A Bifunctional-Modulated Conformal Li/Mn-Rich Layered Cathode for Fast-Charging, High Volumetric Density and Durable Li-Ion Full Cells
Corresponding Author: Hongbin Lu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 118
Abstract
Lithium- and manganese-rich (LMR) layered cathode materials hold the great promise in designing the next-generation high energy density lithium ion batteries. However, due to the severe surface phase transformation and structure collapse, stabilizing LMR to suppress capacity fade has been a critical challenge. Here, a bifunctional strategy that integrates the advantages of surface modification and structural design is proposed to address the above issues. A model compound Li1.2Mn0.54Ni0.13Co0.13O2 (MNC) with semi-hollow microsphere structure is synthesized, of which the surface is modified by surface-treated layer and graphene/carbon nanotube dual layers. The unique structure design enabled high tap density (2.1 g cm−3) and bidirectional ion diffusion pathways. The dual surface coatings covalent bonded with MNC via C-O-M linkage greatly improves charge transfer efficiency and mitigates electrode degradation. Owing to the synergistic effect, the obtained MNC cathode is highly conformal with durable structure integrity, exhibiting high volumetric energy density (2234 Wh L−1) and predominant capacitive behavior. The assembled full cell, with nanographite as the anode, reveals an energy density of 526.5 Wh kg−1, good rate performance (70.3% retention at 20 C) and long cycle life (1000 cycles). The strategy presented in this work may shed light on designing other high-performance energy devices.
Highlights:
1 A lithium- and manganese-rich (LMR) layered cathode with semi-hollow microsphere structure is synthesized, of which the unique structure design enabled high tap density (2.1 g cm−3) and bidirectional ion diffusion pathways
2 The surface coatings covalent bonded with LMR via C-O-M linkage greatly improves charge transfer efficiency and mitigates surface degradation
3 The LMR is highly conformal with durable structure integrity, exhibiting high volumetric energy density (2234 Wh L−1) and long cycling life (1000 cycles)
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.Z. Cao, J.N. Zhang, H. Li, Batteries with high theoretical energy densities. Energy Storage Mater 26, 46–55 (2020). https://doi.org/10.1016/j.ensm.2019.12.024
- J. Liu, Z.N. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- C. Zu, H. Li, Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4, 2614–2624 (2011). https://doi.org/10.1039/C0EE00777C
- X.L. Xu, S.X. Deng, H. Wang, J.B. Liu, H. Yan, Research progress in improving the cycling stability of high-voltage LiNi0.5 Mn1.5 O4 cathode in lithium-ion battery. Nano-Micro Lett 9(2), 22–41 (2017)
- E. Hu, X.Q. Yu, R.Q. Lin, X.X. Bi, J. Lu et al., Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018). https://doi.org/10.1038/s41560-018-0207-z
- W. Hua, S.N. Wang, M. Knapp, S.J. Leake, A. Senyshyn et al., Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 10, 5365 (2019). https://doi.org/10.1038/s41467-019-13240-z
- J. Zhang, Z.H. Lei, J.L. Wang, Y.N. NuLi, J. Yang, Surface modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(29), 15821–15829 (2015). https://doi.org/10.1021/acsami.5b02937
- M. Li, T.C. Liu, X.X. Bi, Z.W. Chen, K. Amine et al., Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 49, 1688–1705 (2020). https://doi.org/10.1039/C8CS00426A
- F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta et al., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014). https://doi.org/10.1038/ncomms4529
- H.G. Pan, S.M. Zhang, J. Chen, M.X. Gao, Y.F. Liu et al., Li- and Mn-rich layered oxide cathode materials for lithium-ion batteries: a review from fundamentals to research progress and applications. Mol. Syst. Des. Eng. 3, 748–783 (2018). https://doi.org/10.1039/C8ME00025E
