Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures
Corresponding Author: Long Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 75
Abstract
Aqueous zinc metal batteries (AZMBs) are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc (Zn) metal. However, several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries (AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.
Highlights:
1 Representative methods for calculating the depth of discharge of different Zn anodes are introduced.
2 Recent advances of aqueous Zn metal batteries with high Zn utilization are reviewed and categorized according to Zn anodes with different structures.
3 The working mechanism of anode-free aqueous Zn metal batteries is introduced in detail, and different modification strategies for anode-free aqueous Zn metal batteries are summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- L. Dong, L. Zhang, S. Lin, Z. Chen, Y. Wang et al., Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite. Nano Energy 70, 104482 (2020). https://doi.org/10.1016/j.nanoen.2020.104482
- G. Zheng, S.W. Lee, Z. Liang, H.W. Lee, K. Yan et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014). https://doi.org/10.1038/nnano.2014.152
- M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin et al., Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013). https://doi.org/10.1038/nmat3699
- L. Wang, L. Zhang, Y. Meng, Y. Zhang, J. Kang et al., Fluorinated hybrid interphases enable anti-corrosion and uniform zinc deposition for aqueous zinc metal batteries. Sci. China Mater. (2023). https://doi.org/10.1007/s40843-023-2598-0
- J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- S. Yuan, T. Kong, Y. Zhang, P. Dong, Y. Zhang et al., Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew. Chem. Int. Ed. 60, 25624–25638 (2021). https://doi.org/10.1002/anie.202108397
- L. Zhang, Y. Liu, Z. Zhao, P. Jiang, T. Zhang et al., Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li–S batteries. ACS Nano 14, 8495–8507 (2020). https://doi.org/10.1021/acsnano.0c02762
- Y. Fang, X. Xie, B. Zhang, Y. Chai, B. Lu et al., Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv. Funct. Mater. 32, 2109671 (2022). https://doi.org/10.1002/adfm.202109671
- L. Zhang, Y. Hou, Comprehensive analyses of aqueous Zn metal batteries: characterization methods, simulations, and theoretical calculations. Adv. Energy Mater. 11, 2003823 (2021). https://doi.org/10.1002/aenm.202003823
- Z. Wang, M. Zhou, L. Qin, M. Chen, Z. Chen et al., Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. eScience 2, 209–218 (2022). https://doi.org/10.1016/j.esci.2022.03.002
- Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15, 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
- Q.-N. Zhu, Z.-Y. Wang, J.-W. Wang, X.-Y. Liu, D. Yang et al., Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 40, 309–328 (2021). https://doi.org/10.1007/s12598-020-01588-x
- Y. Liu, S. Liu, X. Xie, Z. Li, P. Wang et al., A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry. InfoMat 5, e12374 (2023). https://doi.org/10.1002/inf2.12374
- R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15, 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
- R. Khezri, S. Rezaei Motlagh, M. Etesami, A.A. Mohamad, F. Mahlendorf et al., Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries. Chem. Eng. J. 449, 137796 (2022). https://doi.org/10.1016/j.cej.2022.137796
- H.-X. Zhang, P.-F. Wang, C.-G. Yao, S.-P. Chen, K.-D. Cai et al., Recent advances of Ferro-/piezoelectric polarization effect for dendrite-free metal anodes. Rare Met. 42, 2516–2544 (2023). https://doi.org/10.1007/s12598-023-02319-8
- L. Zhang, Y. Liu, Aqueous zinc–chalcogen batteries: emerging conversion-type energy storage systems. Batteries 9, 62 (2023). https://doi.org/10.3390/batteries9010062
- L. Zhang, High-performance metal–chalcogen batteries. Batteries 9, 35 (2023). https://doi.org/10.3390/batteries9010035
- Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
- Y. Meng, L. Wang, J. Zeng, B. Hu, J. Kang et al., Ultrathin zinc–carbon composite anode enabled with unique three-dimensional interpenetrating structure for high-performance aqueous zinc ion batteries. Chem. Eng. J. 474, 145987 (2023). https://doi.org/10.1016/j.cej.2023.145987
- M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14, 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
- W. Kao-ian, A.A. Mohamad, W.-R. Liu, R. Pornprasertsuk, S. Siwamogsatham et al., Stability enhancement of zinc-ion batteries using non-aqueous electrolytes. Batter. Supercaps 5, 2100361 (2022). https://doi.org/10.1002/batt.202100361
- W. Nie, H. Cheng, Q. Sun, S. Liang, X. Lu et al., Design strategies toward high-performance Zn metal anode. Small Methods (2023). https://doi.org/10.1002/smtd.202201572
- Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
- C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6, 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
- Y. Zou, X. Yang, L. Shen, Y. Su, Z. Chen et al., Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ. Sci. 15, 5017–5038 (2022). https://doi.org/10.1039/D2EE02416K
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- M. Gu, A.M. Rao, J. Zhou, B. Lu, In situ formed uniform and elastic SEI for high-performance batteries. Energy Environ. Sci. 16, 1166–1175 (2023). https://doi.org/10.1039/D2EE04148K
- M. Gopalakrishnan, S. Ganesan, M.T. Nguyen, T. Yonezawa, S. Praserthdam et al., Critical roles of metal–organic frameworks in improving the Zn anode in aqueous zinc-ion batteries. Chem. Eng. J. 457, 141334 (2023). https://doi.org/10.1016/j.cej.2023.141334
- M. Kar, C. Pozo-Gonzalo, Emergence of nonaqueous electrolytes for rechargeable zinc batteries. Curr. Opin. Green Sustain. Chem 28, 100426 (2021). https://doi.org/10.1016/j.cogsc.2020.100426
- J.F. Parker, J.S. Ko, D.R. Rolison, J.W. Long, Translating materials-level performance into device-relevant metrics for zinc-based batteries. Joule 2, 2519–2527 (2018). https://doi.org/10.1016/j.joule.2018.11.007
- C. Li, S. Jin, L.A. Archer, L.F. Nazar, Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 6, 1733–1738 (2022). https://doi.org/10.1016/j.joule.2022.06.002
- R. Yuksel, O. Buyukcakir, W.K. Seong, R.S. Ruoff, Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 10, 1904215 (2020). https://doi.org/10.1002/aenm.201904215
- J. Wang, Z. Cai, R. Xiao, Y. Ou, R. Zhan et al., A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl. Mater. Interfaces 12, 23028–23034 (2020). https://doi.org/10.1021/acsami.0c05661
- K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang et al., Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy Mater. 12, 2270037 (2022). https://doi.org/10.1002/aenm.202270037
- R. Meng, H. Li, Z. Lu, C. Zhang, Z. Wang et al., Tuning Zn-ion solvation chemistry with chelating ligands toward stable aqueous Zn anodes. Adv. Mater. 34, e2200677 (2022). https://doi.org/10.1002/adma.202200677
- Y. Ou, Z. Cai, J. Wang, R. Zhan, S. Liu et al., Reversible aqueous Zn battery anode enabled by a stable complexation adsorbent interface. EcoMat 4, e12167 (2022). https://doi.org/10.1002/eom2.12167
- J.-E. Qu, H. Luo, Z. Liu, H. Wang, Y. Chen et al., Effect of sodium-zinc EDTA and sodium gluconate as electrolyte additives on corrosion and discharge behavior of Mg as anode for air battery. Mater. Corros. 73, 1776–1787 (2022). https://doi.org/10.1002/maco.202213322
- J. Xu, W. Lv, W. Yang, Y. Jin, Q. Jin et al., In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS Nano 16, 11392–11404 (2022). https://doi.org/10.1021/acsnano.2c05285
- M. Zhang, H. Hua, P. Dai, Z. He, L. Han et al., Dynamically interfacial pH-buffering effect enabled by N-methylimidazole molecules as spontaneous proton pumps toward highly reversible zinc-metal anodes. Adv. Mater. 35, e2208630 (2023). https://doi.org/10.1002/adma.202208630
- G. Zampardi, F. La Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13, 687 (2022). https://doi.org/10.1038/s41467-022-28381-x
- P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61, e202200598 (2022). https://doi.org/10.1002/anie.202200598
- Y. Shang, D. Kundu, A path forward for the translational development of aqueous zinc-ion batteries. Joule 7, 244–250 (2023). https://doi.org/10.1016/j.joule.2023.01.011
- J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017). https://doi.org/10.1126/science.aak9991
- D. Deng, K. Fu, R. Yu, J. Zhu, H. Cai et al., Ion tunnel matrix initiated oriented attachment for highly utilized Zn anodes. Adv. Mater. 35, e2302353 (2023). https://doi.org/10.1002/adma.202302353
- W. Yao, P. Zou, M. Wang, H. Zhan, F. Kang et al., Design principle, optimization strategies, and future perspectives of anode-free configurations for high-energy rechargeable metal batteries. Electrochem. Energy Rev. 4, 601–631 (2021). https://doi.org/10.1007/s41918-021-00106-6
- Y. Wang, Y. Liu, M. Nguyen, J. Cho, N. Katyal et al., Stable anode-free all-solid-state lithium battery through tuned metal wetting on the copper current collector. Adv. Mater. 35, e2206762 (2023). https://doi.org/10.1002/adma.202206762
- J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson et al., Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016). https://doi.org/10.1002/adfm.201602353
- A.J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon et al., Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020). https://doi.org/10.1038/s41560-020-0668-8
- T.M. Hagos, H.K. Bezabh, C.J. Huang, S.K. Jiang, W.N. Su et al., A powerful protocol based on anode-free cells combined with various analytical techniques. Acc. Chem. Res. 54, 4474–4485 (2021). https://doi.org/10.1021/acs.accounts.1c00528
- J. Sun, S. Zhang, J. Li, B. Xie, J. Ma et al., Robust transport: an artificial solid electrolyte interphase design for anode-free lithium-metal batteries. Adv. Mater. 35, 2209404 (2023). https://doi.org/10.1002/adma.202209404
- S. Pyo, S. Ryu, Y.J. Gong, J. Cho, H. Yun et al., Lithiophilic wetting agent inducing interfacial fluorination for long-lifespan anode-free lithium metal batteries. Adv. Energy Mater. 13, 2203573 (2023). https://doi.org/10.1002/aenm.202203573
- Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn–MnO2 battery. Nano Lett. 21, 1446–1453 (2021). https://doi.org/10.1021/acs.nanolett.0c04519
- G. Wang, M. Zhu, G. Chen, Z. Qu, B. Kohn et al., An anode-free Zn–graphite battery. Adv. Mater. 34, e2201957 (2022). https://doi.org/10.1002/adma.202201957
- H. Zhang, Y. Zhong, J. Li, Y. Liao, J. Zeng et al., Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries. Adv. Energy Mater. 13, 2203254 (2023). https://doi.org/10.1002/aenm.202203254
- P. Cao, X. Zhou, A. Wei, Q. Meng, H. Ye et al., Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 31, 2100398 (2021). https://doi.org/10.1002/adfm.202100398
