A Flexible-Integrated Multimodal Hydrogel-Based Sensing Patch
Corresponding Author: Zhao Yao
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 156
Abstract
Sleep monitoring is an important part of health management because sleep quality is crucial for restoration of human health. However, current commercial products of polysomnography are cumbersome with connecting wires and state-of-the-art flexible sensors are still interferential for being attached to the body. Herein, we develop a flexible-integrated multimodal sensing patch based on hydrogel and its application in unconstraint sleep monitoring. The patch comprises a bottom hydrogel-based dual-mode pressure–temperature sensing layer and a top electrospun nanofiber-based non-contact detection layer as one integrated device. The hydrogel as core substrate exhibits strong toughness and water retention, and the multimodal sensing of temperature, pressure, and non-contact proximity is realized based on different sensing mechanisms with no crosstalk interference. The multimodal sensing function is verified in a simulated real-world scenario by a robotic hand grasping objects to validate its practicability. Multiple multimodal sensing patches integrated on different locations of a pillow are assembled for intelligent sleep monitoring. Versatile human–pillow interaction information as well as their evolution over time are acquired and analyzed by a one-dimensional convolutional neural network. Track of head movement and recognition of bad patterns that may lead to poor sleep are achieved, which provides a promising approach for sleep monitoring.
Highlights:
1 A flexible multimodal proximity–pressure–temperature sensing patch with a simple structure was developed.
2 Thanks to structural design and material synthesis, the sensor has an outstanding temperature sensitivity of 0.5 °C−1 with good linearity, a high pressure sensitivity of 30.6 kPa−1 and a non-contact sensing range is 2 m.
3 After the multimodal sensing patches are integrated at different locations of the pillow, the sleeping conditions can be monitored comfortably.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Roy, S. Zenker, S. Jain, R. Afshari, Y. Oz et al., A highly stretchable, conductive, and transparent bioadhesive hydrogel as a flexible sensor for enhanced real-time human health monitoring. Adv. Mater. 36, e2404225 (2024). https://doi.org/10.1002/adma.202404225
- S. Shi, Y. Ming, H. Wu, C. Zhi, L. Yang et al., A bionic skin for health management: excellent breathability, in situ sensing, and big data analysis. Adv. Mater. 36, e2306435 (2024). https://doi.org/10.1002/adma.202306435
- L. Wang, X. Qi, C. Li, Y. Wang, Multifunctional tactile sensors for object recognition. Adv. Funct. Mater. 34, 2409358 (2024). https://doi.org/10.1002/adfm.202409358
- S. Zhao, R. Zhu, Electronic skin with multifunction sensors based on thermosensation. Adv. Mater. 29, 1606151 (2017). https://doi.org/10.1002/adma.201606151
- Y. Yang, B.K. Jung, T. Park, J. Ahn, Y. Choi et al., Sensory nervous system-inspired self-classifying, decoupled, multifunctional sensor with resistive-capacitive operation using silver nanomaterials. Adv. Funct. Mater. 34, 2405687 (2024). https://doi.org/10.1002/adfm.202405687
- H. Wang, Q. Ding, Y. Luo, Z. Wu, J. Yu et al., High-performance hydrogel sensors enabled multimodal and accurate human-machine interaction system for active rehabilitation. Adv. Mater. 36, e2309868 (2024). https://doi.org/10.1002/adma.202309868