- S.Q. Zhao, K. Yan, J.Q. Zhang, B. Sun, G.X. Wang, Reviving reaction mechanism of layered lithium-rich cathode materials for high-energy lithium-ion battery. Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.202000262
- Z. Zhu, D. Yu, Y. Yang, C. Su, Y.M. Huang et al., Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat. Energy 4, 1049–1058 (2019). https://doi.org/10.1038/s41560-019-0508-x
- B. Xiao, H.S. Liu, N. Chen, M.N. Banis, H.J. Yu et al., Size-mediated recurring spinel sub-nanodomains in Li and Mn-rich layered cathode materials. Angew. Chem. Int. Ed. 59(34), 14313–14320 (2020). https://doi.org/10.1002/anie.202005337
- H. Sun, A. Manthiram, Impact of microcrack generation and surface degradation on a nickel-rich layered Li [Ni0.9Co0.05Mn0.05] O2 cathode for lithium-ion batteries. Chem. Mater. 29(19), 8486–8493 (2017). https://doi.org/10.1021/acs.chemmater.7b03268
- H. Ryu, K. Park, C.S. Yoon, Y. Sun, Capacity fading of Ni-Rich Li[NixCoyMn1-x-y] O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30(3), 1155–1163 (2018). https://doi.org/10.1021/acs.chemmater.7b05269
- C.J. Chen, W.K. Pang, T. Mori, V.K. Peterson, N. Sharma et al., The origin of capacity fade in the Li2MnO3·LiMO2 (M= Li, Ni Co, Mn) microsphere positive electrode: an operando neutron diffraction and transmission X-ray microscopy study. J. Am. Chem. Soc. 138(28), 8824–8833 (2016). https://doi.org/10.1021/jacs.6b03932
- H.D. Liu, Y. Chen, S. Hy, K. An, S. Venkatachalam et al., Operando lithium dynamics in the Li-rich layered oxide cathode material via neutron diffraction. Adv. Energy Mater. 6(7), 15021437 (2016). https://doi.org/10.1002/aenm.201502143
- A. Singer, M. Zhang, S. Hy, D. Cela, C. Fang et al., Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018). https://doi.org/10.1038/s41560-018-0184-2
- P. Oh, M. Ko, S. Myeong, Y. Kim, J. Cho, A novel surface treatment method and new insight into discharge voltage deterioration for high performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv. Energy Mater (2014). https://doi.org/10.1002/aenm.201400631
- W. Liu, P. Oh, X. Liu, S. Myeong, W. Cho et al., Countering voltage decay and capacity fading of lithium-rich cathode material at 60 °C by hybrid surface protection layers. Adv. Energy Mater. 5, 1500274 (2015). https://doi.org/10.1002/aenm.201500274
- A.M. Wise, C. Ban, J.N. Weker, S. Misra, A.S. Cavanagh et al., Effect of Al2O3 coating on stabilizing LiNi0.4Mn0.4Co0.2O2 cathodes. Chem. Mater. 27(17), 6146–6154 (2015). https://doi.org/10.1021/acs.chemmater.5b02952
- S.J. Shi, J.P. Tu, Y.J. Mai, Y.Q. Zhang, C.D. Gu et al., Effect of carbon coating on electrochemical performance of Li10.48Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries. Electrochim. Acta 63(29), 112–117 (2012). https://doi.org/10.1016/j.electacta.2011.12.082
- J.M. Zheng, M. Gu, J. Xiao, B.J. Polzin, P.F. Yan et al., Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem. Mater. 26(22), 6320–6327 (2014). https://doi.org/10.1021/cm502071h
- S.J. Hu, Y. Li, Y.H. Chen, J.M. Peng, T.F. Zhou et al., Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode. Energy Mater Adv. (2019). https://doi.org/10.1002/aenm.201901795
- C. Wu, X. Fang, X. Guo, Y. Mao, J. Ma et al., Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. J. Power Sour. 231(1), 44–49 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.138
- X. Li, K.J. Zhang, D. Mitlin, E. Paek, M.S. Wang et al., Li-Rich Li [Li1/6Fe1/6Ni1/6Mn1/2] O2 (LFNMO) cathodes: atomic scale insight on the mechanisms of cycling decay and of the improvement due to cobalt phosphate surface modification. Small 14(40), 1802570 (2018). https://doi.org/10.1002/smll.201802570
- Y. Sun, M. Lee, C.S. Yoon, J. Hassoun, K. Amine et al., The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 24, 1192 (2012). https://doi.org/10.1002/adma.201104106