- Y. Liu, Y. Li, X. Huang, H. Cao, Q. Zheng et al., Copper hexacyanoferrate solid-state electrolyte protection layer on Zn metal anode for high-performance aqueous zinc-ion batteries. Small 18, e2203061 (2022). https://doi.org/10.1002/smll.202203061
- W. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li et al., Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew. Chem. Int. Ed. 62, e202212695 (2023). https://doi.org/10.1002/anie.202212695
- H. Jin, S. Dai, K. Xie, Y. Luo, K. Liu et al., Regulating interfacial desolvation and deposition kinetics enables durable Zn anodes with ultrahigh utilization of 80. Small 18, e2106441 (2022). https://doi.org/10.1002/smll.202106441
- Y. Li, H. Jia, U. Ali, B. Liu, Y. Gao et al., In-situ interfacial layer with ultrafine structure enabling zinc metal anodes at high areal capacity. Chem. Eng. J. 450, 138374 (2022). https://doi.org/10.1016/j.cej.2022.138374
- D. Lv, H. Peng, C. Wang, H. Liu, D. Wang et al., Rational screening of metal coating on Zn anode for ultrahigh-cumulative-capacity aqueous zinc metal batteries. J. Energy Chem. 84, 81–88 (2023). https://doi.org/10.1016/j.jechem.2023.05.028
- L. Wang, Z. Zhao, Y. Yao, Y. Zhang, Y. Meng et al., Highly fluorinated non-aqueous solid-liquid hybrid interface realizes water impermeability for anti-calendar aging zinc metal batteries. Energy Storage Mater. 62, 102920 (2023). https://doi.org/10.1016/j.ensm.2023.102920
- L. Zhang, B. Zhang, T. Zhang, T. Li, T. Shi et al., Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries. Adv. Funct. Mater. 31, 2100186 (2021). https://doi.org/10.1002/adfm.202100186
- C. Choi, J.B. Park, J.H. Park, S. Yu, D.-W. Kim, Simultaneous manipulation of electron/Zn2+ ion flux and desolvation effect enabled by in situ built ultra-thin oxide-based artificial interphase for controlled deposition of zinc metal anodes. Chem. Eng. J. 456, 141015 (2023). https://doi.org/10.1016/j.cej.2022.141015
- P. Tangthuam, W. Kao-ian, J. Sangsawang, C. Rojviriya, P. Chirawatkul et al., Carboxymethyl cellulose as an artificial solid electrolyte interphase for stable zinc-based anodes in aqueous electrolytes. Mater. Sci. Energy Technol. 6, 417–428 (2023). https://doi.org/10.1016/j.mset.2023.04.003
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32, e2003021 (2020). https://doi.org/10.1002/adma.202003021
- S. Wu, S. Zhang, Y. Chu, Z. Hu, J. Luo, Stacked lamellar matrix enabling regulated deposition and superior thermo-kinetics for advanced aqueous Zn-ion system under practical conditions. Adv. Funct. Mater. 31, 2107397 (2021). https://doi.org/10.1002/adfm.202107397
- S. Zhou, Y. Wang, H. Lu, Y. Zhang, C. Fu et al., Anti-corrosive and Zn-ion-regulating composite interlayer enabling long-life Zn metal anodes. Adv. Funct. Mater. 31, 2104361 (2021). https://doi.org/10.1002/adfm.202104361
- W. Li, Q. Zhang, Z. Yang, H. Ji, T. Wu et al., Isotropic amorphous protective layer with uniform interfacial zincophobicity for stable zinc anode. Small 18, e2205667 (2022). https://doi.org/10.1002/smll.202205667
- M. Zhao, Y. Lv, S. Zhao, Y. Xiao, J. Niu et al., Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high-performance zinc-ion batteries at wide temperatures. Adv. Mater. 34, e2206239 (2022). https://doi.org/10.1002/adma.202206239
- Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62, e202215324 (2023). https://doi.org/10.1002/anie.202215324
- D. Wang, H. Liu, D. Lv, C. Wang, J. Yang et al., Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries. Adv. Mater. 35, e2207908 (2023). https://doi.org/10.1002/adma.202207908
- J. Zou, Z. Zeng, C. Wang, X. Zhu, J. Zhang et al., Ultraconformal horizontal zinc deposition toward dendrite-free anode. Small Struct. 4, 2200194 (2023). https://doi.org/10.1002/sstr.202200194
- J. Ji, Z. Zhu, H. Du, X. Qi, J. Yao et al., Zinc-contained alloy as a robustly adhered interfacial lattice locking layer for planar and stable zinc electrodeposition. Adv. Mater. 35, e2211961 (2023). https://doi.org/10.1002/adma.202211961
- J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33, e2101649 (2021). https://doi.org/10.1002/adma.202101649
- Y. Zhou, J. Xia, J. Di, Z. Sun, L. Zhao et al., Ultrahigh-rate Zn stripping and plating by capacitive charge carriers enrichment boosting Zn-based energy storage. Adv. Energy Mater. 13, 2203165 (2023). https://doi.org/10.1002/aenm.202203165
- H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 14, 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
- Y. Li, D. Zhao, J. Cheng, Y. Lei, Z. Zhang et al., A bifunctional nitrogen doped carbon network as the interlayer for dendrite-free Zn anode. Chem. Eng. J. 452, 139264 (2023). https://doi.org/10.1016/j.cej.2022.139264
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- Y. Jiao, F. Li, X. Jin, Q. Lei, L. Li et al., Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-ion batteries. Adv. Funct. Mater. 31, 2107652 (2021). https://doi.org/10.1002/adfm.202107652
- L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 19292–19296 (2020). https://doi.org/10.1002/anie.202008634
- Y. Xiang, Y. Zhong, P. Tan, L. Zhou, G. Yin et al., Thickness-controlled synthesis of compact and uniform MOF protective layer for zinc anode to achieve 85% zinc utilization. Small 19, e2302161 (2023). https://doi.org/10.1002/smll.202302161
- H. Gan, J. Wu, R. Li, B. Huang, H. Liu, Ultra-stable and deeply rechargeable zinc metal anode enabled by a multifunctional protective layer. Energy Storage Mater. 47, 602–610 (2022). https://doi.org/10.1016/j.ensm.2022.02.040
- V. Aupama, W. Kao-ian, J. Sangsawang, G. Mohan, S. Wannapaiboon et al., Stabilizing a zinc anode via a tunable covalent organic framework-based solid electrolyte interphase. Nanoscale 15, 9003–9013 (2023). https://doi.org/10.1039/d3nr00898c
- J. Zhao, Y. Ying, G. Wang, K. Hu, Y.D. Yuan et al., Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Mater. 48, 82–89 (2022). https://doi.org/10.1016/j.ensm.2022.02.054
- Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12, 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
- W. Xu, X. Liao, W. Xu, K. Zhao, G. Yao et al., Ion selective and water resistant cellulose nanofiber/MXene membrane enabled cycling Zn anode at high currents. Adv. Energy Mater. 13, 2300283 (2023). https://doi.org/10.1002/aenm.202300283
- H. Jin, S. Dai, Z. Zhu, Y. Luo, B. Qi et al., Crystal water boosted Zn2+ transfer kinetics in artificial solid electrolyte interphase for high-rate and durable Zn anodes. ACS Appl. Energy Mater. 5, 10581–10590 (2022). https://doi.org/10.1021/acsaem.2c01340
- G. Li, X. Wang, S. Lv, J. Wang, W. Yu et al., In situ constructing a film-coated 3D porous Zn anode by iodine etching strategy toward horizontally arranged dendrite-free Zn deposition. Adv. Funct. Mater. 33, 2208288 (2023). https://doi.org/10.1002/adfm.202208288
- H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc–ion–conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 11, 2100186 (2021). https://doi.org/10.1002/aenm.202100186
- R. Wang, S. Xin, D. Chao, Z. Liu, J. Wan et al., Fast and regulated zinc deposition in a semiconductor substrate toward high-performance aqueous rechargeable batteries. Adv. Funct. Mater. 32, 2207751 (2022). https://doi.org/10.1002/adfm.202207751
- J. Zheng, G. Zhu, X. Liu, H. Xie, Y. Lin et al., Simultaneous dangling bond and zincophilic site engineering of SiNx protective coatings toward stable zinc anodes. ACS Energy Lett. 7, 4443–4450 (2022). https://doi.org/10.1021/acsenergylett.2c02282
- S. Zhang, J. Ye, H. Ao, M. Zhang, X. Li et al., In-situ formation of hierarchical solid-electrolyte interphase for ultra-long cycling of aqueous zinc-ion batteries. Nano Res. 16, 449–457 (2023). https://doi.org/10.1007/s12274-022-4688-5
- C. Ma, K. Yang, S. Zhao, Y. Xie, C. Liu et al., Recyclable and ultrafast fabrication of zinc oxide interface layer enabling highly reversible dendrite-free Zn anode. ACS Energy Lett. 8, 1201–1208 (2023). https://doi.org/10.1021/acsenergylett.2c02735
- Y. Zou, Y. Su, C. Qiao, W. Li, Z. Xue et al., A generic “engraving in aprotic medium” strategy towardStabilized Zn anodes. Adv. Energy Mater. 13, 2300932 (2023). https://doi.org/10.1002/aenm.202300932
- J.B. Park, C. Choi, J.H. Park, S. Yu, D.-W. Kim, Synergistic design of multifunctional interfacial Zn host toward practical Zn metal batteries. Adv. Energy Mater. 12, 2202937 (2022). https://doi.org/10.1002/aenm.202202937
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
- J.-L. Yang, J. Li, J.-W. Zhao, K. Liu, P. Yang et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34, 2202382 (2022). https://doi.org/10.1002/adma.202202382
- H. He, J. Liu, Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes. J. Mater. Chem. A 8, 22100–22110 (2020). https://doi.org/10.1039/D0TA07232J
- A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16, 275–284 (2023). https://doi.org/10.1039/D2EE02931F
- J. Dong, H. Peng, J. Wang, C. Wang, D. Wang et al., Molecular deciphering of hydrophobic, zinc-philic and robust amino-functionalized polysilane for dendrite-free Zn anode. Energy Storage Mater. 54, 875–884 (2023). https://doi.org/10.1016/j.ensm.2022.11.026
- Q. Duan, K. Xue, X. Yin, D.Y.W. Yu, A cationic polymeric interface enabling dendrite-free and highly stable aqueous Zn-metal batteries. J. Power. Sources 558, 232356 (2023). https://doi.org/10.1016/j.jpowsour.2022.232356
- Z. Meng, Y. Jiao, P. Wu, Alleviating side reactions on Zn anodes for aqueous batteries by a cell membrane derived phosphorylcholine zwitterionic protective layer. Angew. Chem. Int. Ed. 62, e202307271 (2023). https://doi.org/10.1002/anie.202307271
- X. Zhu, X. Li, M.L.K. Essandoh, J. Tan, Z. Cao et al., Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Mater. 50, 243–251 (2022). https://doi.org/10.1016/j.ensm.2022.05.022
- L. Zhang, Y. Hou, The rise and development of MOF-based materials for metal-chalcogen batteries: current status, challenges, and prospects. Adv. Energy Mater. 13, 2204378 (2023). https://doi.org/10.1002/aenm.202204378
- J. Zhou, L. Zhang, M. Peng, X. Zhou, Y. Cao et al., Diminishing interfacial turbulence by colloid-polymer electrolyte to stabilize zinc ion flux for deep-cycling Zn metal batteries. Adv. Mater. 34, 2200131 (2022). https://doi.org/10.1002/adma.202200131
- H. Tian, J.-L. Yang, Y. Deng, W. Tang, R. Liu et al., Steel anti-corrosion strategy enables long-cycle Zn anode. Adv. Energy Mater. 13, 2370004 (2023). https://doi.org/10.1002/aenm.202370004
- C. Li, A. Shyamsunder, A.G. Hoane, D.M. Long, C.Y. Kwok et al., Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6, 1103–1120 (2022). https://doi.org/10.1016/j.joule.2022.04.017
- J. Wang, H. Qiu, Q. Zhang, X. Ge, J. Zhao et al., Eutectic electrolytes with leveling effects achieving high depth-of-discharge of rechargeable zinc batteries. Energy Storage Mater. 58, 9–19 (2023). https://doi.org/10.1016/j.ensm.2023.03.014
- J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