- H. Zhang, H. Li, Y. Li, Biomimetic electronic skin for robots aiming at superior dynamic-static perception and material cognition based on triboelectric-piezoresistive effects. Nano Lett. 24, 4002–4011 (2024). https://doi.org/10.1021/acs.nanolett.4c00623
- H. Park, S. Kim, J. Lee, I. Lee, S. Bontapalle et al., Organic flexible electronics with closed-loop recycling for sustainable wearable technology. Nat. Electron. 7, 39–50 (2024). https://doi.org/10.1038/s41928-023-01078-9
- Y. Li, Q. Lin, T. Sun, M. Qin, W. Yue et al., A perceptual and interactive integration strategy toward telemedicine healthcare based on electroluminescent display and triboelectric sensing 3D stacked device. Adv. Funct. Mater. 34, 2402356 (2024). https://doi.org/10.1002/adfm.202402356
- K. Tao, J. Yu, J. Zhang, A. Bao, H. Hu et al., Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin. ACS Nano 17, 16160–16173 (2023). https://doi.org/10.1021/acsnano.3c05253
- K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu et al., Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv. Sci. 9, e2104168 (2022). https://doi.org/10.1002/advs.202104168
- B. Bao, Q. Zeng, K. Li, J. Wen, Y. Zhang et al., Rapid fabrication of physically robust hydrogels. Nat. Mater. 22, 1253–1260 (2023). https://doi.org/10.1038/s41563-023-01648-4
- T. Zhou, H. Yuk, F. Hu, J. Wu, F. Tian et al., 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895–902 (2023). https://doi.org/10.1038/s41563-023-01569-2
- Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv. Mater. 35, e2300855 (2023). https://doi.org/10.1002/adma.202300855
- M. Zhang, Y. Yang, M. Li, Q. Shang, R. Xie et al., Toughening double-network hydrogels by polyelectrolytes. Adv. Mater. 35, e2301551 (2023). https://doi.org/10.1002/adma.202301551
- L. Fu, L. Li, Q. Bian, B. Xue, J. Jin et al., Cartilage-like protein hydrogels engineered via entanglement. Nature 618, 740–747 (2023). https://doi.org/10.1038/s41586-023-06037-0
- Y. Li, Z. Qiu, H. Kan, Y. Yang, J. Liu et al., A human-computer interaction strategy for an FPGA platform boosted integrated “perception-memory” system based on electronic tattoos and memristors. Adv. Sci. 11, e2402582 (2024). https://doi.org/10.1002/advs.202402582
- P. Wang, X. Li, G. Sun, G. Wang, Q. Han et al., Natural human skin-inspired wearable and breathable nanofiber-based sensors with excellent thermal management functionality. Adv. Fiber Mater. 6, 1955–1968 (2024). https://doi.org/10.1007/s42765-024-00464-y
- T. Rajasooriya, H. Ogasawara, Y. Dong, J.N. Mancuso, K. Salaita, Force-triggered self-destructive hydrogels. Adv. Mater. 35, e2305544 (2023). https://doi.org/10.1002/adma.202305544
- Y. Yan, S. Duan, B. Liu, S. Wu, Y. Alsaid et al., Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv. Mater. 35, 2211673 (2023). https://doi.org/10.1002/adma.202211673
- X. Hou, B. Huang, L. Zhou, S. Liu, J. Kong et al., An amphiphilic entangled network design toward ultratough hydrogels. Adv. Mater. 35, e2301532 (2023). https://doi.org/10.1002/adma.202301532
- L. Xu, Y. Qiao, D. Qiu, Coordinatively stiffen and toughen hydrogels with adaptable crystal-domain cross-linking. Adv. Mater. 35, e2209913 (2023). https://doi.org/10.1002/adma.202209913
- P. Liu, Y. Zhang, Y. Guan, Y. Zhang, Peptide-crosslinked, highly entangled hydrogels with excellent mechanical properties but ultra-low solid content. Adv. Mater. 35, e2210021 (2023). https://doi.org/10.1002/adma.202210021
- Y. Fang, X. Xiong, L. Yang, W. Yang, H. Wang et al., Phase change hydrogels for bio-inspired adhesion and energy exchange applications. Adv. Funct. Mater. 33, 2301505 (2023). https://doi.org/10.1002/adfm.202301505
