Folic Acid Self-Assembly Enabling Manganese Single-Atom Electrocatalyst for Selective Nitrogen Reduction to Ammonia
Corresponding Author: Jing‑Li Luo
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 125
Abstract
Efficient and robust single-atom catalysts (SACs) based on cheap and earth-abundant elements are highly desirable for electrochemical reduction of nitrogen to ammonia (NRR) under ambient conditions. Herein, for the first time, a Mn–N–C SAC consisting of isolated manganese atomic sites on ultrathin carbon nanosheets is developed via a template-free folic acid self-assembly strategy. The spontaneous molecular partial dissociation enables a facile fabrication process without being plagued by metal atom aggregation. Thanks to well-exposed atomic Mn active sites anchored on two-dimensional conductive carbon matrix, the catalyst exhibits excellent activity for NRR with high activity and selectivity, achieving a high Faradaic efficiency of 32.02% for ammonia synthesis at − 0.45 V versus reversible hydrogen electrode. Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting N2 adsorption, activation and selective reduction to NH3 by the distal mechanism. This work provides a simple synthesis process for Mn–N–C SAC and a good platform for understanding the structure-activity relationship of atomic Mn sites.
Highlights:
1 A manganese single-atom catalyst is developed via a facile folic acid self-assembly strategy.
2 The catalyst exhibits outstanding activity and selectivity for electrochemical reduction of nitrogen to ammonia (NRR).
3 Electrocatalytic mechanism of Mn–N3 site for NRR is unveiled by a combination of experimental and computational study.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.F. Service, New recipe produces ammonia from air, water, and sunlight. Science 345, 610 (2014). https://doi.org/10.1126/science.345.6197.610
- G. Qing, R. Ghazfar, S.T. Jackowski, F. Habibzadeh, M.M. Ashtiani et al., Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 120, 5437–5516 (2020). https://doi.org/10.1021/acs.chemrev.9b00659
- W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 48, 5658–5716 (2019). https://doi.org/10.1039/c9cs00159j
- C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou et al., Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020). https://doi.org/10.1038/s41557-020-0481-9
- Y. Guo, Q. Yang, D.H. Wang, H.F. Li, Z.D. Huang et al., A rechargeable Al-N2 battery for energy storage and high efficient N2 fixation. Energ. Environ. Sci. 13, 2888–2895 (2020). https://doi.org/10.1039/D0EE01241F
- Y.Y. Huang, D.D. Babu, Z. Peng, Y.B. Wang, Atomic modulation, structural design, and systematic optimization for efficient electrochemical nitrogen reduction. Adv. Sci. 7, 1902390 (2020). https://doi.org/10.1002/advs.201902390
- S.M. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D.S. Su et al., Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem. Int. Ed. 56, 2699–2703 (2017). https://doi.org/10.1002/anie.201609533
- D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi et al., Electrochemical reduction of N2 under ambient conditions for artificial n2 fixation and renewable energy storage using N2 /NH3 cycle. Adv. Mater. 29, 1604799 (2017). https://doi.org/10.1002/adma.201604799
- L.L. Han, X.J. Liu, J.P. Chen, R.Q. Lin, H.X. Liu et al., Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 58, 2321–2325 (2019). https://doi.org/10.1002/anie.201811728
- S. Mukherjee, X.X. Yang, W.T. Shan, W. Samarakoon, S. Karakalos et al., Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods 4, 1900821 (2020). https://doi.org/10.1002/smtd.201900821
- C.H. Yao, N. Guo, S.B. Xi, C.Q. Xu, W. Liu et al., Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 11, 4389 (2020). https://doi.org/10.1038/s41467-020-18080-w
- B. Yu, H. Li, J. White, S. Donne, J.B. Yi et al., Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater. 30, 1905665 (2020). https://doi.org/10.1002/adfm.201905665
- J. Wang, L. Yu, L. Hu, G. Chen, H.L. Xin et al., Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 9, 1795 (2018). https://doi.org/10.1038/s41467-018-04213-9