- K. Zhou, Z. Li, X. Qiu, Z. Yu, Y. Wang, Boosting Zn anode utilization by trace iodine ions in organic-water hybrid electrolytes through formation of anion-rich adsorbing layers. Angew. Chem. Int. Ed. 62, e202309594 (2023). https://doi.org/10.1002/anie.202309594
- M. Wang, J. Ma, Y. Meng, J. Sun, Y. Yuan et al., High-capacity zinc anode with 96% utilization rate enabled by solvation structure design. Angew. Chem. Int. Ed. 62, e202214966 (2023). https://doi.org/10.1002/anie.202214966
- S. Jin, F. Duan, X. Wu, J. Li, X. Dan et al., Stabilizing interface pH by mixing electrolytes for high-performance aqueous Zn metal batteries. Small 18, e2205462 (2022). https://doi.org/10.1002/smll.202205462
- J. Zhao, C. Song, S. Ma, Q. Gao, Z. Li et al., Antifreezing polymeric-acid electrolyte for high-performance aqueous zinc-ion batteries. Energy Storage Mater. 61, 102880 (2023). https://doi.org/10.1016/j.ensm.2023.102880
- S.R. Motlagh, R. Khezri, M. Etesami, A.A. Mohamad, P. Kidkhunthod et al., Mitigating water-related challenges in aqueous zinc-ion batteries through ether-water hybrid electrolytes. Electrochim. Acta 468, 143122 (2023). https://doi.org/10.1016/j.electacta.2023.143122
- Z. Hou, H. Tan, Y. Gao, M. Li, Z. Lu et al., Tailoring desolvation kinetics enables stable zinc metal anodes. J. Mater. Chem. A 8, 19367–19374 (2020). https://doi.org/10.1039/D0TA06622B
- H. Huang, D. Xie, J. Zhao, P. Rao, W.M. Choi et al., Boosting reversibility and stability of Zn anodes via manipulation of electrolyte structure and interface with addition of trace organic molecules. Adv. Energy Mater. 12, 2270157 (2022). https://doi.org/10.1002/aenm.202270157
- L. Ma, T.P. Pollard, Y. Zhang, M.A. Schroeder, M.S. Ding et al., Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew. Chem. Int. Ed. 60, 12438–12445 (2021). https://doi.org/10.1002/anie.202017020
- D. Wang, D. Lv, H. Liu, S. Zhang, C. Wang et al., In situ formation of nitrogen-rich solid electrolyte interphase and simultaneous regulating solvation structures for advanced Zn metal batteries. Angew. Chem. Int. Ed. 61, e202212839 (2022). https://doi.org/10.1002/anie.202212839
- X. Zhao, X. Zhang, N. Dong, M. Yan, F. Zhang et al., Advanced buffering acidic aqueous electrolytes for ultra-long life aqueous zinc-ion batteries. Small 18, e2200742 (2022). https://doi.org/10.1002/smll.202200742
- J. Yang, Y. Zhang, Z. Li, X. Xu, X. Su et al., Three birds with one stone: tetramethylurea as electrolyte additive for highly reversible Zn-metal anode. Adv. Funct. Mater. 32, 2209642 (2022). https://doi.org/10.1002/adfm.202209642
- P. Zou, R. Lin, T.P. Pollard, L. Yao, E. Hu et al., Localized hydrophobicity in aqueous zinc electrolytes improves zinc metal reversibility. Nano Lett. 22, 7535–7544 (2022). https://doi.org/10.1021/acs.nanolett.2c02514
- Y. Wang, T. Wang, S. Bu, J. Zhu, Y. Wang et al., Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nat. Commun. 14, 1828 (2023). https://doi.org/10.1038/s41467-023-37524-7
- C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33, e2100445 (2021). https://doi.org/10.1002/adma.202100445
- T.C. Li, C. Lin, M. Luo, P. Wang, D.-S. Li et al., Interfacial molecule engineering for reversible Zn electrochemistry. ACS Energy Lett. 8, 3258–3268 (2023). https://doi.org/10.1021/acsenergylett.3c00859
- Y. Zhao, H. Hong, L. Zhong, J. Zhu, Y. Hou et al., Zn-rejuvenated and SEI-regulated additive in zinc metal battery via the iodine post-functionalized zeolitic imidazolate framework-90. Adv. Energy Mater. 13, 2300627 (2023). https://doi.org/10.1002/aenm.202300627
- Y. Zhong, Z. Cheng, H. Zhang, J. Li, D. Liu et al., Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery. Nano Energy 98, 107220 (2022). https://doi.org/10.1016/j.nanoen.2022.107220
- Z. Xu, H. Li, Y. Liu, K. Wang, H. Wang et al., Durable modulation of Zn(002) plane deposition via reproducible zincophilic carbon quantum dots towards low N/P ratio zinc-ion batteries. Mater. Horiz. 10, 3680–3693 (2023). https://doi.org/10.1039/D3MH00261F
- P. Xiong, C. Lin, Y. Wei, J.-H. Kim, G. Jang et al., Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS Energy Lett. 8, 2718–2727 (2023). https://doi.org/10.1021/acsenergylett.3c00534
- Z. Shen, J. Mao, G. Yu, W. Zhang, S. Mao et al., Electrocrystallization regulation enabled stacked hexagonal platelet growth toward highly reversible zinc anodes. Angew. Chem. Int. Ed. 62, e202218452 (2023). https://doi.org/10.1002/anie.202218452
- S.-J. Zhang, J. Hao, Y. Zhu, H. Li, Z. Lin et al., pH-triggered molecular switch toward texture-regulated Zn anode. Angew. Chem. Int. Ed. 62, e202301570 (2023). https://doi.org/10.1002/anie.202301570
- R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13, 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
- X. Shi, J. Wang, F. Yang, X. Liu, Y. Yu et al., Metallic zinc anode working at 50 and 50 mAh cm–2 with high depth of discharge via electrical double layer reconstruction. Adv. Funct. Mater. 33, 2211917 (2023). https://doi.org/10.1002/adfm.202211917
- X. Huang, Q. Li, X. Zhang, H. Cao, J. Zhao et al., Critical triple roles of sodium iodide in tailoring the solventized structure, anode-electrolyte interface and crystal plane growth to achieve highly reversible zinc anodes for aqueous zinc-ion batteries. J. Colloid Interface Sci. 650, 875–882 (2023). https://doi.org/10.1016/j.jcis.2023.07.037
- A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5, 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
- C. Meng, W. He, L. Jiang, Y. Huang, J. Zhang et al., Ultra-stable aqueous zinc batteries enabled by β-cyclodextrin: preferred zinc deposition and suppressed parasitic reactions. Adv. Funct. Mater. 32, 2207732 (2022). https://doi.org/10.1002/adfm.202207732
- Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15, 4748–4760 (2022). https://doi.org/10.1039/D2EE02687B
- N. Wang, X. Chen, H. Wan, B. Zhang, K.-Y. Guan et al., Zincophobic electrolyte achieves highly reversible zinc-ion batteries. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202300795
- D. Wang, D. Lv, H. Peng, C. Wang, H. Liu et al., Solvation modulation enhances anion-derived solid electrolyte interphase for deep cycling of aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62, e202310290 (2023). https://doi.org/10.1002/anie.202310290
- C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian et al., Self-healing SeO2 additives enable zinc metal reversibility in aqueous ZnSO4 electrolytes. Adv. Funct. Mater. 32, 2112091 (2022). https://doi.org/10.1002/adfm.202112091
- Y. Zhang, X. Zheng, K. Wu, Y. Zhang, G. Xu et al., Nonionic surfactant-assisted In situ generation of stable passivation protective layer for highly stable aqueous Zn metal anodes. Nano Lett. 22, 8574–8583 (2022). https://doi.org/10.1021/acs.nanolett.2c03114
- X. Xu, H. Su, J. Zhang, Y. Zhong, Y. Xu et al., Sulfamate-derived solid electrolyte interphase for reversible aqueous zinc battery. ACS Energy Lett. 7, 4459–4468 (2022). https://doi.org/10.1021/acsenergylett.2c02236
- J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.-Z. Qiao, Triple-function electrolyte regulation toward advanced aqueous Zn-ion batteries. Adv. Mater. 34, 2206963 (2022). https://doi.org/10.1002/adma.202206963
- Y. Zhu, H.Y. Hoh, S. Qian, C. Sun, Z. Wu et al., Ultrastable zinc anode enabled by CO2-induced interface layer. ACS Nano 16, 14600–14610 (2022). https://doi.org/10.1021/acsnano.2c05124
- K. Wang, T. Qiu, L. Lin, X.-X. Liu, X. Sun, A low fraction electrolyte additive as interface stabilizer for Zn electrode in aqueous batteries. Energy Storage Mater. 54, 366–373 (2023). https://doi.org/10.1016/j.ensm.2022.10.029
- J. Ge, Y. Zhang, Z. Xie, H. Xie, W. Chen et al., Tailored ZnF2/ZnS-rich interphase for reversible aqueous Zn batteries. Nano Res. 16, 4996–5005 (2023). https://doi.org/10.1007/s12274-022-5325-z
- X. Li, H. Yao, Y. Li, X. Liu, D. Yuan et al., Cellulose-complexing strategy induced surface regulation towards ultrahigh utilization rate of Zn. J. Mater. Chem. A 11, 14720–14727 (2023). https://doi.org/10.1039/D3TA02117C
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33, e2007416 (2021). https://doi.org/10.1002/adma.202007416
- H. Zhang, X. Gan, Z. Song, J. Zhou, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed. 62, e202217833 (2023). https://doi.org/10.1002/anie.202217833
- Y. Cheng, Y. Jiao, P. Wu, Manipulating Zn002 deposition plane with zirconium ion crosslinked hydrogel electrolyte toward dendrite free Zn metal anodes. Energy Environ. Sci. 16, 4561–4571 (2023). https://doi.org/10.1039/D3EE02114A
- F. Wang, J. Zhang, H. Lu, H. Zhu, Z. Chen et al., Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat. Commun. 14, 4211 (2023). https://doi.org/10.1038/s41467-023-39877-5
- Y. Qin, H. Li, C. Han, F. Mo, X. Wang, Chemical welding of the electrode-electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries. Adv. Mater. 34, e2207118 (2022). https://doi.org/10.1002/adma.202207118
- X. Yang, W. Li, J. Lv, G. Sun, Z. Shi et al., In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Res. 15, 9785–9791 (2022). https://doi.org/10.1007/s12274-021-3957-z
- X. Ge, W. Zhang, F. Song, B. Xie, J. Li et al., Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries. Adv. Funct. Mater. 32, 2200429 (2022). https://doi.org/10.1002/adfm.202200429
- H. Qin, W. Chen, W. Kuang, N. Hu, X. Zhang et al., A nature-inspired separator with water-confined and kinetics-boosted effects for sustainable and high-utilization Zn metal batteries. Small 19, e2300130 (2023). https://doi.org/10.1002/smll.202300130
- J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R. Rep. 135, 58–84 (2019). https://doi.org/10.1016/j.mser.2018.10.002
- W. Zhou, M. Chen, Q. Tian, J. Chen, X. Xu et al., Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 44, 57–65 (2022). https://doi.org/10.1016/j.ensm.2021.10.002
- L. Yao, G. Wang, F. Zhang, X. Chi, Y. Liu, Highly-reversible and recyclable zinc metal batteries achieved by inorganic/organic hybrid separators with finely tunable hydrophilic–hydrophobic balance. Energy Environ. Sci. 16, 4432–4441 (2023). https://doi.org/10.1039/D3EE01575K
- D.J. Arnot, M.B. Lim, N.S. Bell, N.B. Schorr, R.C. Hill et al., High depth-of-discharge zinc rechargeability enabled by a self-assembled polymeric coating. Adv. Energy Mater. 11, 2101594 (2021). https://doi.org/10.1002/aenm.202101594
- X. Yang, Z. Zhang, M. Wu, Z.-P. Guo, Z.-J. Zheng, Reshaping zinc plating/stripping behavior by interfacial water bonding for high-utilization-rate zinc batteries. Adv. Mater. (2023). https://doi.org/10.1002/adma.202303550
- X. Zhang, J. Li, K. Qi, Y. Yang, D. Liu et al., An ion-sieving Janus separator toward planar electrodeposition for deeply rechargeable Zn-metal anodes. Adv. Mater. 34, e2205175 (2022). https://doi.org/10.1002/adma.202205175
- H. Yang, R. Zhu, Y. Yang, Z. Lu, Z. Chang et al., Sustainable high-energy aqueous zinc–manganese dioxide batteries enabled by stress-governed metal electrodeposition and fast zinc diffusivity. Energy Environ. Sci. 16, 2133–2141 (2023). https://doi.org/10.1039/D2EE03777G