- B. Qiu, C. Yin, Y.G. Xia, Z.P. Liu, Synthesis of three-dimensional nanoporous Li-rich layered cathode oxides for high volumetric and power energy density lithium-ion batteries. ACS Appl. Mater. Interfaces 9(4), 3661–3666 (2017). https://doi.org/10.1021/acsami.6b14169
- P. Oh, S. Myeong, W. Cho, M. Lee, M. Ko et al., Superior long-term energy retention and volumetric energy density for Li-rich cathode materials. Nano Lett. 14(10), 5965–5972 (2014). https://doi.org/10.1021/nl502980k
- Y.C. Liu, J. Wang, J.W. Wu, Z.Y. Ding, P.H. Yao et al., 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries. Adv. Energy Mater. 10(5), 1903139 (2019). https://doi.org/10.1002/aenm.201903139
- F. Fu, Y.Z. Yao, H.Y. Wang, G.L. Xu, K. Amine et al., Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries. Nano Energy 35, 370–378 (2017). https://doi.org/10.1016/j.nanoen.2017.04.005
- Y.K. Hou, G.L. Pan, Y.Y. Sun, X.P. Gao, Li-rich layered oxide microspheres prepared by the biomineralization as high-rate and cycling-stable cathode for Li-ion batteries. ACS Appl. Energy Mater. 1(10), 5703–5711 (2018). https://doi.org/10.1021/acsaem.8b01273
- Y. Zhang, W.S. Zhang, S.Y. Shen, X.H. Yan, A.M. Wu et al., Hollow porous bowl-shaped lithium-rich cathode material for lithium-ion batteries with exceptional rate capability and stability. J. Power Sour. 380, 164–173 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.084
- X.W.D. Lou, L.A. Archer, Z.C. Yang, Hollow micro-/nanostructures: synthesis and applications. Adv. Mater. 20, 3987 (2008). https://doi.org/10.1002/adma.200800854
- J.M. Zheng, S. Myeong, W. Cho, P.F. Yan, J. Xiao et al., Li- and Mn-rich cathode materials: challenges to commercialization. Adv. Energy Mater. 7, 1601284 (2016). https://doi.org/10.1002/aenm.201601284
- Y.Y. Liu, Y.Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
- S. Jung, I. Hwang, D. Chang, K.Y. Park, S.J. Kim et al., Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120(14), 6684–6737 (2020). https://doi.org/10.1021/acs.chemrev.9b00405
- F.H. Zheng, C.H. Yang, X.H. Xiong, J.W. Xiong, R.Z. Hu et al., Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem. Int. Ed. 127(44), 13250–13254 (2015). https://doi.org/10.1002/ange.201506408
- F. Zheng, X. Ou, Q. Pan, X. Xiong, C. Yang et al., Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries. Chem. Eng. J. 334(15), 497–507 (2018). https://doi.org/10.1016/j.cej.2017.10.050
- H. Kim, M.G. Kim, H.Y. Jeong, H. Nam, J. Cho, A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano. Lett. 15(3), 2111–2119 (2015). https://doi.org/10.1021/acs.nanolett.5b00045
- X. Li, K.J. Zhang, S.Y. Wang, M.S. Wang, F. Jiang et al., Optimal synthetic conditions for a novel and high performance Ni-rich cathode material of LiNi0.68Co0.10Mn0.22O2. Sustain. Energy Fuels 2(8), 1772–1780 (2018). https://doi.org/10.1039/C3TA01618H
- T. Mei, K.B. Tang, Y.C. Zhu, Y.T. Qian, Preparation of LiCoO2 concaved cuboctahedra and their electrochemical behavior in lithium-ion battery. Dalton T 40, 7645–7650 (2011). https://doi.org/10.1039/C1DT10228A
- C.S. Johnson, N. Li, C. Lefief, M.M. Thackeray, Anomalous capacity and cycling stability of xLi2MnO3 center dot (1–x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 degrees C. Electrochem. Commun. 9(4), 787–795 (2007). https://doi.org/10.1016/j.elecom.2006.11.006
- J. Hong, D. Seo, S. Kim, H. Gwon, S. Oh et al., Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. J. Mater. Chem. 20, 10179–10186 (2010). https://doi.org/10.1039/C0JM01971B
- G. Zhou, D. Wang, L. Yin, N. Li, F. Li et al., Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4), 3214–3223 (2012). https://doi.org/10.1021/nn300098m
- B.H. Song, M.O. Lai, Z.W. Liu, H.W. Liu, L. Lu, Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J. Mater. Chem. A 1(34), 9954–9965 (2013). https://doi.org/10.1039/C3TA11580A