- C.X. Guo, J.R. Ran, A. Vasileff, S.Z. Qiao, Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energ. Environ. Sci. 11, 45–56 (2018). https://doi.org/10.1039/c7ee02220d
- N. Zhang, L.G. Li, J. Wang, Z.W. Hu, Q. Shao et al., Surface-regulated rhodium-antimony nanorods for nitrogen fixation. Angew. Chem. Int. Ed. 59, 8066–8071 (2020). https://doi.org/10.1002/anie.201915747
- H.C. Tao, C. Choi, L.X. Ding, Z. Jiang, Z.S. Hang et al., Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 5, 204–214 (2019). https://doi.org/10.1016/j.chempr.2018.10.007
- E. Skulason, T. Bligaard, S. Gudmundsdottir, F. Studt, J. Rossmeisl et al., A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012). https://doi.org/10.1039/c1cp22271f
- X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 141, 9664–9672 (2019). https://doi.org/10.1021/jacs.9b03811
- J. Gu, C.S. Hsu, L.C. Bai, H.M. Chen, X.L. Hu, Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515
- Z. Li, Y.J. Chen, S.F. Ji, Y. Tang, W.X. Chen et al., Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 12, 764–772 (2020). https://doi.org/10.1038/s41557-020-0473-9
- Z.X. Song, L. Zhang, K. Doyle-Davis, X.Z. Fu, J.L. Luo et al., Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv. Energy Mater. 10, 2001561 (2020). https://doi.org/10.1002/aenm.202001561
- Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng et al., Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 119, 1806–1854 (2019). https://doi.org/10.1021/acs.chemrev.8b00501
- X. Luo, X.Q. Wei, H.J. Wang, W.L. Gu, T. Kaneko et al., Secondary-atom-doping enables robust Fe-N-C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 12, 163 (2020). https://doi.org/10.1007/s40820-020-00502-5
- K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc–air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
- F.X. Hu, T. Hu, S.H. Chen, D.P. Wang, Q.H. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13, 7 (2020). https://doi.org/10.1007/s40820-020-00536-9
- J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng et al., A Mn–N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 11, 4341 (2020). https://doi.org/10.1038/s41467-020-18143-y
- B.X. Zhang, J.L. Zhang, J.B. Shi, D.X. Tan, L.F. Liu et al., Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10, 1606534 (2019). https://doi.org/10.1038/s41467-019-10854-1
- L. Bai, Z.Y. Duan, X.D. Wen, R. Si, J.Q. Guan, Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Appl. Catal. B-Environ. 257, 117930 (2019). https://doi.org/10.1016/j.apcatb.2019.117930
- Y. Yang, K.T. Mao, S.Q. Gao, H. Huang, G.L. Xia et al., O-, N-atoms-coordinated mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 30, 1801732 (2018). https://doi.org/10.1002/adma.201801732
- L.L. Han, M. Hou, P.F. Ou, H. Cheng, Z. Ren et al., Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 11, 509–516 (2021). https://doi.org/10.1021/acscatal.0c04102
- J.Z. Li, M.J. Chen, D.A. Cullen, S. Hwang, M.Y. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
- J.X. Li, H.M. Xu, Y. Liao, Y.X. Qiu, N.Q. Yan et al., Atomically dispersed manganese on a carbon-based material for the capture of gaseous mercury: mechanisms and environmental applications. Environ. Sci. Technol. 54, 5249–5257 (2020). https://doi.org/10.1021/acs.est.9b07524
- Y. Guo, T.R. Wang, Q. Yang, X.L. Li, H.F. Li et al., Highly efficient electrochemical reduction of nitrogen to ammonia on surface termination modified Ti3C2Tx mxene nanosheets. ACS Nano 14, 9089–9097 (2020). https://doi.org/10.1021/acsnano.0c04284
- Z.G. Geng, Y. Liu, X.D. Kong, P. Li, K. Li et al., Achieving a record-high yield rate of 120.9 μgNH3 mgcat-1 h-1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 30, 1803498 (2018). https://doi.org/10.1002/adma.201803498
- G.W. Watt, J.D. Chrisp, A spectrophotometric method for the determination of hydrazine. Anal. Chem. 24, 2006–2008 (1952). https://doi.org/10.1021/ac60072a044
- G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