- Q. Li, H. Wang, H. Yu, M. Fu, W. Liu et al., Engineering an ultrathin and hydrophobic composite zinc anode with 24µm thickness for high-performance Zn batteries. Adv. Funct. Mater. 33, 2303466 (2023). https://doi.org/10.1002/adfm.202303466
- J. Li, Q. Lin, Z. Zheng, L. Cao, W. Lv et al., How is cycle life of three-dimensional zinc metal anodes with carbon fiber backbones affected by depth of discharge and current density in zinc-ion batteries? ACS Appl. Mater. Interfaces 14, 12323–12330 (2022). https://doi.org/10.1021/acsami.2c00344
- Y. Mu, Z. Li, B.-K. Wu, H. Huang, F. Wu et al., 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14, 4205 (2023). https://doi.org/10.1038/s41467-023-39947-8
- B. Zhou, B. Miao, Y. Gao, A. Yu, Z. Shao, Self-assembled protein nanofilm regulating uniform Zn nucleation and deposition enabling long-life Zn anodes. Small 19, 2300895 (2023). https://doi.org/10.1002/smll.202300895
- Y. Zeng, P.X. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34, e2200342 (2022). https://doi.org/10.1002/adma.202200342
- Z. Yi, J. Liu, S. Tan, Z. Sang, J. Mao et al., An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv. Mater. 34, e2203835 (2022). https://doi.org/10.1002/adma.202203835
- S.D. Pu, C. Gong, Y.T. Tang, Z. Ning, J. Liu et al., Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 34, 2202552 (2022). https://doi.org/10.1002/adma.202202552
- C. Xie, H. Ji, Q. Zhang, Z. Yang, C. Hu et al., High-index zinc facet exposure induced by preferentially orientated substrate for dendrite-free zinc anode. Adv. Energy Mater. 13, 2203203 (2023). https://doi.org/10.1002/aenm.202203203
- Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, e1903675 (2019). https://doi.org/10.1002/adma.201903675
- B. Wu, B. Guo, Y. Chen, Y. Mu, H. Qu et al., High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays. Energy Storage Mater. 54, 75–84 (2023). https://doi.org/10.1016/j.ensm.2022.10.017
- W. Dong, J.-L. Shi, T.-S. Wang, Y.-X. Yin, C.-R. Wang et al., 3D zinc@carbon fiber composite framework anode for aqueous Zn–MnO2 batteries. RSC Adv. 8, 19157–19163 (2018). https://doi.org/10.1039/C8RA03226B
- Y. Zhou, X. Wang, X. Shen, Y. Shi, C. Zhu et al., 3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. J. Mater. Chem. A 8, 11719–11727 (2020). https://doi.org/10.1039/D0TA02791J
- Z. Xu, S. Jin, N. Zhang, W. Deng, M.H. Seo et al., Efficient Zn metal anode enabled by O, N-codoped carbon microflowers. Nano Lett. 22, 1350–1357 (2022). https://doi.org/10.1021/acs.nanolett.1c04709
- R. Wang, L. Wu, Y. Wei, K. Zhu, H. Wang et al., ‘Two Birds with One Stone’ design for dendrite-free zinc-metal anodes: three-dimensional highly conductive skeletons loaded with abundant zincophilic sites. Mater. Today Energy 29, 101097 (2022). https://doi.org/10.1016/j.mtener.2022.101097
- B. Jiang, W. Liu, Z. Ren, R. Guo, Y. Huang et al., Oxygen plasma modified carbon cloth with C=O zincophilic sites as a stable host for zinc metal anodes. Front. Chem. 10, 899810 (2022). https://doi.org/10.3389/fchem.2022.899810
- L. Wang, G. Fan, J. Liu, L. Zhang, M. Yu et al., Selective nitrogen doping on carbon cloth to enhance the performance of zinc anode. Chin. Chem. Lett. 32, 1095–1100 (2021). https://doi.org/10.1016/j.cclet.2020.08.022
- H. Liu, J. Li, X. Zhang, X. Liu, Y. Yan et al., Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv. Funct. Mater. 31, 2106550 (2021). https://doi.org/10.1002/adfm.202106550
- Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58, 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
- Z. Zhang, X. Yang, P. Li, Y. Wang, X. Zhao et al., Biomimetic dendrite-free multivalent metal batteries. Adv. Mater. 34, e2206970 (2022). https://doi.org/10.1002/adma.202206970
- G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11, 2003927 (2021). https://doi.org/10.1002/aenm.202003927
- Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15, 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
- C. Xie, S. Liu, W. Zhang, H. Ji, S. Chu et al., Robust and wide temperature-range zinc metal batteries with unique electrolyte and substrate design. Angew. Chem. Int. Ed. 62, e202304259 (2023). https://doi.org/10.1002/anie.202304259
- R. Xue, J. Kong, Y. Wu, Y. Wang, X. Kong et al., Highly reversible zinc metal anodes enabled by a three-dimensional silver host for aqueous batteries. J. Mater. Chem. A 10, 10043–10050 (2022). https://doi.org/10.1039/D2TA00326K
- L. Wang, W. Huang, W. Guo, Z.H. Guo, C. Chang et al., Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv. Funct. Mater. 32, 2108533 (2022). https://doi.org/10.1002/adfm.202108533
- M. Kwon, J. Lee, S. Ko, G. Lim, S.-H. Yu et al., Stimulating Cu–Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors. Energy Environ. Sci. 15, 2889–2899 (2022). https://doi.org/10.1039/D2EE00617K
- H. Chen, Z. Guo, H. Wang, W. Huang, F. Pan et al., A liquid metal interlayer for boosted charge transfer and dendrite-free deposition toward high-performance Zn anodes. Energy Storage Mater. 54, 563–569 (2023). https://doi.org/10.1016/j.ensm.2022.11.013
- M. Fayette, H.J. Chang, X. Li, D. Reed, High-performance InZn alloy anodes toward practical aqueous zinc batteries. ACS Energy Lett. 7, 1888–1895 (2022). https://doi.org/10.1021/acsenergylett.2c00843
- J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv. Mater. 34, e2106897 (2022). https://doi.org/10.1002/adma.202106897
- J. Gu, Y. Tao, H. Chen, Z. Cao, Y. Zhang et al., Stress-release functional liquid metal-MXene layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 12, 2200115 (2022). https://doi.org/10.1002/aenm.202200115
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3, 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- Y. Gao, Q. Cao, J. Pu, X. Zhao, G. Fu et al., Stable Zn anodes with triple gradients. Adv. Mater. 35, e2207573 (2023). https://doi.org/10.1002/adma.202207573
- M. Cui, Y. Xiao, L. Kang, W. Du, Y. Gao et al., Quasi-isolated Au ps as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2, 6490–6496 (2019). https://doi.org/10.1021/acsaem.9b01063
- Y. Zhang, L. Wang, Q. Li, B. Hu, J. Kang et al., Iodine promoted ultralow Zn nucleation overpotential and Zn-rich cathode for low-cost, fast-production and high-energy density anode-free Zn-iodine batteries. Nano-Micro Lett. 14, 208 (2022). https://doi.org/10.1007/s40820-022-00948-9
- W. Ling, Q. Yang, F. Mo, H. Lei, J. Wang et al., An ultrahigh rate dendrite-free Zn metal deposition/striping enabled by silver nanowire aerogel with optimal atomic affinity with Zn. Energy Storage Mater. 51, 453–464 (2022). https://doi.org/10.1016/j.ensm.2022.07.002
- M. Wang, W. Wang, Y. Meng, Y. Xu, J. Sun et al., Crystal facet correlated Zn growth on Cu for aqueous Zn metal batteries. Energy Storage Mater. 56, 424–431 (2023). https://doi.org/10.1016/j.ensm.2023.01.026
- H. Chen, M. Chen, W. Zhou, X. Han, B. Liu et al., Flexible Ti3C2Tx/nanocellulose hybrid film as a stable Zn-free anode for aqueous hybrid Zn–Li batteries. ACS Appl. Mater. Interfaces 14, 6876–6884 (2022). https://doi.org/10.1021/acsami.1c23402
- H. Chen, W. Zhou, M. Chen, Q. Tian, X. Han et al., Ultrathin Zn-free anode based on Ti3C2Tx and nanocellulose enabling high-durability aqueous hybrid Zn–Na battery with Zn2+/Na+ co-intercalation mechanism. Nano Res. 16, 536–544 (2023). https://doi.org/10.1007/s12274-022-4916-z
- C. Wang, D. Wang, D. Lv, H. Peng, X. Song et al., Interface engineering by hydrophilic and zincophilic aluminum hydroxide fluoride for anode-free zinc metal batteries at low temperature. Adv. Energy Mater. 13, 2204388 (2023). https://doi.org/10.1002/aenm.202204388
- R. Zhao, J. Yang, X. Han, Y. Wang, Q. Ni et al., Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries. Adv. Energy Mater. 13, 2370034 (2023). https://doi.org/10.1002/aenm.202370034
- X. Zheng, Z. Liu, J. Sun, R. Luo, K. Xu et al., Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 14, 76 (2023). https://doi.org/10.1038/s41467-022-35630-6
- T.A. Nigatu, H.K. Bezabh, S.-K. Jiang, B.W. Taklu, Y. Nikodimos et al., An anode-free aqueous hybrid batteries enabled by in situ Cu/Sn/Zn alloy formation on pure Cu substrate. Electrochim. Acta 443, 141883 (2023). https://doi.org/10.1016/j.electacta.2023.141883
- S. Xie, Y. Li, L. Dong, Stable anode-free zinc-ion batteries enabled by alloy network-modulated zinc deposition interface. J. Energy Chem. 76, 32–40 (2023). https://doi.org/10.1016/j.jechem.2022.08.040
- K. Xu, X. Zheng, R. Luo, J. Sun, Y. Ma et al., A three-dimensional zincophilic nano-copper host enables dendrite-free and anode-free Zn batteries. Mater. Today Energy 34, 101284 (2023). https://doi.org/10.1016/j.mtener.2023.101284
- C. Li, L. Liang, X. Liu, N. Cao, Q. Shao et al., A lean-zinc anode battery based on metal–organic framework-derived carbon. Carbon Energy 5, e301 (2023). https://doi.org/10.1002/cey2.301
- T. Zhang, L. Zhang, Y. Hou, MXenes: synthesis strategies and lithium-sulfur battery applications. eScience 2, 164–182 (2022). https://doi.org/10.1016/j.esci.2022.02.010
- C. Li, Q. Shao, K. Luo, Y. Gao, W. Zhao et al., A lean-zinc and zincophilic anode for highly reversible zinc metal batteries. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202305204
- Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31, 2101886 (2021). https://doi.org/10.1002/adfm.202101886
- X. Yi, A.M. Rao, J. Zhou, B. Lu, Trimming the degrees of freedom via a K+ flux rectifier for safe and long-life potassium-ion batteries. Nano-Micro Lett. 15, 200 (2023). https://doi.org/10.1007/s40820-023-01178-3
- W.-Y. Kim, H.-I. Kim, K.M. Lee, E. Shin, X. Liu et al., Demixing the miscible liquids: toward biphasic battery electrolytes based on the kosmotropic effect. Energy Environ. Sci. 15, 5217–5228 (2022). https://doi.org/10.1039/D2EE03077B
- C. Li, R. Kingsbury, A.S. Thind, A. Shyamsunder, T.T. Fister et al., Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries. Nat. Commun. 14, 3067 (2023). https://doi.org/10.1038/s41467-023-38460-2
- J. Duan, L. Min, M. Wu, T. Yang, M. Chen et al., “Anode-free” Zn/LiFePO4 aqueous batteries boosted by hybrid electrolyte. J. Ind. Eng. Chem. 114, 317–322 (2022). https://doi.org/10.1016/j.jiec.2022.07.021
- L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
- Y. Xu, X. Zheng, J. Sun, W. Wang, M. Wang et al., Nucleophilic interfacial layer enables stable Zn anodes for aqueous Zn batteries. Nano Lett. 22, 3298–3306 (2022). https://doi.org/10.1021/acs.nanolett.2c00398
- Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60, 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
- F. Ming, Y. Zhu, G. Huang, A.-H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144, 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764
References
X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