- W. Gao, J. Chang, X. Li, S. Li, Y. Zhou et al., A quenched double-hydrophilic coating for the enhancement of water retention of hydrogels. Adv. Funct. Mater. 33, 2303306 (2023). https://doi.org/10.1002/adfm.202303306
- J. Wang, F. Tang, C. Yao, L. Li, Low hysteresis hydrogel induced by spatial confinement. Adv. Funct. Mater. 33, 14935 (2023). https://doi.org/10.1002/adfm.202214935
- K. He, P. Cai, S. Ji, Z. Tang, Z. Fang et al., An antidehydration hydrogel based on zwitterionic oligomers for bioelectronic interfacing. Adv. Mater. 36, e2311255 (2024). https://doi.org/10.1002/adma.202311255
- S. Yuan, J. Bai, S. Li, N. Ma, S. Deng et al., A multifunctional and selective ionic flexible sensor with high environmental suitability for tactile perception. Adv. Funct. Mater. 34, 2309626 (2024). https://doi.org/10.1002/adfm.202309626
- K. Cao, M. Wu, J. Bai, Z. Wen, J. Zhang et al., Beyond skin pressure sensing: 3D printed laminated graphene pressure sensing material combines extremely low detection limits with wide detection range. Adv. Funct. Mater. 32, 2202360 (2022). https://doi.org/10.1002/adfm.202202360
- S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin et al., A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 472–478 (2016). https://doi.org/10.1038/nnano.2015.324
- K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, e2109357 (2022). https://doi.org/10.1002/adma.202109357
- M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang et al., Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 27, 1606066 (2017). https://doi.org/10.1002/adfm.201606066
- J. Zhang, K. Yan, J. Huang, X. Sun, J.-A. Li et al., Mechanically robust, flexible, fast responding temperature sensor and high-resolution array with ionically conductive double cross-linked hydrogel. Adv. Funct. Mater. 34, 14433 (2024). https://doi.org/10.1002/adfm.202314433
- P. Wang, Y. Li, J. Cao, G. Sun, H. Shao et al., A direct written strain-insensitive temperature sensor based on a multi-polygonal structure for human temperature monitoring. Nano Energy 131, 110199 (2024). https://doi.org/10.1016/j.nanoen.2024.110199
- S. Hao, R. Dai, Q. Fu, Y. Wang, X. Zhang et al., A robust and adhesive hydrogel enables interfacial coupling for continuous temperature monitoring. Adv. Funct. Mater. 33, 02840 (2023). https://doi.org/10.1002/adfm.202302840
- R. Di Giacomo, L. Bonanomi, V. Costanza, B. Maresca, C. Daraio, Biomimetic temperature-sensing layer for artificial skins. Sci. Robot. 2, eaai9251 (2017). https://doi.org/10.1126/scirobotics.aai9251
- W. Yang, H. Kan, G. Shen, Y. Li, A network intrusion detection system with broadband WO3–x/WO3–x-Ag/WO3–x optoelectronic memristor. Adv. Funct. Mater. 34, 2312885 (2024). https://doi.org/10.1002/adfm.202312885
- X. Ma, C. Wang, R. Wei, J. He, J. Li et al., Bimodal tactile sensor without signal fusion for user-interactive applications. ACS Nano 16, 2789–2797 (2022). https://doi.org/10.1021/acsnano.1c09779
- J. Zhu, X. Zhang, R. Wang, M. Wang, P. Chen et al., A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification. Adv. Mater. 34, e2200481 (2022). https://doi.org/10.1002/adma.202200481
- P. Wang, G.-Z. Sun, S. Hua, W. Yu, C. Meng et al., Multifunctional all‐nanofiber cloth integrating personal health monitoring and thermal regulation capabilities. InfoMat e12629 (2024). https://doi.org/10.1002/inf2.12629
- D.V. Anaya, K. Zhan, L. Tao, C. Lee, M.R. Yuce et al., Contactless tracking of humans using non-contact triboelectric sensing technology: Enabling new assistive applications for the elderly and the visually impaired. Nano Energy 90, 106486 (2021). https://doi.org/10.1016/j.nanoen.2021.106486