- Z. Wu, X.X. Li, C.Y. Hou, Y. Qian, Solubility of folic acid in water at pH values between 0 and 7 at temperatures (298.15, 303.15, and 313.15) K. J. Chem. Eng. Data 55, 3958–3961 (2010). https://doi.org/10.1021/je1000268
- Z. Szakacs, B. Noszai, Determination of dissociation constants of folic acid, methotrexate, and other photolabile pteridines by pressure-assisted capillary electrophoresis. Electrophoresis 27, 3399–3409 (2006). https://doi.org/10.1002/elps.200600128
- P.Y. Xing, X.X. Chu, M.F. Ma, S.Y. Li, A.Y. Hao, Supramolecular gel from folic acid with multiple responsiveness, rapid self-recovery and orthogonal self-assemblies. Phys. Chem. Chem. Phys. 16, 8346–8359 (2014). https://doi.org/10.1039/c4cp00367e
- P.Q. Yin, T. Yao, Y. Wu, L.R. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
- H.B. Yang, S.F. Hung, S. Liu, K.D. Yuan, S. Miao et al., Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
- Y. Pan, Y.J. Chen, K.L. Wu, Z. Chen, S.J. Liu et al., Regulating the coordination structure of single-atom fe-nxcy catalytic sites for benzene oxidation. Nat. Commun. 10, 4290 (2019). https://doi.org/10.1038/s41467-019-12362-8
- S. Wang, Z.P. Kang, S.J. Li, J.G. Tu, J. Zhu et al., High specific capacitance based on N-doped microporous carbon in [EMIM]AlxCly ionic liquid electrolyte. J. Electrochem. Soc. 164, A3319–A3325 (2017). https://doi.org/10.1149/2.1741713jes
- E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, S.N. Kerisit, XPS determination of mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 366, 475–485 (2016). https://doi.org/10.1016/j.apsusc.2015.12.159
- X.W. Wang, G.Z. Sun, P. Routh, D.H. Kim, W. Huang et al., Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 43, 7067–7098 (2014). https://doi.org/10.1039/c4cs00141a
- W. Ju, A. Bagger, G.P. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017). https://doi.org/10.1038/s41467-017-01035-z
- M. Kubin, M.Y. Guo, T. Kroll, H. Lochel, E. Kallman et al., Probing the oxidation state of transition metal complexes: A case study on how charge and spin densities determine Mn L-edge X-ray absorption energies. Chem. Sci. 9, 6813–6829 (2018). https://doi.org/10.1039/c8sc00550h
- S. Fang, X.R. Zhu, X.K. Liu, J. Gu, W. Liu et al., Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020). https://doi.org/10.1038/s41467-020-14848-2
- P.Z. Chen, T.P. Zhou, L.L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56, 610–614 (2017). https://doi.org/10.1002/anie.201610119
- M.A. Legare, G. Belanger-Chabot, R.D. Dewhurst, E. Welz, I. Krummenacher et al., Nitrogen fixation and reduction at boron. Science 359, 896–899 (2018). https://doi.org/10.1126/science.aaq1684
- S.S. Liu, M.F. Wang, T. Qian, H.Q. Ji, J. Liu et al., Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 10, 3898 (2019). https://doi.org/10.1038/s41467-019-11846-x
- W.B. Qiu, X.Y. Xie, J.D. Qiu, W.H. Fang, R.P. Liang et al., High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 9, 3485 (2018). https://doi.org/10.1038/s41467-018-05758-5
References
R.F. Service, New recipe produces ammonia from air, water, and sunlight. Science 345, 610 (2014). https://doi.org/10.1126/science.345.6197.610
G. Qing, R. Ghazfar, S.T. Jackowski, F. Habibzadeh, M.M. Ashtiani et al., Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 120, 5437–5516 (2020). https://doi.org/10.1021/acs.chemrev.9b00659
W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 48, 5658–5716 (2019). https://doi.org/10.1039/c9cs00159j
C. Chen, X. Zhu, X. Wen, Y. Zhou, L. Zhou et al., Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020). https://doi.org/10.1038/s41557-020-0481-9
Y. Guo, Q. Yang, D.H. Wang, H.F. Li, Z.D. Huang et al., A rechargeable Al-N2 battery for energy storage and high efficient N2 fixation. Energ. Environ. Sci. 13, 2888–2895 (2020). https://doi.org/10.1039/D0EE01241F
Y.Y. Huang, D.D. Babu, Z. Peng, Y.B. Wang, Atomic modulation, structural design, and systematic optimization for efficient electrochemical nitrogen reduction. Adv. Sci. 7, 1902390 (2020). https://doi.org/10.1002/advs.201902390