L. Dong, L. Zhang, S. Lin, Z. Chen, Y. Wang et al., Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite. Nano Energy 70, 104482 (2020). https://doi.org/10.1016/j.nanoen.2020.104482
G. Zheng, S.W. Lee, Z. Liang, H.W. Lee, K. Yan et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014). https://doi.org/10.1038/nnano.2014.152
M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin et al., Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013). https://doi.org/10.1038/nmat3699
L. Wang, L. Zhang, Y. Meng, Y. Zhang, J. Kang et al., Fluorinated hybrid interphases enable anti-corrosion and uniform zinc deposition for aqueous zinc metal batteries. Sci. China Mater. (2023). https://doi.org/10.1007/s40843-023-2598-0
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
S. Yuan, T. Kong, Y. Zhang, P. Dong, Y. Zhang et al., Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew. Chem. Int. Ed. 60, 25624–25638 (2021). https://doi.org/10.1002/anie.202108397
L. Zhang, Y. Liu, Z. Zhao, P. Jiang, T. Zhang et al., Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li–S batteries. ACS Nano 14, 8495–8507 (2020). https://doi.org/10.1021/acsnano.0c02762
Y. Fang, X. Xie, B. Zhang, Y. Chai, B. Lu et al., Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv. Funct. Mater. 32, 2109671 (2022). https://doi.org/10.1002/adfm.202109671
L. Zhang, Y. Hou, Comprehensive analyses of aqueous Zn metal batteries: characterization methods, simulations, and theoretical calculations. Adv. Energy Mater. 11, 2003823 (2021). https://doi.org/10.1002/aenm.202003823
Z. Wang, M. Zhou, L. Qin, M. Chen, Z. Chen et al., Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries. eScience 2, 209–218 (2022). https://doi.org/10.1016/j.esci.2022.03.002
Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15, 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
Q.-N. Zhu, Z.-Y. Wang, J.-W. Wang, X.-Y. Liu, D. Yang et al., Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 40, 309–328 (2021). https://doi.org/10.1007/s12598-020-01588-x
Y. Liu, S. Liu, X. Xie, Z. Li, P. Wang et al., A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry. InfoMat 5, e12374 (2023). https://doi.org/10.1002/inf2.12374
R. Chen, W. Zhang, Q. Huang, C. Guan, W. Zong et al., Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 15, 81 (2023). https://doi.org/10.1007/s40820-023-01050-4
R. Khezri, S. Rezaei Motlagh, M. Etesami, A.A. Mohamad, F. Mahlendorf et al., Stabilizing zinc anodes for different configurations of rechargeable zinc-air batteries. Chem. Eng. J. 449, 137796 (2022). https://doi.org/10.1016/j.cej.2022.137796
H.-X. Zhang, P.-F. Wang, C.-G. Yao, S.-P. Chen, K.-D. Cai et al., Recent advances of Ferro-/piezoelectric polarization effect for dendrite-free metal anodes. Rare Met. 42, 2516–2544 (2023). https://doi.org/10.1007/s12598-023-02319-8
L. Zhang, Y. Liu, Aqueous zinc–chalcogen batteries: emerging conversion-type energy storage systems. Batteries 9, 62 (2023). https://doi.org/10.3390/batteries9010062
L. Zhang, High-performance metal–chalcogen batteries. Batteries 9, 35 (2023). https://doi.org/10.3390/batteries9010035
Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
Y. Meng, L. Wang, J. Zeng, B. Hu, J. Kang et al., Ultrathin zinc–carbon composite anode enabled with unique three-dimensional interpenetrating structure for high-performance aqueous zinc ion batteries. Chem. Eng. J. 474, 145987 (2023). https://doi.org/10.1016/j.cej.2023.145987
M. Zhu, Q. Ran, H. Huang, Y. Xie, M. Zhong et al., Interface reversible electric field regulated by amphoteric charged protein-based coating toward high-rate and robust Zn anode. Nano-Micro Lett. 14, 219 (2022). https://doi.org/10.1007/s40820-022-00969-4
W. Kao-ian, A.A. Mohamad, W.-R. Liu, R. Pornprasertsuk, S. Siwamogsatham et al., Stability enhancement of zinc-ion batteries using non-aqueous electrolytes. Batter. Supercaps 5, 2100361 (2022). https://doi.org/10.1002/batt.202100361
W. Nie, H. Cheng, Q. Sun, S. Liang, X. Lu et al., Design strategies toward high-performance Zn metal anode. Small Methods (2023). https://doi.org/10.1002/smtd.202201572
Y. Song, P. Ruan, C. Mao, Y. Chang, L. Wang et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 14, 218 (2022). https://doi.org/10.1007/s40820-022-00960-z
C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6, 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
Y. Zou, X. Yang, L. Shen, Y. Su, Z. Chen et al., Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy Environ. Sci. 15, 5017–5038 (2022). https://doi.org/10.1039/D2EE02416K
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13, 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
M. Gu, A.M. Rao, J. Zhou, B. Lu, In situ formed uniform and elastic SEI for high-performance batteries. Energy Environ. Sci. 16, 1166–1175 (2023). https://doi.org/10.1039/D2EE04148K
M. Gopalakrishnan, S. Ganesan, M.T. Nguyen, T. Yonezawa, S. Praserthdam et al., Critical roles of metal–organic frameworks in improving the Zn anode in aqueous zinc-ion batteries. Chem. Eng. J. 457, 141334 (2023). https://doi.org/10.1016/j.cej.2023.141334
M. Kar, C. Pozo-Gonzalo, Emergence of nonaqueous electrolytes for rechargeable zinc batteries. Curr. Opin. Green Sustain. Chem 28, 100426 (2021). https://doi.org/10.1016/j.cogsc.2020.100426
J.F. Parker, J.S. Ko, D.R. Rolison, J.W. Long, Translating materials-level performance into device-relevant metrics for zinc-based batteries. Joule 2, 2519–2527 (2018). https://doi.org/10.1016/j.joule.2018.11.007
C. Li, S. Jin, L.A. Archer, L.F. Nazar, Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule 6, 1733–1738 (2022). https://doi.org/10.1016/j.joule.2022.06.002
R. Yuksel, O. Buyukcakir, W.K. Seong, R.S. Ruoff, Metal-organic framework integrated anodes for aqueous zinc-ion batteries. Adv. Energy Mater. 10, 1904215 (2020). https://doi.org/10.1002/aenm.201904215
J. Wang, Z. Cai, R. Xiao, Y. Ou, R. Zhan et al., A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl. Mater. Interfaces 12, 23028–23034 (2020). https://doi.org/10.1021/acsami.0c05661
K. Guan, L. Tao, R. Yang, H. Zhang, N. Wang et al., Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy Mater. 12, 2270037 (2022). https://doi.org/10.1002/aenm.202270037
R. Meng, H. Li, Z. Lu, C. Zhang, Z. Wang et al., Tuning Zn-ion solvation chemistry with chelating ligands toward stable aqueous Zn anodes. Adv. Mater. 34, e2200677 (2022). https://doi.org/10.1002/adma.202200677
Y. Ou, Z. Cai, J. Wang, R. Zhan, S. Liu et al., Reversible aqueous Zn battery anode enabled by a stable complexation adsorbent interface. EcoMat 4, e12167 (2022). https://doi.org/10.1002/eom2.12167
J.-E. Qu, H. Luo, Z. Liu, H. Wang, Y. Chen et al., Effect of sodium-zinc EDTA and sodium gluconate as electrolyte additives on corrosion and discharge behavior of Mg as anode for air battery. Mater. Corros. 73, 1776–1787 (2022). https://doi.org/10.1002/maco.202213322
J. Xu, W. Lv, W. Yang, Y. Jin, Q. Jin et al., In situ construction of protective films on Zn metal anodes via natural protein additives enabling high-performance zinc ion batteries. ACS Nano 16, 11392–11404 (2022). https://doi.org/10.1021/acsnano.2c05285
M. Zhang, H. Hua, P. Dai, Z. He, L. Han et al., Dynamically interfacial pH-buffering effect enabled by N-methylimidazole molecules as spontaneous proton pumps toward highly reversible zinc-metal anodes. Adv. Mater. 35, e2208630 (2023). https://doi.org/10.1002/adma.202208630
G. Zampardi, F. La Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13, 687 (2022). https://doi.org/10.1038/s41467-022-28381-x
P. Ruan, S. Liang, B. Lu, H.J. Fan, J. Zhou, Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 61, e202200598 (2022). https://doi.org/10.1002/anie.202200598
Y. Shang, D. Kundu, A path forward for the translational development of aqueous zinc-ion batteries. Joule 7, 244–250 (2023). https://doi.org/10.1016/j.joule.2023.01.011
J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017). https://doi.org/10.1126/science.aak9991
D. Deng, K. Fu, R. Yu, J. Zhu, H. Cai et al., Ion tunnel matrix initiated oriented attachment for highly utilized Zn anodes. Adv. Mater. 35, e2302353 (2023). https://doi.org/10.1002/adma.202302353
W. Yao, P. Zou, M. Wang, H. Zhan, F. Kang et al., Design principle, optimization strategies, and future perspectives of anode-free configurations for high-energy rechargeable metal batteries. Electrochem. Energy Rev. 4, 601–631 (2021). https://doi.org/10.1007/s41918-021-00106-6
Y. Wang, Y. Liu, M. Nguyen, J. Cho, N. Katyal et al., Stable anode-free all-solid-state lithium battery through tuned metal wetting on the copper current collector. Adv. Mater. 35, e2206762 (2023). https://doi.org/10.1002/adma.202206762
J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson et al., Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–7102 (2016). https://doi.org/10.1002/adfm.201602353
A.J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon et al., Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020). https://doi.org/10.1038/s41560-020-0668-8
T.M. Hagos, H.K. Bezabh, C.J. Huang, S.K. Jiang, W.N. Su et al., A powerful protocol based on anode-free cells combined with various analytical techniques. Acc. Chem. Res. 54, 4474–4485 (2021). https://doi.org/10.1021/acs.accounts.1c00528
J. Sun, S. Zhang, J. Li, B. Xie, J. Ma et al., Robust transport: an artificial solid electrolyte interphase design for anode-free lithium-metal batteries. Adv. Mater. 35, 2209404 (2023). https://doi.org/10.1002/adma.202209404
S. Pyo, S. Ryu, Y.J. Gong, J. Cho, H. Yun et al., Lithiophilic wetting agent inducing interfacial fluorination for long-lifespan anode-free lithium metal batteries. Adv. Energy Mater. 13, 2203573 (2023). https://doi.org/10.1002/aenm.202203573
Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn–MnO2 battery. Nano Lett. 21, 1446–1453 (2021). https://doi.org/10.1021/acs.nanolett.0c04519
G. Wang, M. Zhu, G. Chen, Z. Qu, B. Kohn et al., An anode-free Zn–graphite battery. Adv. Mater. 34, e2201957 (2022). https://doi.org/10.1002/adma.202201957
H. Zhang, Y. Zhong, J. Li, Y. Liao, J. Zeng et al., Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries. Adv. Energy Mater. 13, 2203254 (2023). https://doi.org/10.1002/aenm.202203254
P. Cao, X. Zhou, A. Wei, Q. Meng, H. Ye et al., Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 31, 2100398 (2021). https://doi.org/10.1002/adfm.202100398
Y. Liu, Y. Li, X. Huang, H. Cao, Q. Zheng et al., Copper hexacyanoferrate solid-state electrolyte protection layer on Zn metal anode for high-performance aqueous zinc-ion batteries. Small 18, e2203061 (2022). https://doi.org/10.1002/smll.202203061
W. Zhang, Y. Dai, R. Chen, Z. Xu, J. Li et al., Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive. Angew. Chem. Int. Ed. 62, e202212695 (2023). https://doi.org/10.1002/anie.202212695
H. Jin, S. Dai, K. Xie, Y. Luo, K. Liu et al., Regulating interfacial desolvation and deposition kinetics enables durable Zn anodes with ultrahigh utilization of 80. Small 18, e2106441 (2022). https://doi.org/10.1002/smll.202106441