- J. He, R. Wei, X. Ma, W. Wu, X. Pan et al., Contactless user-interactive sensing display for human-human and human-machine interactions. Adv. Mater. 36, e2401931 (2024). https://doi.org/10.1002/adma.202401931
- Y. Tang, H. Zhou, X. Sun, N. Diao, J. Wang et al., Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 30, 1907893 (2020). https://doi.org/10.1002/adfm.201907893
- Q. Zhou, B. Ji, F. Hu, J. Luo, B. Zhou, Magnetized micropillar-enabled wearable sensors for touchless and intelligent information communication. Nano-Micro Lett. 13, 197 (2021). https://doi.org/10.1007/s40820-021-00720-5
- N. Dai, X. Guan, C. Lu, K. Zhang, S. Xu et al., A flexible self-powered noncontact sensor with an ultrawide sensing range for human-machine interactions in harsh environments. ACS Nano 17, 24814–24825 (2023). https://doi.org/10.1021/acsnano.3c05507
- D. Bi, N. Qu, W. Sheng, T. Lin, S. Huang et al., Tough and strain-sensitive organohydrogels based on MXene and PEDOT/PSS and their effects on mechanical properties and strain-sensing performance. ACS Appl. Mater. Interfaces 16, 11914–11929 (2024). https://doi.org/10.1021/acsami.3c18631
- W. Shi, Z. Wang, H. Song, Y. Chang, W. Hou et al., High-sensitivity and extreme environment-resistant sensors based on PEDOT: PSS@PVA hydrogel fibers for physiological monitoring. ACS Appl. Mater. Interfaces 14, 35114–35125 (2022). https://doi.org/10.1021/acsami.2c09556
- W. Fan, T. Liu, F. Wu, S. Wang, S. Ge et al., An antisweat interference and highly sensitive temperature sensor based on poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature. ACS Nano 17, 21073–21082 (2023). https://doi.org/10.1021/acsnano.3c04246
- X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang et al., PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. Weinh. 6, 1900813 (2019). https://doi.org/10.1002/advs.201900813
- L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13, 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
- F. Liu, S. Dai, J. Cao, Z. Zhang, G. Cheng et al., CNTs based capacitive stretchable pressure sensor with stable performance. Sens. Actuat. A Phys. 343, 113672 (2022). https://doi.org/10.1016/j.sna.2022.113672
- R. Shi, Z. Lou, S. Chen, G. Shen, Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci. China Mater. 61, 1587–1595 (2018). https://doi.org/10.1007/s40843-018-9267-3
- H. Cui, Y. Liu, R. Tang, J. Ren, L. Yao et al., A sensitive and flexible capacitive pressure sensor based on a porous hollow hemisphere dielectric layer. Micromachines 14, 662 (2023). https://doi.org/10.3390/mi14030662
- C.-R. Yang, M.-F. Lin, C.-K. Huang, W.-C. Huang, S.-F. Tseng et al., Highly sensitive and wearable capacitive pressure sensors based on PVDF/BaTiO3 composite fibers on PDMS microcylindrical structures. Measurement 202, 111817 (2022). https://doi.org/10.1016/j.measurement.2022.111817
- F. Liu, F. Han, L. Ling, J. Li, S. Zhao et al., An omni-healable and highly sensitive capacitive pressure sensor with microarray structure. Chemistry 24, 16823–16832 (2018). https://doi.org/10.1002/chem.201803369
- S.-W. Kim, G.-Y. Oh, K.-I. Lee, Y.-J. Yang, J.-B. Ko et al., A highly sensitive and flexible capacitive pressure sensor based on alignment airgap dielectric. Sensors 22, 7390 (2022). https://doi.org/10.3390/s22197390
- Y. Zeng, Y. Qin, Y. Yang, X. Lu, A low-cost flexible capacitive pressure sensor for health detection. IEEE Sens. J. 22, 7665–7673 (2022). https://doi.org/10.1109/JSEN.2022.3158354
