Lou, E. Gao, B. Hu, Pillared-layer metal-organic frameworks for improved lithium-ion storage performance. ACS Appl. Mater. Interfaces 9(26), 21839–21847 (2017). https://doi.org/10.1021/acsami.7b05889
D. Ji, H. Zhou, Y. Tong, J. Wang, M. Zhu, T. Chen, A. Yuan, Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries. Chem. Eng. J. 313, 1623–1632 (2017). https://doi.org/10.1016/j.cej.2016.11.063
D. Ji, H. Zhou, J. Zhang, Y. Dan, H. Yang, A. Yuan, Facile synthesis of a metal-organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes. J. Mater. Chem. A 4(21), 8283–8290 (2016). https://doi.org/10.1039/C6TA01377E
X. Li, F. Cheng, S. Zhang, J. Chen, Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2. J. Power Sources 160(1), 542–547 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.015
K. Saravanan, M. Nagarathinam, P. Balaya, J.J. Vittal, Lithium storage in a metal organic framework with diamondoid topology—a case study on metal formats. J. Mater. Chem. 20(38), 8329–8335 (2010). https://doi.org/10.1039/c0jm01671c
Q. Liu, L. Yu, Y. Wang, Y. Ji, J. Horvat, M. Cheng, X. Jia, G. Wang, Manganese-based layered coordination polymer: synthesis, structural characterization, magnetic property, and electrochemical performance in lithium-ion batteries. Inorg. Chem. 52(6), 2817–2822 (2013). https://doi.org/10.1021/ic301579g
S. Maiti, A. Pramanik, U. Manju, S. Mahanty, Reversible lithium storage in manganese 1,3,5-benzenetricarboxylate metal-organic framework with high capacity and rate performance. ACS Appl. Mater. Interfaces 7(30), 16357–16363 (2015). https://doi.org/10.1021/acsami.5b03414
L. Gou, L. Hao, Y.X. Shi, S. Ma, X. Fan, L. Xu, D. Li, K. Wang, One-pot synthesis of a metal-organic framework as an anode for Li-ion batteries with improved capacity and cycling stability. J. Solid State Chem. 210(1), 121–124 (2014). https://doi.org/10.1016/j.jssc.2013.11.014
C. Li, X. Hu, X. Lou, Q. Chen, B. Hu, Bimetallic coordination polymer as a promising anode material for lithium-ion batteries. Chem. Commun. 52(10), 2035–2038 (2016). https://doi.org/10.1039/C5CC07151H
C. Li, X. Lou, M. Shen, X. Hu, Z. Guo, Y. Wang, B. Hu, Q. Chen, High anodic performance of Co 1,3,5-benzenetricarboxylate coordination polymers for Li-ion battery. ACS Appl. Mater. Interfaces 8(24), 15352–15360 (2016). https://doi.org/10.1021/acsami.6b03648
M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribière, P. Poizot, J.M. Tarascon, Conjugated dicarboxylate anodes for Li-ion batteries. Nat. Mater. 8(2), 120–125 (2009). https://doi.org/10.1038/nmat2372
X. Ma, Y. He, Y. Hu, M. Lu, Copper(II)-catalyzed hydration of nitriles with the aid of acetaldoxime. Tetrahedron Lett. 53(4), 449–452 (2012). https://doi.org/10.1016/j.tetlet.2011.11.075
R.J. Abraham, L. Griffiths, M. Perez, 1H NMR spectra. Part 30:1H chemical shifts in amides and the magnetic anisotropy, electric field and steric effects of the amide group. Magn. Reson. Chem. 51(3), 143–155 (2013). https://doi.org/10.1002/mrc.3920
W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8(7), 1837–1866 (2015). https://doi.org/10.1039/C5EE00762C