Y. Li, H. Jia, U. Ali, B. Liu, Y. Gao et al., In-situ interfacial layer with ultrafine structure enabling zinc metal anodes at high areal capacity. Chem. Eng. J. 450, 138374 (2022). https://doi.org/10.1016/j.cej.2022.138374
D. Lv, H. Peng, C. Wang, H. Liu, D. Wang et al., Rational screening of metal coating on Zn anode for ultrahigh-cumulative-capacity aqueous zinc metal batteries. J. Energy Chem. 84, 81–88 (2023). https://doi.org/10.1016/j.jechem.2023.05.028
L. Wang, Z. Zhao, Y. Yao, Y. Zhang, Y. Meng et al., Highly fluorinated non-aqueous solid-liquid hybrid interface realizes water impermeability for anti-calendar aging zinc metal batteries. Energy Storage Mater. 62, 102920 (2023). https://doi.org/10.1016/j.ensm.2023.102920
L. Zhang, B. Zhang, T. Zhang, T. Li, T. Shi et al., Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries. Adv. Funct. Mater. 31, 2100186 (2021). https://doi.org/10.1002/adfm.202100186
C. Choi, J.B. Park, J.H. Park, S. Yu, D.-W. Kim, Simultaneous manipulation of electron/Zn2+ ion flux and desolvation effect enabled by in situ built ultra-thin oxide-based artificial interphase for controlled deposition of zinc metal anodes. Chem. Eng. J. 456, 141015 (2023). https://doi.org/10.1016/j.cej.2022.141015
P. Tangthuam, W. Kao-ian, J. Sangsawang, C. Rojviriya, P. Chirawatkul et al., Carboxymethyl cellulose as an artificial solid electrolyte interphase for stable zinc-based anodes in aqueous electrolytes. Mater. Sci. Energy Technol. 6, 417–428 (2023). https://doi.org/10.1016/j.mset.2023.04.003
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32, e2003021 (2020). https://doi.org/10.1002/adma.202003021
S. Wu, S. Zhang, Y. Chu, Z. Hu, J. Luo, Stacked lamellar matrix enabling regulated deposition and superior thermo-kinetics for advanced aqueous Zn-ion system under practical conditions. Adv. Funct. Mater. 31, 2107397 (2021). https://doi.org/10.1002/adfm.202107397
S. Zhou, Y. Wang, H. Lu, Y. Zhang, C. Fu et al., Anti-corrosive and Zn-ion-regulating composite interlayer enabling long-life Zn metal anodes. Adv. Funct. Mater. 31, 2104361 (2021). https://doi.org/10.1002/adfm.202104361
W. Li, Q. Zhang, Z. Yang, H. Ji, T. Wu et al., Isotropic amorphous protective layer with uniform interfacial zincophobicity for stable zinc anode. Small 18, e2205667 (2022). https://doi.org/10.1002/smll.202205667
M. Zhao, Y. Lv, S. Zhao, Y. Xiao, J. Niu et al., Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high-performance zinc-ion batteries at wide temperatures. Adv. Mater. 34, e2206239 (2022). https://doi.org/10.1002/adma.202206239
Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62, e202215324 (2023). https://doi.org/10.1002/anie.202215324
D. Wang, H. Liu, D. Lv, C. Wang, J. Yang et al., Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries. Adv. Mater. 35, e2207908 (2023). https://doi.org/10.1002/adma.202207908
J. Zou, Z. Zeng, C. Wang, X. Zhu, J. Zhang et al., Ultraconformal horizontal zinc deposition toward dendrite-free anode. Small Struct. 4, 2200194 (2023). https://doi.org/10.1002/sstr.202200194
J. Ji, Z. Zhu, H. Du, X. Qi, J. Yao et al., Zinc-contained alloy as a robustly adhered interfacial lattice locking layer for planar and stable zinc electrodeposition. Adv. Mater. 35, e2211961 (2023). https://doi.org/10.1002/adma.202211961
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 33, e2101649 (2021). https://doi.org/10.1002/adma.202101649
Y. Zhou, J. Xia, J. Di, Z. Sun, L. Zhao et al., Ultrahigh-rate Zn stripping and plating by capacitive charge carriers enrichment boosting Zn-based energy storage. Adv. Energy Mater. 13, 2203165 (2023). https://doi.org/10.1002/aenm.202203165
H. Ying, P. Huang, Z. Zhang, S. Zhang, Q. Han et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries. Nano-Micro Lett. 14, 180 (2022). https://doi.org/10.1007/s40820-022-00921-6
Y. Li, D. Zhao, J. Cheng, Y. Lei, Z. Zhang et al., A bifunctional nitrogen doped carbon network as the interlayer for dendrite-free Zn anode. Chem. Eng. J. 452, 139264 (2023). https://doi.org/10.1016/j.cej.2022.139264
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
Y. Jiao, F. Li, X. Jin, Q. Lei, L. Li et al., Engineering polymer glue towards 90% zinc utilization for 1000 hours to make high-performance Zn-ion batteries. Adv. Funct. Mater. 31, 2107652 (2021). https://doi.org/10.1002/adfm.202107652
L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 19292–19296 (2020). https://doi.org/10.1002/anie.202008634
Y. Xiang, Y. Zhong, P. Tan, L. Zhou, G. Yin et al., Thickness-controlled synthesis of compact and uniform MOF protective layer for zinc anode to achieve 85% zinc utilization. Small 19, e2302161 (2023). https://doi.org/10.1002/smll.202302161
H. Gan, J. Wu, R. Li, B. Huang, H. Liu, Ultra-stable and deeply rechargeable zinc metal anode enabled by a multifunctional protective layer. Energy Storage Mater. 47, 602–610 (2022). https://doi.org/10.1016/j.ensm.2022.02.040
V. Aupama, W. Kao-ian, J. Sangsawang, G. Mohan, S. Wannapaiboon et al., Stabilizing a zinc anode via a tunable covalent organic framework-based solid electrolyte interphase. Nanoscale 15, 9003–9013 (2023). https://doi.org/10.1039/d3nr00898c
J. Zhao, Y. Ying, G. Wang, K. Hu, Y.D. Yuan et al., Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Mater. 48, 82–89 (2022). https://doi.org/10.1016/j.ensm.2022.02.054
Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu et al., Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 12, 6606 (2021). https://doi.org/10.1038/s41467-021-26947-9
W. Xu, X. Liao, W. Xu, K. Zhao, G. Yao et al., Ion selective and water resistant cellulose nanofiber/MXene membrane enabled cycling Zn anode at high currents. Adv. Energy Mater. 13, 2300283 (2023). https://doi.org/10.1002/aenm.202300283
H. Jin, S. Dai, Z. Zhu, Y. Luo, B. Qi et al., Crystal water boosted Zn2+ transfer kinetics in artificial solid electrolyte interphase for high-rate and durable Zn anodes. ACS Appl. Energy Mater. 5, 10581–10590 (2022). https://doi.org/10.1021/acsaem.2c01340
G. Li, X. Wang, S. Lv, J. Wang, W. Yu et al., In situ constructing a film-coated 3D porous Zn anode by iodine etching strategy toward horizontally arranged dendrite-free Zn deposition. Adv. Funct. Mater. 33, 2208288 (2023). https://doi.org/10.1002/adfm.202208288
H. Yan, S. Li, Y. Nan, S. Yang, B. Li, Ultrafast zinc–ion–conductor interface toward high-rate and stable zinc metal batteries. Adv. Energy Mater. 11, 2100186 (2021). https://doi.org/10.1002/aenm.202100186
R. Wang, S. Xin, D. Chao, Z. Liu, J. Wan et al., Fast and regulated zinc deposition in a semiconductor substrate toward high-performance aqueous rechargeable batteries. Adv. Funct. Mater. 32, 2207751 (2022). https://doi.org/10.1002/adfm.202207751
J. Zheng, G. Zhu, X. Liu, H. Xie, Y. Lin et al., Simultaneous dangling bond and zincophilic site engineering of SiNx protective coatings toward stable zinc anodes. ACS Energy Lett. 7, 4443–4450 (2022). https://doi.org/10.1021/acsenergylett.2c02282
S. Zhang, J. Ye, H. Ao, M. Zhang, X. Li et al., In-situ formation of hierarchical solid-electrolyte interphase for ultra-long cycling of aqueous zinc-ion batteries. Nano Res. 16, 449–457 (2023). https://doi.org/10.1007/s12274-022-4688-5
C. Ma, K. Yang, S. Zhao, Y. Xie, C. Liu et al., Recyclable and ultrafast fabrication of zinc oxide interface layer enabling highly reversible dendrite-free Zn anode. ACS Energy Lett. 8, 1201–1208 (2023). https://doi.org/10.1021/acsenergylett.2c02735
Y. Zou, Y. Su, C. Qiao, W. Li, Z. Xue et al., A generic “engraving in aprotic medium” strategy towardStabilized Zn anodes. Adv. Energy Mater. 13, 2300932 (2023). https://doi.org/10.1002/aenm.202300932
J.B. Park, C. Choi, J.H. Park, S. Yu, D.-W. Kim, Synergistic design of multifunctional interfacial Zn host toward practical Zn metal batteries. Adv. Energy Mater. 12, 2202937 (2022). https://doi.org/10.1002/aenm.202202937
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
J.-L. Yang, J. Li, J.-W. Zhao, K. Liu, P. Yang et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34, 2202382 (2022). https://doi.org/10.1002/adma.202202382
H. He, J. Liu, Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes. J. Mater. Chem. A 8, 22100–22110 (2020). https://doi.org/10.1039/D0TA07232J
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16, 275–284 (2023). https://doi.org/10.1039/D2EE02931F
J. Dong, H. Peng, J. Wang, C. Wang, D. Wang et al., Molecular deciphering of hydrophobic, zinc-philic and robust amino-functionalized polysilane for dendrite-free Zn anode. Energy Storage Mater. 54, 875–884 (2023). https://doi.org/10.1016/j.ensm.2022.11.026
Q. Duan, K. Xue, X. Yin, D.Y.W. Yu, A cationic polymeric interface enabling dendrite-free and highly stable aqueous Zn-metal batteries. J. Power. Sources 558, 232356 (2023). https://doi.org/10.1016/j.jpowsour.2022.232356
Z. Meng, Y. Jiao, P. Wu, Alleviating side reactions on Zn anodes for aqueous batteries by a cell membrane derived phosphorylcholine zwitterionic protective layer. Angew. Chem. Int. Ed. 62, e202307271 (2023). https://doi.org/10.1002/anie.202307271
X. Zhu, X. Li, M.L.K. Essandoh, J. Tan, Z. Cao et al., Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Mater. 50, 243–251 (2022). https://doi.org/10.1016/j.ensm.2022.05.022
L. Zhang, Y. Hou, The rise and development of MOF-based materials for metal-chalcogen batteries: current status, challenges, and prospects. Adv. Energy Mater. 13, 2204378 (2023). https://doi.org/10.1002/aenm.202204378
J. Zhou, L. Zhang, M. Peng, X. Zhou, Y. Cao et al., Diminishing interfacial turbulence by colloid-polymer electrolyte to stabilize zinc ion flux for deep-cycling Zn metal batteries. Adv. Mater. 34, 2200131 (2022). https://doi.org/10.1002/adma.202200131
H. Tian, J.-L. Yang, Y. Deng, W. Tang, R. Liu et al., Steel anti-corrosion strategy enables long-cycle Zn anode. Adv. Energy Mater. 13, 2370004 (2023). https://doi.org/10.1002/aenm.202370004
C. Li, A. Shyamsunder, A.G. Hoane, D.M. Long, C.Y. Kwok et al., Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 6, 1103–1120 (2022). https://doi.org/10.1016/j.joule.2022.04.017
J. Wang, H. Qiu, Q. Zhang, X. Ge, J. Zhao et al., Eutectic electrolytes with leveling effects achieving high depth-of-discharge of rechargeable zinc batteries. Energy Storage Mater. 58, 9–19 (2023). https://doi.org/10.1016/j.ensm.2023.03.014
J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
K. Zhou, Z. Li, X. Qiu, Z. Yu, Y. Wang, Boosting Zn anode utilization by trace iodine ions in organic-water hybrid electrolytes through formation of anion-rich adsorbing layers. Angew. Chem. Int. Ed. 62, e202309594 (2023). https://doi.org/10.1002/anie.202309594
M. Wang, J. Ma, Y. Meng, J. Sun, Y. Yuan et al., High-capacity zinc anode with 96% utilization rate enabled by solvation structure design. Angew. Chem. Int. Ed. 62, e202214966 (2023). https://doi.org/10.1002/anie.202214966