- S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, H.M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010). https://doi.org/10.1016/j.carbon.2010.08.006
- C.M. Ban, Z. Li, Z.C. Wu, M.J. Kirkham, L. Chen et al., Extremely durable high-rate capability of a LiNi0.4Mn0.4Co0.2O2 cathode enabled with single-walled carbon nanotubes. Adv. Energy Mater. 1, 58–62 (2011). https://doi.org/10.1002/aenm.201000001
- X. Zhang, I. Belharouak, L. Li, Y. Lei, J.W. Elam et al., Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2 Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv. Energy Mater. 3(10), 1299–1307 (2013). https://doi.org/10.1002/aenm.201300269
- X. Yu, Y. Lyu, L. Gu, H. Wu, S. Bak et al., Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 4, 1300950 (2014). https://doi.org/10.1002/aenm.201300950
- X.M. Fang, G.R. Hu, B. Zhang, X. Ou, J.F. Zhang et al., Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 70, 104450 (2020). https://doi.org/10.1016/j.nanoen.2020.104450
- P.F. Yan, J.M. Zheng, M. Gu, J. Xiao, J.G. Zhang et al., Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017). https://doi.org/10.1038/ncomms14101
- Y.D. Cho, G.T. Fey, H. Kao, The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J. Power Sour. 189(1), 256–262 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.053
- Z.W. Xiao, Y.J. Zhang, G.R. Hu, An investigation into LiFePO4/C electrode by medium scan rate cyclic voltammetry. J. Appl. Electrochem. 45(3), 225–233 (2015). https://doi.org/10.1007/s10800-014-0780-1
- Y. Zhang, Y. Huang, V. Srot, P.A. van Aken, J. Maier, Enhanced pseudo-capacitive contributions to high-performance sodium storage in TiO2/C nanofibers via double effects of sulfur modification. Nano-Micro Lett. 12(1), 165 (2020). https://doi.org/10.1007/s40820-020-00506-1
- C. Chae, H. Noh, J.K. Lee, B. Scrosati, Y. Sun et al., A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Funct. Mater. 24(20), 3036–3042 (2014). https://doi.org/10.1002/adfm.201303766
- J.H. Lee, C.S. Yoon, J. Hwang, S. Kim, F. Maglia, High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ. Sci. 9, 2152–2158 (2016). https://doi.org/10.1039/C6EE01134A
- P.K. Nayak, T.R. Penki, B. Markovsky, D. Aurbach, Electrochemical performance of Li- and Mn-rich cathodes in full cells with prelithiated graphite negative electrodes. ACS Energy Lett. 2(3), 544–548 (2017). https://doi.org/10.1021/acsenergylett.7b00007
- C. Li, C. Liu, W. Wang, Z. Mutlu, J. Bell et al., Silicon derived from glass bottles as anode materials for lithium ion full cell batteries. Sci. Rep. 7, 917 (2017). https://doi.org/10.1038/s41598-017-01086-8
- H. Jung, M.W. Jang, J. Hassoun, Y. Sun, B. Scrosati, A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat. Commun. 2, 516 (2011). https://doi.org/10.1038/ncomms1527
- X. Ren, Y. Zhai, L. Zhu, Y. He, A. Li et al., Fabrication of various V2O5 hollow microspheres as excellent cathode for lithium storage and the application in full cells. ACS Appl. Mater. Interfaces 8(27), 17205–17211 (2016). https://doi.org/10.1021/acsami.6b03257
- P. Xiong, L.L. Peng, D.H. Chen, Y. Zhao, X. Wang et al., Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy 12, 816–823 (2015). https://doi.org/10.1016/j.nanoen.2015.01.044
- J. Hassoun, F. Bonaccorso, M. Agostini, M. Angelucci, M.G. Betti et al., An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14(8), 4901–4906 (2014). https://doi.org/10.1021/nl502429m
- P.F. Zhang, L.Z. Zhao, Q.Y. An, Q.L. Wei, L. Zhou et al., A high-rate V2O5 hollow microclew cathode for an all-vanadium-based lithium-ion full cell. Small 12, 1082–1090 (2016). https://doi.org/10.1002/smll.201503214
- J.L. Allen, J.L. Allen, T. Thompson, S.A. Delp, J. Wolfenstine et al., Cr and Si substituted-LiCo0.9Fe0.1PO4: structure, full and half Li-ion cell performance. J. Power Sour. 327(30), 229–234 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.055