- Y. Chen, Y. Qin, X. Zhang, A. Zheng, Q. Xia, Hierarchical Arete architecture-enabled iontronic pressure sensor with high linearity and sensitivity. Adv. Mater. Technol. 7, 2200322 (2022). https://doi.org/10.1002/admt.202200322
- W. Zhang, Y. Lu, T. Liu, J. Zhao, Y. Liu et al., Spheres multiple physical network-based triboelectric materials for self-powered contactless sensing. Small 18, e2200577 (2022). https://doi.org/10.1002/smll.202200577
- G. Wang, J. Duan, G. Sun, P. Wang, C. Meng et al., Biomimetic breathable nanofiber electronic skins with temperature-controlled self-adhesive and directional moisture-wicking properties for bifunctional pressure and non-contact sensing. Nano Energy 128, 109779 (2024). https://doi.org/10.1016/j.nanoen.2024.109779
- L. Xu, S. Zhong, T. Yue, Z. Zhang, X. Lu et al., AIoT-enhanced health management system using soft and stretchable triboelectric sensors for human behavior monitoring. EcoMat 6, e12448 (2024). https://doi.org/10.1002/eom2.12448
References
A. Roy, S. Zenker, S. Jain, R. Afshari, Y. Oz et al., A highly stretchable, conductive, and transparent bioadhesive hydrogel as a flexible sensor for enhanced real-time human health monitoring. Adv. Mater. 36, e2404225 (2024). https://doi.org/10.1002/adma.202404225
S. Shi, Y. Ming, H. Wu, C. Zhi, L. Yang et al., A bionic skin for health management: excellent breathability, in situ sensing, and big data analysis. Adv. Mater. 36, e2306435 (2024). https://doi.org/10.1002/adma.202306435
L. Wang, X. Qi, C. Li, Y. Wang, Multifunctional tactile sensors for object recognition. Adv. Funct. Mater. 34, 2409358 (2024). https://doi.org/10.1002/adfm.202409358
S. Zhao, R. Zhu, Electronic skin with multifunction sensors based on thermosensation. Adv. Mater. 29, 1606151 (2017). https://doi.org/10.1002/adma.201606151
Y. Yang, B.K. Jung, T. Park, J. Ahn, Y. Choi et al., Sensory nervous system-inspired self-classifying, decoupled, multifunctional sensor with resistive-capacitive operation using silver nanomaterials. Adv. Funct. Mater. 34, 2405687 (2024). https://doi.org/10.1002/adfm.202405687
H. Wang, Q. Ding, Y. Luo, Z. Wu, J. Yu et al., High-performance hydrogel sensors enabled multimodal and accurate human-machine interaction system for active rehabilitation. Adv. Mater. 36, e2309868 (2024). https://doi.org/10.1002/adma.202309868
H. Zhang, H. Li, Y. Li, Biomimetic electronic skin for robots aiming at superior dynamic-static perception and material cognition based on triboelectric-piezoresistive effects. Nano Lett. 24, 4002–4011 (2024). https://doi.org/10.1021/acs.nanolett.4c00623
H. Park, S. Kim, J. Lee, I. Lee, S. Bontapalle et al., Organic flexible electronics with closed-loop recycling for sustainable wearable technology. Nat. Electron. 7, 39–50 (2024). https://doi.org/10.1038/s41928-023-01078-9
Y. Li, Q. Lin, T. Sun, M. Qin, W. Yue et al., A perceptual and interactive integration strategy toward telemedicine healthcare based on electroluminescent display and triboelectric sensing 3D stacked device. Adv. Funct. Mater. 34, 2402356 (2024). https://doi.org/10.1002/adfm.202402356
K. Tao, J. Yu, J. Zhang, A. Bao, H. Hu et al., Deep-learning enabled active biomimetic multifunctional hydrogel electronic skin. ACS Nano 17, 16160–16173 (2023). https://doi.org/10.1021/acsnano.3c05253
K. Tao, Z. Chen, J. Yu, H. Zeng, J. Wu et al., Ultra-sensitive, deformable, and transparent triboelectric tactile sensor based on micro-pyramid patterned ionic hydrogel for interactive human-machine interfaces. Adv. Sci. 9, e2104168 (2022). https://doi.org/10.1002/advs.202104168