S. Jin, F. Duan, X. Wu, J. Li, X. Dan et al., Stabilizing interface pH by mixing electrolytes for high-performance aqueous Zn metal batteries. Small 18, e2205462 (2022). https://doi.org/10.1002/smll.202205462
J. Zhao, C. Song, S. Ma, Q. Gao, Z. Li et al., Antifreezing polymeric-acid electrolyte for high-performance aqueous zinc-ion batteries. Energy Storage Mater. 61, 102880 (2023). https://doi.org/10.1016/j.ensm.2023.102880
S.R. Motlagh, R. Khezri, M. Etesami, A.A. Mohamad, P. Kidkhunthod et al., Mitigating water-related challenges in aqueous zinc-ion batteries through ether-water hybrid electrolytes. Electrochim. Acta 468, 143122 (2023). https://doi.org/10.1016/j.electacta.2023.143122
Z. Hou, H. Tan, Y. Gao, M. Li, Z. Lu et al., Tailoring desolvation kinetics enables stable zinc metal anodes. J. Mater. Chem. A 8, 19367–19374 (2020). https://doi.org/10.1039/D0TA06622B
H. Huang, D. Xie, J. Zhao, P. Rao, W.M. Choi et al., Boosting reversibility and stability of Zn anodes via manipulation of electrolyte structure and interface with addition of trace organic molecules. Adv. Energy Mater. 12, 2270157 (2022). https://doi.org/10.1002/aenm.202270157
L. Ma, T.P. Pollard, Y. Zhang, M.A. Schroeder, M.S. Ding et al., Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes. Angew. Chem. Int. Ed. 60, 12438–12445 (2021). https://doi.org/10.1002/anie.202017020
D. Wang, D. Lv, H. Liu, S. Zhang, C. Wang et al., In situ formation of nitrogen-rich solid electrolyte interphase and simultaneous regulating solvation structures for advanced Zn metal batteries. Angew. Chem. Int. Ed. 61, e202212839 (2022). https://doi.org/10.1002/anie.202212839
X. Zhao, X. Zhang, N. Dong, M. Yan, F. Zhang et al., Advanced buffering acidic aqueous electrolytes for ultra-long life aqueous zinc-ion batteries. Small 18, e2200742 (2022). https://doi.org/10.1002/smll.202200742
J. Yang, Y. Zhang, Z. Li, X. Xu, X. Su et al., Three birds with one stone: tetramethylurea as electrolyte additive for highly reversible Zn-metal anode. Adv. Funct. Mater. 32, 2209642 (2022). https://doi.org/10.1002/adfm.202209642
P. Zou, R. Lin, T.P. Pollard, L. Yao, E. Hu et al., Localized hydrophobicity in aqueous zinc electrolytes improves zinc metal reversibility. Nano Lett. 22, 7535–7544 (2022). https://doi.org/10.1021/acs.nanolett.2c02514
Y. Wang, T. Wang, S. Bu, J. Zhu, Y. Wang et al., Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nat. Commun. 14, 1828 (2023). https://doi.org/10.1038/s41467-023-37524-7
C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang et al., Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33, e2100445 (2021). https://doi.org/10.1002/adma.202100445
T.C. Li, C. Lin, M. Luo, P. Wang, D.-S. Li et al., Interfacial molecule engineering for reversible Zn electrochemistry. ACS Energy Lett. 8, 3258–3268 (2023). https://doi.org/10.1021/acsenergylett.3c00859
Y. Zhao, H. Hong, L. Zhong, J. Zhu, Y. Hou et al., Zn-rejuvenated and SEI-regulated additive in zinc metal battery via the iodine post-functionalized zeolitic imidazolate framework-90. Adv. Energy Mater. 13, 2300627 (2023). https://doi.org/10.1002/aenm.202300627
Y. Zhong, Z. Cheng, H. Zhang, J. Li, D. Liu et al., Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery. Nano Energy 98, 107220 (2022). https://doi.org/10.1016/j.nanoen.2022.107220
Z. Xu, H. Li, Y. Liu, K. Wang, H. Wang et al., Durable modulation of Zn(002) plane deposition via reproducible zincophilic carbon quantum dots towards low N/P ratio zinc-ion batteries. Mater. Horiz. 10, 3680–3693 (2023). https://doi.org/10.1039/D3MH00261F
P. Xiong, C. Lin, Y. Wei, J.-H. Kim, G. Jang et al., Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS Energy Lett. 8, 2718–2727 (2023). https://doi.org/10.1021/acsenergylett.3c00534
Z. Shen, J. Mao, G. Yu, W. Zhang, S. Mao et al., Electrocrystallization regulation enabled stacked hexagonal platelet growth toward highly reversible zinc anodes. Angew. Chem. Int. Ed. 62, e202218452 (2023). https://doi.org/10.1002/anie.202218452
S.-J. Zhang, J. Hao, Y. Zhu, H. Li, Z. Lin et al., pH-triggered molecular switch toward texture-regulated Zn anode. Angew. Chem. Int. Ed. 62, e202301570 (2023). https://doi.org/10.1002/anie.202301570
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13, 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
X. Shi, J. Wang, F. Yang, X. Liu, Y. Yu et al., Metallic zinc anode working at 50 and 50 mAh cm–2 with high depth of discharge via electrical double layer reconstruction. Adv. Funct. Mater. 33, 2211917 (2023). https://doi.org/10.1002/adfm.202211917
X. Huang, Q. Li, X. Zhang, H. Cao, J. Zhao et al., Critical triple roles of sodium iodide in tailoring the solventized structure, anode-electrolyte interface and crystal plane growth to achieve highly reversible zinc anodes for aqueous zinc-ion batteries. J. Colloid Interface Sci. 650, 875–882 (2023). https://doi.org/10.1016/j.jcis.2023.07.037
A. Bayaguud, X. Luo, Y. Fu, C. Zhu, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 5, 3012–3020 (2020). https://doi.org/10.1021/acsenergylett.0c01792
C. Meng, W. He, L. Jiang, Y. Huang, J. Zhang et al., Ultra-stable aqueous zinc batteries enabled by β-cyclodextrin: preferred zinc deposition and suppressed parasitic reactions. Adv. Funct. Mater. 32, 2207732 (2022). https://doi.org/10.1002/adfm.202207732
Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15, 4748–4760 (2022). https://doi.org/10.1039/D2EE02687B
N. Wang, X. Chen, H. Wan, B. Zhang, K.-Y. Guan et al., Zincophobic electrolyte achieves highly reversible zinc-ion batteries. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202300795
D. Wang, D. Lv, H. Peng, C. Wang, H. Liu et al., Solvation modulation enhances anion-derived solid electrolyte interphase for deep cycling of aqueous zinc metal batteries. Angew. Chem. Int. Ed. 62, e202310290 (2023). https://doi.org/10.1002/anie.202310290
C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian et al., Self-healing SeO2 additives enable zinc metal reversibility in aqueous ZnSO4 electrolytes. Adv. Funct. Mater. 32, 2112091 (2022). https://doi.org/10.1002/adfm.202112091
Y. Zhang, X. Zheng, K. Wu, Y. Zhang, G. Xu et al., Nonionic surfactant-assisted In situ generation of stable passivation protective layer for highly stable aqueous Zn metal anodes. Nano Lett. 22, 8574–8583 (2022). https://doi.org/10.1021/acs.nanolett.2c03114
X. Xu, H. Su, J. Zhang, Y. Zhong, Y. Xu et al., Sulfamate-derived solid electrolyte interphase for reversible aqueous zinc battery. ACS Energy Lett. 7, 4459–4468 (2022). https://doi.org/10.1021/acsenergylett.2c02236
J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.-Z. Qiao, Triple-function electrolyte regulation toward advanced aqueous Zn-ion batteries. Adv. Mater. 34, 2206963 (2022). https://doi.org/10.1002/adma.202206963
Y. Zhu, H.Y. Hoh, S. Qian, C. Sun, Z. Wu et al., Ultrastable zinc anode enabled by CO2-induced interface layer. ACS Nano 16, 14600–14610 (2022). https://doi.org/10.1021/acsnano.2c05124
K. Wang, T. Qiu, L. Lin, X.-X. Liu, X. Sun, A low fraction electrolyte additive as interface stabilizer for Zn electrode in aqueous batteries. Energy Storage Mater. 54, 366–373 (2023). https://doi.org/10.1016/j.ensm.2022.10.029
J. Ge, Y. Zhang, Z. Xie, H. Xie, W. Chen et al., Tailored ZnF2/ZnS-rich interphase for reversible aqueous Zn batteries. Nano Res. 16, 4996–5005 (2023). https://doi.org/10.1007/s12274-022-5325-z
X. Li, H. Yao, Y. Li, X. Liu, D. Yuan et al., Cellulose-complexing strategy induced surface regulation towards ultrahigh utilization rate of Zn. J. Mater. Chem. A 11, 14720–14727 (2023). https://doi.org/10.1039/D3TA02117C
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33, e2007416 (2021). https://doi.org/10.1002/adma.202007416
H. Zhang, X. Gan, Z. Song, J. Zhou, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed. 62, e202217833 (2023). https://doi.org/10.1002/anie.202217833
Y. Cheng, Y. Jiao, P. Wu, Manipulating Zn002 deposition plane with zirconium ion crosslinked hydrogel electrolyte toward dendrite free Zn metal anodes. Energy Environ. Sci. 16, 4561–4571 (2023). https://doi.org/10.1039/D3EE02114A
F. Wang, J. Zhang, H. Lu, H. Zhu, Z. Chen et al., Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat. Commun. 14, 4211 (2023). https://doi.org/10.1038/s41467-023-39877-5
Y. Qin, H. Li, C. Han, F. Mo, X. Wang, Chemical welding of the electrode-electrolyte interface by Zn-metal-initiated in situ gelation for ultralong-life Zn-ion batteries. Adv. Mater. 34, e2207118 (2022). https://doi.org/10.1002/adma.202207118
X. Yang, W. Li, J. Lv, G. Sun, Z. Shi et al., In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Res. 15, 9785–9791 (2022). https://doi.org/10.1007/s12274-021-3957-z
X. Ge, W. Zhang, F. Song, B. Xie, J. Li et al., Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries. Adv. Funct. Mater. 32, 2200429 (2022). https://doi.org/10.1002/adfm.202200429
H. Qin, W. Chen, W. Kuang, N. Hu, X. Zhang et al., A nature-inspired separator with water-confined and kinetics-boosted effects for sustainable and high-utilization Zn metal batteries. Small 19, e2300130 (2023). https://doi.org/10.1002/smll.202300130
J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: materials, mechanisms, and applications. Mater. Sci. Eng. R. Rep. 135, 58–84 (2019). https://doi.org/10.1016/j.mser.2018.10.002
W. Zhou, M. Chen, Q. Tian, J. Chen, X. Xu et al., Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 44, 57–65 (2022). https://doi.org/10.1016/j.ensm.2021.10.002
L. Yao, G. Wang, F. Zhang, X. Chi, Y. Liu, Highly-reversible and recyclable zinc metal batteries achieved by inorganic/organic hybrid separators with finely tunable hydrophilic–hydrophobic balance. Energy Environ. Sci. 16, 4432–4441 (2023). https://doi.org/10.1039/D3EE01575K
D.J. Arnot, M.B. Lim, N.S. Bell, N.B. Schorr, R.C. Hill et al., High depth-of-discharge zinc rechargeability enabled by a self-assembled polymeric coating. Adv. Energy Mater. 11, 2101594 (2021). https://doi.org/10.1002/aenm.202101594
X. Yang, Z. Zhang, M. Wu, Z.-P. Guo, Z.-J. Zheng, Reshaping zinc plating/stripping behavior by interfacial water bonding for high-utilization-rate zinc batteries. Adv. Mater. (2023). https://doi.org/10.1002/adma.202303550
X. Zhang, J. Li, K. Qi, Y. Yang, D. Liu et al., An ion-sieving Janus separator toward planar electrodeposition for deeply rechargeable Zn-metal anodes. Adv. Mater. 34, e2205175 (2022). https://doi.org/10.1002/adma.202205175
H. Yang, R. Zhu, Y. Yang, Z. Lu, Z. Chang et al., Sustainable high-energy aqueous zinc–manganese dioxide batteries enabled by stress-governed metal electrodeposition and fast zinc diffusivity. Energy Environ. Sci. 16, 2133–2141 (2023). https://doi.org/10.1039/D2EE03777G
Q. Li, H. Wang, H. Yu, M. Fu, W. Liu et al., Engineering an ultrathin and hydrophobic composite zinc anode with 24µm thickness for high-performance Zn batteries. Adv. Funct. Mater. 33, 2303466 (2023). https://doi.org/10.1002/adfm.202303466