- Y.L. Huang, X.H. Hou, X.Y. Fan, S.M. Ma, S.J. Hu et al., Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells. Electrochim. Acta 182(10), 1175–1187 (2015). https://doi.org/10.1016/j.electacta.2015.09.067
- P.S. Veluri, S. Mitra, High-rate capable full-cell lithium-ion battery based on a conversion anode and an intercalation cathode. ChemElectroChem 4(3), 686–691 (2017). https://doi.org/10.1002/celc.201600681
- E.C. Self, E.C. McRen, R. Wycisk, P.N. Pintauro, LiCoO2-based fiber cathodes for electrospun full cell Li-ion batteries. Electrochim. Acta 214(1), 139–146 (2016). https://doi.org/10.1016/j.electacta.2016.08.033
- N. Wang, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He et al., In situ synthesized Li2S@porous carbon cathode for graphite/Li2S full cells using ether-based electrolyte. Electrochim. Acta 256(1), 348–356 (2017). https://doi.org/10.1016/j.electacta.2017.10.053
References
W.Z. Cao, J.N. Zhang, H. Li, Batteries with high theoretical energy densities. Energy Storage Mater 26, 46–55 (2020). https://doi.org/10.1016/j.ensm.2019.12.024
J. Liu, Z.N. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
C. Zu, H. Li, Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4, 2614–2624 (2011). https://doi.org/10.1039/C0EE00777C
X.L. Xu, S.X. Deng, H. Wang, J.B. Liu, H. Yan, Research progress in improving the cycling stability of high-voltage LiNi0.5 Mn1.5 O4 cathode in lithium-ion battery. Nano-Micro Lett 9(2), 22–41 (2017)
E. Hu, X.Q. Yu, R.Q. Lin, X.X. Bi, J. Lu et al., Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018). https://doi.org/10.1038/s41560-018-0207-z
W. Hua, S.N. Wang, M. Knapp, S.J. Leake, A. Senyshyn et al., Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 10, 5365 (2019). https://doi.org/10.1038/s41467-019-13240-z
J. Zhang, Z.H. Lei, J.L. Wang, Y.N. NuLi, J. Yang, Surface modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(29), 15821–15829 (2015). https://doi.org/10.1021/acsami.5b02937
M. Li, T.C. Liu, X.X. Bi, Z.W. Chen, K. Amine et al., Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 49, 1688–1705 (2020). https://doi.org/10.1039/C8CS00426A
F. Lin, I.M. Markus, D. Nordlund, T.C. Weng, M.D. Asta et al., Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014). https://doi.org/10.1038/ncomms4529
H.G. Pan, S.M. Zhang, J. Chen, M.X. Gao, Y.F. Liu et al., Li- and Mn-rich layered oxide cathode materials for lithium-ion batteries: a review from fundamentals to research progress and applications. Mol. Syst. Des. Eng. 3, 748–783 (2018). https://doi.org/10.1039/C8ME00025E
S.Q. Zhao, K. Yan, J.Q. Zhang, B. Sun, G.X. Wang, Reviving reaction mechanism of layered lithium-rich cathode materials for high-energy lithium-ion battery. Angew. Chem. Int. Ed. (2020). https://doi.org/10.1002/anie.202000262
Z. Zhu, D. Yu, Y. Yang, C. Su, Y.M. Huang et al., Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat. Energy 4, 1049–1058 (2019). https://doi.org/10.1038/s41560-019-0508-x
B. Xiao, H.S. Liu, N. Chen, M.N. Banis, H.J. Yu et al., Size-mediated recurring spinel sub-nanodomains in Li and Mn-rich layered cathode materials. Angew. Chem. Int. Ed. 59(34), 14313–14320 (2020). https://doi.org/10.1002/anie.202005337
H. Sun, A. Manthiram, Impact of microcrack generation and surface degradation on a nickel-rich layered Li [Ni0.9Co0.05Mn0.05] O2 cathode for lithium-ion batteries. Chem. Mater. 29(19), 8486–8493 (2017). https://doi.org/10.1021/acs.chemmater.7b03268
H. Ryu, K. Park, C.S. Yoon, Y. Sun, Capacity fading of Ni-Rich Li[NixCoyMn1-x-y] O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30(3), 1155–1163 (2018). https://doi.org/10.1021/acs.chemmater.7b05269