B. Bao, Q. Zeng, K. Li, J. Wen, Y. Zhang et al., Rapid fabrication of physically robust hydrogels. Nat. Mater. 22, 1253–1260 (2023). https://doi.org/10.1038/s41563-023-01648-4
T. Zhou, H. Yuk, F. Hu, J. Wu, F. Tian et al., 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22, 895–902 (2023). https://doi.org/10.1038/s41563-023-01569-2
Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv. Mater. 35, e2300855 (2023). https://doi.org/10.1002/adma.202300855
M. Zhang, Y. Yang, M. Li, Q. Shang, R. Xie et al., Toughening double-network hydrogels by polyelectrolytes. Adv. Mater. 35, e2301551 (2023). https://doi.org/10.1002/adma.202301551
L. Fu, L. Li, Q. Bian, B. Xue, J. Jin et al., Cartilage-like protein hydrogels engineered via entanglement. Nature 618, 740–747 (2023). https://doi.org/10.1038/s41586-023-06037-0
Y. Li, Z. Qiu, H. Kan, Y. Yang, J. Liu et al., A human-computer interaction strategy for an FPGA platform boosted integrated “perception-memory” system based on electronic tattoos and memristors. Adv. Sci. 11, e2402582 (2024). https://doi.org/10.1002/advs.202402582
P. Wang, X. Li, G. Sun, G. Wang, Q. Han et al., Natural human skin-inspired wearable and breathable nanofiber-based sensors with excellent thermal management functionality. Adv. Fiber Mater. 6, 1955–1968 (2024). https://doi.org/10.1007/s42765-024-00464-y
T. Rajasooriya, H. Ogasawara, Y. Dong, J.N. Mancuso, K. Salaita, Force-triggered self-destructive hydrogels. Adv. Mater. 35, e2305544 (2023). https://doi.org/10.1002/adma.202305544
Y. Yan, S. Duan, B. Liu, S. Wu, Y. Alsaid et al., Tough hydrogel electrolytes for anti-freezing zinc-ion batteries. Adv. Mater. 35, 2211673 (2023). https://doi.org/10.1002/adma.202211673
X. Hou, B. Huang, L. Zhou, S. Liu, J. Kong et al., An amphiphilic entangled network design toward ultratough hydrogels. Adv. Mater. 35, e2301532 (2023). https://doi.org/10.1002/adma.202301532
L. Xu, Y. Qiao, D. Qiu, Coordinatively stiffen and toughen hydrogels with adaptable crystal-domain cross-linking. Adv. Mater. 35, e2209913 (2023). https://doi.org/10.1002/adma.202209913
P. Liu, Y. Zhang, Y. Guan, Y. Zhang, Peptide-crosslinked, highly entangled hydrogels with excellent mechanical properties but ultra-low solid content. Adv. Mater. 35, e2210021 (2023). https://doi.org/10.1002/adma.202210021
Y. Fang, X. Xiong, L. Yang, W. Yang, H. Wang et al., Phase change hydrogels for bio-inspired adhesion and energy exchange applications. Adv. Funct. Mater. 33, 2301505 (2023). https://doi.org/10.1002/adfm.202301505
W. Gao, J. Chang, X. Li, S. Li, Y. Zhou et al., A quenched double-hydrophilic coating for the enhancement of water retention of hydrogels. Adv. Funct. Mater. 33, 2303306 (2023). https://doi.org/10.1002/adfm.202303306
J. Wang, F. Tang, C. Yao, L. Li, Low hysteresis hydrogel induced by spatial confinement. Adv. Funct. Mater. 33, 14935 (2023). https://doi.org/10.1002/adfm.202214935
K. He, P. Cai, S. Ji, Z. Tang, Z. Fang et al., An antidehydration hydrogel based on zwitterionic oligomers for bioelectronic interfacing. Adv. Mater. 36, e2311255 (2024). https://doi.org/10.1002/adma.202311255
S. Yuan, J. Bai, S. Li, N. Ma, S. Deng et al., A multifunctional and selective ionic flexible sensor with high environmental suitability for tactile perception. Adv. Funct. Mater. 34, 2309626 (2024). https://doi.org/10.1002/adfm.202309626
K. Cao, M. Wu, J. Bai, Z. Wen, J. Zhang et al., Beyond skin pressure sensing: 3D printed laminated graphene pressure sensing material combines extremely low detection limits with wide detection range. Adv. Funct. Mater. 32, 2202360 (2022). https://doi.org/10.1002/adfm.202202360