J. Li, Q. Lin, Z. Zheng, L. Cao, W. Lv et al., How is cycle life of three-dimensional zinc metal anodes with carbon fiber backbones affected by depth of discharge and current density in zinc-ion batteries? ACS Appl. Mater. Interfaces 14, 12323–12330 (2022). https://doi.org/10.1021/acsami.2c00344
Y. Mu, Z. Li, B.-K. Wu, H. Huang, F. Wu et al., 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 14, 4205 (2023). https://doi.org/10.1038/s41467-023-39947-8
B. Zhou, B. Miao, Y. Gao, A. Yu, Z. Shao, Self-assembled protein nanofilm regulating uniform Zn nucleation and deposition enabling long-life Zn anodes. Small 19, 2300895 (2023). https://doi.org/10.1002/smll.202300895
Y. Zeng, P.X. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34, e2200342 (2022). https://doi.org/10.1002/adma.202200342
Z. Yi, J. Liu, S. Tan, Z. Sang, J. Mao et al., An ultrahigh rate and stable zinc anode by facet-matching-induced dendrite regulation. Adv. Mater. 34, e2203835 (2022). https://doi.org/10.1002/adma.202203835
S.D. Pu, C. Gong, Y.T. Tang, Z. Ning, J. Liu et al., Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes. Adv. Mater. 34, 2202552 (2022). https://doi.org/10.1002/adma.202202552
C. Xie, H. Ji, Q. Zhang, Z. Yang, C. Hu et al., High-index zinc facet exposure induced by preferentially orientated substrate for dendrite-free zinc anode. Adv. Energy Mater. 13, 2203203 (2023). https://doi.org/10.1002/aenm.202203203
Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, e1903675 (2019). https://doi.org/10.1002/adma.201903675
B. Wu, B. Guo, Y. Chen, Y. Mu, H. Qu et al., High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays. Energy Storage Mater. 54, 75–84 (2023). https://doi.org/10.1016/j.ensm.2022.10.017
W. Dong, J.-L. Shi, T.-S. Wang, Y.-X. Yin, C.-R. Wang et al., 3D zinc@carbon fiber composite framework anode for aqueous Zn–MnO2 batteries. RSC Adv. 8, 19157–19163 (2018). https://doi.org/10.1039/C8RA03226B
Y. Zhou, X. Wang, X. Shen, Y. Shi, C. Zhu et al., 3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. J. Mater. Chem. A 8, 11719–11727 (2020). https://doi.org/10.1039/D0TA02791J
Z. Xu, S. Jin, N. Zhang, W. Deng, M.H. Seo et al., Efficient Zn metal anode enabled by O, N-codoped carbon microflowers. Nano Lett. 22, 1350–1357 (2022). https://doi.org/10.1021/acs.nanolett.1c04709
R. Wang, L. Wu, Y. Wei, K. Zhu, H. Wang et al., ‘Two Birds with One Stone’ design for dendrite-free zinc-metal anodes: three-dimensional highly conductive skeletons loaded with abundant zincophilic sites. Mater. Today Energy 29, 101097 (2022). https://doi.org/10.1016/j.mtener.2022.101097
B. Jiang, W. Liu, Z. Ren, R. Guo, Y. Huang et al., Oxygen plasma modified carbon cloth with C=O zincophilic sites as a stable host for zinc metal anodes. Front. Chem. 10, 899810 (2022). https://doi.org/10.3389/fchem.2022.899810
L. Wang, G. Fan, J. Liu, L. Zhang, M. Yu et al., Selective nitrogen doping on carbon cloth to enhance the performance of zinc anode. Chin. Chem. Lett. 32, 1095–1100 (2021). https://doi.org/10.1016/j.cclet.2020.08.022
H. Liu, J. Li, X. Zhang, X. Liu, Y. Yan et al., Ultrathin and ultralight Zn micromesh-induced spatial-selection deposition for flexible high-specific-energy Zn-ion batteries. Adv. Funct. Mater. 31, 2106550 (2021). https://doi.org/10.1002/adfm.202106550
Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58, 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
Z. Zhang, X. Yang, P. Li, Y. Wang, X. Zhao et al., Biomimetic dendrite-free multivalent metal batteries. Adv. Mater. 34, e2206970 (2022). https://doi.org/10.1002/adma.202206970
G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11, 2003927 (2021). https://doi.org/10.1002/aenm.202003927
Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15, 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
C. Xie, S. Liu, W. Zhang, H. Ji, S. Chu et al., Robust and wide temperature-range zinc metal batteries with unique electrolyte and substrate design. Angew. Chem. Int. Ed. 62, e202304259 (2023). https://doi.org/10.1002/anie.202304259
R. Xue, J. Kong, Y. Wu, Y. Wang, X. Kong et al., Highly reversible zinc metal anodes enabled by a three-dimensional silver host for aqueous batteries. J. Mater. Chem. A 10, 10043–10050 (2022). https://doi.org/10.1039/D2TA00326K
L. Wang, W. Huang, W. Guo, Z.H. Guo, C. Chang et al., Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries. Adv. Funct. Mater. 32, 2108533 (2022). https://doi.org/10.1002/adfm.202108533
M. Kwon, J. Lee, S. Ko, G. Lim, S.-H. Yu et al., Stimulating Cu–Zn alloying for compact Zn metal growth towards high energy aqueous batteries and hybrid supercapacitors. Energy Environ. Sci. 15, 2889–2899 (2022). https://doi.org/10.1039/D2EE00617K
H. Chen, Z. Guo, H. Wang, W. Huang, F. Pan et al., A liquid metal interlayer for boosted charge transfer and dendrite-free deposition toward high-performance Zn anodes. Energy Storage Mater. 54, 563–569 (2023). https://doi.org/10.1016/j.ensm.2022.11.013
M. Fayette, H.J. Chang, X. Li, D. Reed, High-performance InZn alloy anodes toward practical aqueous zinc batteries. ACS Energy Lett. 7, 1888–1895 (2022). https://doi.org/10.1021/acsenergylett.2c00843
J. Zhou, M. Xie, F. Wu, Y. Mei, Y. Hao et al., Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries. Adv. Mater. 34, e2106897 (2022). https://doi.org/10.1002/adma.202106897
J. Gu, Y. Tao, H. Chen, Z. Cao, Y. Zhang et al., Stress-release functional liquid metal-MXene layers toward dendrite-free zinc metal anodes. Adv. Energy Mater. 12, 2200115 (2022). https://doi.org/10.1002/aenm.202200115
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3, 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
Y. Gao, Q. Cao, J. Pu, X. Zhao, G. Fu et al., Stable Zn anodes with triple gradients. Adv. Mater. 35, e2207573 (2023). https://doi.org/10.1002/adma.202207573
M. Cui, Y. Xiao, L. Kang, W. Du, Y. Gao et al., Quasi-isolated Au ps as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2, 6490–6496 (2019). https://doi.org/10.1021/acsaem.9b01063
Y. Zhang, L. Wang, Q. Li, B. Hu, J. Kang et al., Iodine promoted ultralow Zn nucleation overpotential and Zn-rich cathode for low-cost, fast-production and high-energy density anode-free Zn-iodine batteries. Nano-Micro Lett. 14, 208 (2022). https://doi.org/10.1007/s40820-022-00948-9
W. Ling, Q. Yang, F. Mo, H. Lei, J. Wang et al., An ultrahigh rate dendrite-free Zn metal deposition/striping enabled by silver nanowire aerogel with optimal atomic affinity with Zn. Energy Storage Mater. 51, 453–464 (2022). https://doi.org/10.1016/j.ensm.2022.07.002
M. Wang, W. Wang, Y. Meng, Y. Xu, J. Sun et al., Crystal facet correlated Zn growth on Cu for aqueous Zn metal batteries. Energy Storage Mater. 56, 424–431 (2023). https://doi.org/10.1016/j.ensm.2023.01.026
H. Chen, M. Chen, W. Zhou, X. Han, B. Liu et al., Flexible Ti3C2Tx/nanocellulose hybrid film as a stable Zn-free anode for aqueous hybrid Zn–Li batteries. ACS Appl. Mater. Interfaces 14, 6876–6884 (2022). https://doi.org/10.1021/acsami.1c23402
H. Chen, W. Zhou, M. Chen, Q. Tian, X. Han et al., Ultrathin Zn-free anode based on Ti3C2Tx and nanocellulose enabling high-durability aqueous hybrid Zn–Na battery with Zn2+/Na+ co-intercalation mechanism. Nano Res. 16, 536–544 (2023). https://doi.org/10.1007/s12274-022-4916-z
C. Wang, D. Wang, D. Lv, H. Peng, X. Song et al., Interface engineering by hydrophilic and zincophilic aluminum hydroxide fluoride for anode-free zinc metal batteries at low temperature. Adv. Energy Mater. 13, 2204388 (2023). https://doi.org/10.1002/aenm.202204388
R. Zhao, J. Yang, X. Han, Y. Wang, Q. Ni et al., Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries. Adv. Energy Mater. 13, 2370034 (2023). https://doi.org/10.1002/aenm.202370034
X. Zheng, Z. Liu, J. Sun, R. Luo, K. Xu et al., Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nat. Commun. 14, 76 (2023). https://doi.org/10.1038/s41467-022-35630-6
T.A. Nigatu, H.K. Bezabh, S.-K. Jiang, B.W. Taklu, Y. Nikodimos et al., An anode-free aqueous hybrid batteries enabled by in situ Cu/Sn/Zn alloy formation on pure Cu substrate. Electrochim. Acta 443, 141883 (2023). https://doi.org/10.1016/j.electacta.2023.141883
S. Xie, Y. Li, L. Dong, Stable anode-free zinc-ion batteries enabled by alloy network-modulated zinc deposition interface. J. Energy Chem. 76, 32–40 (2023). https://doi.org/10.1016/j.jechem.2022.08.040
K. Xu, X. Zheng, R. Luo, J. Sun, Y. Ma et al., A three-dimensional zincophilic nano-copper host enables dendrite-free and anode-free Zn batteries. Mater. Today Energy 34, 101284 (2023). https://doi.org/10.1016/j.mtener.2023.101284
C. Li, L. Liang, X. Liu, N. Cao, Q. Shao et al., A lean-zinc anode battery based on metal–organic framework-derived carbon. Carbon Energy 5, e301 (2023). https://doi.org/10.1002/cey2.301
T. Zhang, L. Zhang, Y. Hou, MXenes: synthesis strategies and lithium-sulfur battery applications. eScience 2, 164–182 (2022). https://doi.org/10.1016/j.esci.2022.02.010
C. Li, Q. Shao, K. Luo, Y. Gao, W. Zhao et al., A lean-zinc and zincophilic anode for highly reversible zinc metal batteries. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202305204
Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31, 2101886 (2021). https://doi.org/10.1002/adfm.202101886
X. Yi, A.M. Rao, J. Zhou, B. Lu, Trimming the degrees of freedom via a K+ flux rectifier for safe and long-life potassium-ion batteries. Nano-Micro Lett. 15, 200 (2023). https://doi.org/10.1007/s40820-023-01178-3
W.-Y. Kim, H.-I. Kim, K.M. Lee, E. Shin, X. Liu et al., Demixing the miscible liquids: toward biphasic battery electrolytes based on the kosmotropic effect. Energy Environ. Sci. 15, 5217–5228 (2022). https://doi.org/10.1039/D2EE03077B
C. Li, R. Kingsbury, A.S. Thind, A. Shyamsunder, T.T. Fister et al., Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries. Nat. Commun. 14, 3067 (2023). https://doi.org/10.1038/s41467-023-38460-2
J. Duan, L. Min, M. Wu, T. Yang, M. Chen et al., “Anode-free” Zn/LiFePO4 aqueous batteries boosted by hybrid electrolyte. J. Ind. Eng. Chem. 114, 317–322 (2022). https://doi.org/10.1016/j.jiec.2022.07.021
L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang et al., Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4
Y. Xu, X. Zheng, J. Sun, W. Wang, M. Wang et al., Nucleophilic interfacial layer enables stable Zn anodes for aqueous Zn batteries. Nano Lett. 22, 3298–3306 (2022). https://doi.org/10.1021/acs.nanolett.2c00398
Q. Zhang, Y. Ma, Y. Lu, X. Zhou, L. Lin et al., Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 60, 23357–23364 (2021). https://doi.org/10.1002/anie.202109682
F. Ming, Y. Zhu, G. Huang, A.-H. Emwas, H. Liang et al., Co-solvent electrolyte engineering for stable anode-free zinc metal batteries. J. Am. Chem. Soc. 144, 7160–7170 (2022). https://doi.org/10.1021/jacs.1c12764