C.J. Chen, W.K. Pang, T. Mori, V.K. Peterson, N. Sharma et al., The origin of capacity fade in the Li2MnO3·LiMO2 (M= Li, Ni Co, Mn) microsphere positive electrode: an operando neutron diffraction and transmission X-ray microscopy study. J. Am. Chem. Soc. 138(28), 8824–8833 (2016). https://doi.org/10.1021/jacs.6b03932
H.D. Liu, Y. Chen, S. Hy, K. An, S. Venkatachalam et al., Operando lithium dynamics in the Li-rich layered oxide cathode material via neutron diffraction. Adv. Energy Mater. 6(7), 15021437 (2016). https://doi.org/10.1002/aenm.201502143
A. Singer, M. Zhang, S. Hy, D. Cela, C. Fang et al., Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018). https://doi.org/10.1038/s41560-018-0184-2
P. Oh, M. Ko, S. Myeong, Y. Kim, J. Cho, A novel surface treatment method and new insight into discharge voltage deterioration for high performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv. Energy Mater (2014). https://doi.org/10.1002/aenm.201400631
W. Liu, P. Oh, X. Liu, S. Myeong, W. Cho et al., Countering voltage decay and capacity fading of lithium-rich cathode material at 60 °C by hybrid surface protection layers. Adv. Energy Mater. 5, 1500274 (2015). https://doi.org/10.1002/aenm.201500274
A.M. Wise, C. Ban, J.N. Weker, S. Misra, A.S. Cavanagh et al., Effect of Al2O3 coating on stabilizing LiNi0.4Mn0.4Co0.2O2 cathodes. Chem. Mater. 27(17), 6146–6154 (2015). https://doi.org/10.1021/acs.chemmater.5b02952
S.J. Shi, J.P. Tu, Y.J. Mai, Y.Q. Zhang, C.D. Gu et al., Effect of carbon coating on electrochemical performance of Li10.48Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries. Electrochim. Acta 63(29), 112–117 (2012). https://doi.org/10.1016/j.electacta.2011.12.082
J.M. Zheng, M. Gu, J. Xiao, B.J. Polzin, P.F. Yan et al., Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem. Mater. 26(22), 6320–6327 (2014). https://doi.org/10.1021/cm502071h
S.J. Hu, Y. Li, Y.H. Chen, J.M. Peng, T.F. Zhou et al., Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode. Energy Mater Adv. (2019). https://doi.org/10.1002/aenm.201901795
C. Wu, X. Fang, X. Guo, Y. Mao, J. Ma et al., Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. J. Power Sour. 231(1), 44–49 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.138
X. Li, K.J. Zhang, D. Mitlin, E. Paek, M.S. Wang et al., Li-Rich Li [Li1/6Fe1/6Ni1/6Mn1/2] O2 (LFNMO) cathodes: atomic scale insight on the mechanisms of cycling decay and of the improvement due to cobalt phosphate surface modification. Small 14(40), 1802570 (2018). https://doi.org/10.1002/smll.201802570
Y. Sun, M. Lee, C.S. Yoon, J. Hassoun, K. Amine et al., The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 24, 1192 (2012). https://doi.org/10.1002/adma.201104106
B. Qiu, C. Yin, Y.G. Xia, Z.P. Liu, Synthesis of three-dimensional nanoporous Li-rich layered cathode oxides for high volumetric and power energy density lithium-ion batteries. ACS Appl. Mater. Interfaces 9(4), 3661–3666 (2017). https://doi.org/10.1021/acsami.6b14169
P. Oh, S. Myeong, W. Cho, M. Lee, M. Ko et al., Superior long-term energy retention and volumetric energy density for Li-rich cathode materials. Nano Lett. 14(10), 5965–5972 (2014). https://doi.org/10.1021/nl502980k
Y.C. Liu, J. Wang, J.W. Wu, Z.Y. Ding, P.H. Yao et al., 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries. Adv. Energy Mater. 10(5), 1903139 (2019). https://doi.org/10.1002/aenm.201903139
F. Fu, Y.Z. Yao, H.Y. Wang, G.L. Xu, K. Amine et al., Structure dependent electrochemical performance of Li-rich layered oxides in lithium-ion batteries. Nano Energy 35, 370–378 (2017). https://doi.org/10.1016/j.nanoen.2017.04.005
Y.K. Hou, G.L. Pan, Y.Y. Sun, X.P. Gao, Li-rich layered oxide microspheres prepared by the biomineralization as high-rate and cycling-stable cathode for Li-ion batteries. ACS Appl. Energy Mater. 1(10), 5703–5711 (2018). https://doi.org/10.1021/acsaem.8b01273