S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin et al., A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 472–478 (2016). https://doi.org/10.1038/nnano.2015.324
K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, e2109357 (2022). https://doi.org/10.1002/adma.202109357
M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang et al., Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 27, 1606066 (2017). https://doi.org/10.1002/adfm.201606066
J. Zhang, K. Yan, J. Huang, X. Sun, J.-A. Li et al., Mechanically robust, flexible, fast responding temperature sensor and high-resolution array with ionically conductive double cross-linked hydrogel. Adv. Funct. Mater. 34, 14433 (2024). https://doi.org/10.1002/adfm.202314433
P. Wang, Y. Li, J. Cao, G. Sun, H. Shao et al., A direct written strain-insensitive temperature sensor based on a multi-polygonal structure for human temperature monitoring. Nano Energy 131, 110199 (2024). https://doi.org/10.1016/j.nanoen.2024.110199
S. Hao, R. Dai, Q. Fu, Y. Wang, X. Zhang et al., A robust and adhesive hydrogel enables interfacial coupling for continuous temperature monitoring. Adv. Funct. Mater. 33, 02840 (2023). https://doi.org/10.1002/adfm.202302840
R. Di Giacomo, L. Bonanomi, V. Costanza, B. Maresca, C. Daraio, Biomimetic temperature-sensing layer for artificial skins. Sci. Robot. 2, eaai9251 (2017). https://doi.org/10.1126/scirobotics.aai9251
W. Yang, H. Kan, G. Shen, Y. Li, A network intrusion detection system with broadband WO3–x/WO3–x-Ag/WO3–x optoelectronic memristor. Adv. Funct. Mater. 34, 2312885 (2024). https://doi.org/10.1002/adfm.202312885
X. Ma, C. Wang, R. Wei, J. He, J. Li et al., Bimodal tactile sensor without signal fusion for user-interactive applications. ACS Nano 16, 2789–2797 (2022). https://doi.org/10.1021/acsnano.1c09779
J. Zhu, X. Zhang, R. Wang, M. Wang, P. Chen et al., A heterogeneously integrated spiking neuron array for multimode-fused perception and object classification. Adv. Mater. 34, e2200481 (2022). https://doi.org/10.1002/adma.202200481
P. Wang, G.-Z. Sun, S. Hua, W. Yu, C. Meng et al., Multifunctional all‐nanofiber cloth integrating personal health monitoring and thermal regulation capabilities. InfoMat e12629 (2024). https://doi.org/10.1002/inf2.12629
D.V. Anaya, K. Zhan, L. Tao, C. Lee, M.R. Yuce et al., Contactless tracking of humans using non-contact triboelectric sensing technology: Enabling new assistive applications for the elderly and the visually impaired. Nano Energy 90, 106486 (2021). https://doi.org/10.1016/j.nanoen.2021.106486
J. He, R. Wei, X. Ma, W. Wu, X. Pan et al., Contactless user-interactive sensing display for human-human and human-machine interactions. Adv. Mater. 36, e2401931 (2024). https://doi.org/10.1002/adma.202401931
Y. Tang, H. Zhou, X. Sun, N. Diao, J. Wang et al., Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 30, 1907893 (2020). https://doi.org/10.1002/adfm.201907893
Q. Zhou, B. Ji, F. Hu, J. Luo, B. Zhou, Magnetized micropillar-enabled wearable sensors for touchless and intelligent information communication. Nano-Micro Lett. 13, 197 (2021). https://doi.org/10.1007/s40820-021-00720-5
N. Dai, X. Guan, C. Lu, K. Zhang, S. Xu et al., A flexible self-powered noncontact sensor with an ultrawide sensing range for human-machine interactions in harsh environments. ACS Nano 17, 24814–24825 (2023). https://doi.org/10.1021/acsnano.3c05507
D. Bi, N. Qu, W. Sheng, T. Lin, S. Huang et al., Tough and strain-sensitive organohydrogels based on MXene and PEDOT/PSS and their effects on mechanical properties and strain-sensing performance. ACS Appl. Mater. Interfaces 16, 11914–11929 (2024). https://doi.org/10.1021/acsami.3c18631
W. Shi, Z. Wang, H. Song, Y. Chang, W. Hou et al., High-sensitivity and extreme environment-resistant sensors based on PEDOT: PSS@PVA hydrogel fibers for physiological monitoring. ACS Appl. Mater. Interfaces 14, 35114–35125 (2022). https://doi.org/10.1021/acsami.2c09556
W. Fan, T. Liu, F. Wu, S. Wang, S. Ge et al., An antisweat interference and highly sensitive temperature sensor based on poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature. ACS Nano 17, 21073–21082 (2023). https://doi.org/10.1021/acsnano.3c04246
X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang et al., PEDOT: PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. Weinh. 6, 1900813 (2019). https://doi.org/10.1002/advs.201900813
L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13, 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
F. Liu, S. Dai, J. Cao, Z. Zhang, G. Cheng et al., CNTs based capacitive stretchable pressure sensor with stable performance. Sens. Actuat. A Phys. 343, 113672 (2022). https://doi.org/10.1016/j.sna.2022.113672
R. Shi, Z. Lou, S. Chen, G. Shen, Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Sci. China Mater. 61, 1587–1595 (2018). https://doi.org/10.1007/s40843-018-9267-3
H. Cui, Y. Liu, R. Tang, J. Ren, L. Yao et al., A sensitive and flexible capacitive pressure sensor based on a porous hollow hemisphere dielectric layer. Micromachines 14, 662 (2023). https://doi.org/10.3390/mi14030662
C.-R. Yang, M.-F. Lin, C.-K. Huang, W.-C. Huang, S.-F. Tseng et al., Highly sensitive and wearable capacitive pressure sensors based on PVDF/BaTiO3 composite fibers on PDMS microcylindrical structures. Measurement 202, 111817 (2022). https://doi.org/10.1016/j.measurement.2022.111817
F. Liu, F. Han, L. Ling, J. Li, S. Zhao et al., An omni-healable and highly sensitive capacitive pressure sensor with microarray structure. Chemistry 24, 16823–16832 (2018). https://doi.org/10.1002/chem.201803369
S.-W. Kim, G.-Y. Oh, K.-I. Lee, Y.-J. Yang, J.-B. Ko et al., A highly sensitive and flexible capacitive pressure sensor based on alignment airgap dielectric. Sensors 22, 7390 (2022). https://doi.org/10.3390/s22197390
Y. Zeng, Y. Qin, Y. Yang, X. Lu, A low-cost flexible capacitive pressure sensor for health detection. IEEE Sens. J. 22, 7665–7673 (2022). https://doi.org/10.1109/JSEN.2022.3158354
Y. Chen, Y. Qin, X. Zhang, A. Zheng, Q. Xia, Hierarchical Arete architecture-enabled iontronic pressure sensor with high linearity and sensitivity. Adv. Mater. Technol. 7, 2200322 (2022). https://doi.org/10.1002/admt.202200322
W. Zhang, Y. Lu, T. Liu, J. Zhao, Y. Liu et al., Spheres multiple physical network-based triboelectric materials for self-powered contactless sensing. Small 18, e2200577 (2022). https://doi.org/10.1002/smll.202200577
G. Wang, J. Duan, G. Sun, P. Wang, C. Meng et al., Biomimetic breathable nanofiber electronic skins with temperature-controlled self-adhesive and directional moisture-wicking properties for bifunctional pressure and non-contact sensing. Nano Energy 128, 109779 (2024). https://doi.org/10.1016/j.nanoen.2024.109779
L. Xu, S. Zhong, T. Yue, Z. Zhang, X. Lu et al., AIoT-enhanced health management system using soft and stretchable triboelectric sensors for human behavior monitoring. EcoMat 6, e12448 (2024). https://doi.org/10.1002/eom2.12448