Y. Zhang, W.S. Zhang, S.Y. Shen, X.H. Yan, A.M. Wu et al., Hollow porous bowl-shaped lithium-rich cathode material for lithium-ion batteries with exceptional rate capability and stability. J. Power Sour. 380, 164–173 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.084
X.W.D. Lou, L.A. Archer, Z.C. Yang, Hollow micro-/nanostructures: synthesis and applications. Adv. Mater. 20, 3987 (2008). https://doi.org/10.1002/adma.200800854
J.M. Zheng, S. Myeong, W. Cho, P.F. Yan, J. Xiao et al., Li- and Mn-rich cathode materials: challenges to commercialization. Adv. Energy Mater. 7, 1601284 (2016). https://doi.org/10.1002/aenm.201601284
Y.Y. Liu, Y.Y. Zhu, Y. Cui, Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019). https://doi.org/10.1038/s41560-019-0405-3
S. Jung, I. Hwang, D. Chang, K.Y. Park, S.J. Kim et al., Nanoscale phenomena in lithium-ion batteries. Chem. Rev. 120(14), 6684–6737 (2020). https://doi.org/10.1021/acs.chemrev.9b00405
F.H. Zheng, C.H. Yang, X.H. Xiong, J.W. Xiong, R.Z. Hu et al., Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem. Int. Ed. 127(44), 13250–13254 (2015). https://doi.org/10.1002/ange.201506408
F. Zheng, X. Ou, Q. Pan, X. Xiong, C. Yang et al., Nanoscale gadolinium doped ceria (GDC) surface modification of Li-rich layered oxide as a high performance cathode material for lithium ion batteries. Chem. Eng. J. 334(15), 497–507 (2018). https://doi.org/10.1016/j.cej.2017.10.050
H. Kim, M.G. Kim, H.Y. Jeong, H. Nam, J. Cho, A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles. Nano. Lett. 15(3), 2111–2119 (2015). https://doi.org/10.1021/acs.nanolett.5b00045
X. Li, K.J. Zhang, S.Y. Wang, M.S. Wang, F. Jiang et al., Optimal synthetic conditions for a novel and high performance Ni-rich cathode material of LiNi0.68Co0.10Mn0.22O2. Sustain. Energy Fuels 2(8), 1772–1780 (2018). https://doi.org/10.1039/C3TA01618H
T. Mei, K.B. Tang, Y.C. Zhu, Y.T. Qian, Preparation of LiCoO2 concaved cuboctahedra and their electrochemical behavior in lithium-ion battery. Dalton T 40, 7645–7650 (2011). https://doi.org/10.1039/C1DT10228A
C.S. Johnson, N. Li, C. Lefief, M.M. Thackeray, Anomalous capacity and cycling stability of xLi2MnO3 center dot (1–x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 degrees C. Electrochem. Commun. 9(4), 787–795 (2007). https://doi.org/10.1016/j.elecom.2006.11.006
J. Hong, D. Seo, S. Kim, H. Gwon, S. Oh et al., Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. J. Mater. Chem. 20, 10179–10186 (2010). https://doi.org/10.1039/C0JM01971B
G. Zhou, D. Wang, L. Yin, N. Li, F. Li et al., Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4), 3214–3223 (2012). https://doi.org/10.1021/nn300098m
B.H. Song, M.O. Lai, Z.W. Liu, H.W. Liu, L. Lu, Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J. Mater. Chem. A 1(34), 9954–9965 (2013). https://doi.org/10.1039/C3TA11580A
S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, H.M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15), 4466–4474 (2010). https://doi.org/10.1016/j.carbon.2010.08.006
C.M. Ban, Z. Li, Z.C. Wu, M.J. Kirkham, L. Chen et al., Extremely durable high-rate capability of a LiNi0.4Mn0.4Co0.2O2 cathode enabled with single-walled carbon nanotubes. Adv. Energy Mater. 1, 58–62 (2011). https://doi.org/10.1002/aenm.201000001
X. Zhang, I. Belharouak, L. Li, Y. Lei, J.W. Elam et al., Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2 Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv. Energy Mater. 3(10), 1299–1307 (2013). https://doi.org/10.1002/aenm.201300269
X. Yu, Y. Lyu, L. Gu, H. Wu, S. Bak et al., Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 4, 1300950 (2014). https://doi.org/10.1002/aenm.201300950
X.M. Fang, G.R. Hu, B. Zhang, X. Ou, J.F. Zhang et al., Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 70, 104450 (2020). https://doi.org/10.1016/j.nanoen.2020.104450
P.F. Yan, J.M. Zheng, M. Gu, J. Xiao, J.G. Zhang et al., Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017). https://doi.org/10.1038/ncomms14101
Y.D. Cho, G.T. Fey, H. Kao, The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J. Power Sour. 189(1), 256–262 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.053
Z.W. Xiao, Y.J. Zhang, G.R. Hu, An investigation into LiFePO4/C electrode by medium scan rate cyclic voltammetry. J. Appl. Electrochem. 45(3), 225–233 (2015). https://doi.org/10.1007/s10800-014-0780-1
Y. Zhang, Y. Huang, V. Srot, P.A. van Aken, J. Maier, Enhanced pseudo-capacitive contributions to high-performance sodium storage in TiO2/C nanofibers via double effects of sulfur modification. Nano-Micro Lett. 12(1), 165 (2020). https://doi.org/10.1007/s40820-020-00506-1
C. Chae, H. Noh, J.K. Lee, B. Scrosati, Y. Sun et al., A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode. Adv. Funct. Mater. 24(20), 3036–3042 (2014). https://doi.org/10.1002/adfm.201303766
J.H. Lee, C.S. Yoon, J. Hwang, S. Kim, F. Maglia, High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode. Energy Environ. Sci. 9, 2152–2158 (2016). https://doi.org/10.1039/C6EE01134A
P.K. Nayak, T.R. Penki, B. Markovsky, D. Aurbach, Electrochemical performance of Li- and Mn-rich cathodes in full cells with prelithiated graphite negative electrodes. ACS Energy Lett. 2(3), 544–548 (2017). https://doi.org/10.1021/acsenergylett.7b00007
C. Li, C. Liu, W. Wang, Z. Mutlu, J. Bell et al., Silicon derived from glass bottles as anode materials for lithium ion full cell batteries. Sci. Rep. 7, 917 (2017). https://doi.org/10.1038/s41598-017-01086-8
H. Jung, M.W. Jang, J. Hassoun, Y. Sun, B. Scrosati, A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat. Commun. 2, 516 (2011). https://doi.org/10.1038/ncomms1527
X. Ren, Y. Zhai, L. Zhu, Y. He, A. Li et al., Fabrication of various V2O5 hollow microspheres as excellent cathode for lithium storage and the application in full cells. ACS Appl. Mater. Interfaces 8(27), 17205–17211 (2016). https://doi.org/10.1021/acsami.6b03257
P. Xiong, L.L. Peng, D.H. Chen, Y. Zhao, X. Wang et al., Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy 12, 816–823 (2015). https://doi.org/10.1016/j.nanoen.2015.01.044
J. Hassoun, F. Bonaccorso, M. Agostini, M. Angelucci, M.G. Betti et al., An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate cathode. Nano Lett. 14(8), 4901–4906 (2014). https://doi.org/10.1021/nl502429m
P.F. Zhang, L.Z. Zhao, Q.Y. An, Q.L. Wei, L. Zhou et al., A high-rate V2O5 hollow microclew cathode for an all-vanadium-based lithium-ion full cell. Small 12, 1082–1090 (2016). https://doi.org/10.1002/smll.201503214
J.L. Allen, J.L. Allen, T. Thompson, S.A. Delp, J. Wolfenstine et al., Cr and Si substituted-LiCo0.9Fe0.1PO4: structure, full and half Li-ion cell performance. J. Power Sour. 327(30), 229–234 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.055
Y.L. Huang, X.H. Hou, X.Y. Fan, S.M. Ma, S.J. Hu et al., Advanced Li-rich cathode collaborated with graphite/silicon anode for high performance Li-ion batteries in half and full cells. Electrochim. Acta 182(10), 1175–1187 (2015). https://doi.org/10.1016/j.electacta.2015.09.067
P.S. Veluri, S. Mitra, High-rate capable full-cell lithium-ion battery based on a conversion anode and an intercalation cathode. ChemElectroChem 4(3), 686–691 (2017). https://doi.org/10.1002/celc.201600681
E.C. Self, E.C. McRen, R. Wycisk, P.N. Pintauro, LiCoO2-based fiber cathodes for electrospun full cell Li-ion batteries. Electrochim. Acta 214(1), 139–146 (2016). https://doi.org/10.1016/j.electacta.2016.08.033
N. Wang, N.Q. Zhao, C.S. Shi, E.Z. Liu, C.N. He et al., In situ synthesized Li2S@porous carbon cathode for graphite/Li2S full cells using ether-based electrolyte. Electrochim. Acta 256(1), 348–356 (2017). https://doi.org/10.1016/j.electacta.2017.10.053