S.M. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D.S. Su et al., Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem. Int. Ed. 56, 2699–2703 (2017). https://doi.org/10.1002/anie.201609533
D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi et al., Electrochemical reduction of N2 under ambient conditions for artificial n2 fixation and renewable energy storage using N2 /NH3 cycle. Adv. Mater. 29, 1604799 (2017). https://doi.org/10.1002/adma.201604799
L.L. Han, X.J. Liu, J.P. Chen, R.Q. Lin, H.X. Liu et al., Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 58, 2321–2325 (2019). https://doi.org/10.1002/anie.201811728
S. Mukherjee, X.X. Yang, W.T. Shan, W. Samarakoon, S. Karakalos et al., Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O. Small Methods 4, 1900821 (2020). https://doi.org/10.1002/smtd.201900821
C.H. Yao, N. Guo, S.B. Xi, C.Q. Xu, W. Liu et al., Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun. 11, 4389 (2020). https://doi.org/10.1038/s41467-020-18080-w
B. Yu, H. Li, J. White, S. Donne, J.B. Yi et al., Tuning the catalytic preference of ruthenium catalysts for nitrogen reduction by atomic dispersion. Adv. Funct. Mater. 30, 1905665 (2020). https://doi.org/10.1002/adfm.201905665
J. Wang, L. Yu, L. Hu, G. Chen, H.L. Xin et al., Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 9, 1795 (2018). https://doi.org/10.1038/s41467-018-04213-9
C.X. Guo, J.R. Ran, A. Vasileff, S.Z. Qiao, Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energ. Environ. Sci. 11, 45–56 (2018). https://doi.org/10.1039/c7ee02220d
N. Zhang, L.G. Li, J. Wang, Z.W. Hu, Q. Shao et al., Surface-regulated rhodium-antimony nanorods for nitrogen fixation. Angew. Chem. Int. Ed. 59, 8066–8071 (2020). https://doi.org/10.1002/anie.201915747
H.C. Tao, C. Choi, L.X. Ding, Z. Jiang, Z.S. Hang et al., Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 5, 204–214 (2019). https://doi.org/10.1016/j.chempr.2018.10.007
E. Skulason, T. Bligaard, S. Gudmundsdottir, F. Studt, J. Rossmeisl et al., A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012). https://doi.org/10.1039/c1cp22271f
X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 141, 9664–9672 (2019). https://doi.org/10.1021/jacs.9b03811
J. Gu, C.S. Hsu, L.C. Bai, H.M. Chen, X.L. Hu, Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019). https://doi.org/10.1126/science.aaw7515
Z. Li, Y.J. Chen, S.F. Ji, Y. Tang, W.X. Chen et al., Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host-guest strategy. Nat. Chem. 12, 764–772 (2020). https://doi.org/10.1038/s41557-020-0473-9
Z.X. Song, L. Zhang, K. Doyle-Davis, X.Z. Fu, J.L. Luo et al., Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv. Energy Mater. 10, 2001561 (2020). https://doi.org/10.1002/aenm.202001561
Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng et al., Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 119, 1806–1854 (2019). https://doi.org/10.1021/acs.chemrev.8b00501
X. Luo, X.Q. Wei, H.J. Wang, W.L. Gu, T. Kaneko et al., Secondary-atom-doping enables robust Fe-N-C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 12, 163 (2020). https://doi.org/10.1007/s40820-020-00502-5
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc–air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
F.X. Hu, T. Hu, S.H. Chen, D.P. Wang, Q.H. Rao et al., Single-atom cobalt-based electrochemical biomimetic uric acid sensor with wide linear range and ultralow detection limit. Nano-Micro Lett. 13, 7 (2020). https://doi.org/10.1007/s40820-020-00536-9
J. Feng, H. Gao, L. Zheng, Z. Chen, S. Zeng et al., A Mn–N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 11, 4341 (2020). https://doi.org/10.1038/s41467-020-18143-y
B.X. Zhang, J.L. Zhang, J.B. Shi, D.X. Tan, L.F. Liu et al., Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat. Commun. 10, 1606534 (2019). https://doi.org/10.1038/s41467-019-10854-1
L. Bai, Z.Y. Duan, X.D. Wen, R. Si, J.Q. Guan, Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Appl. Catal. B-Environ. 257, 117930 (2019). https://doi.org/10.1016/j.apcatb.2019.117930
Y. Yang, K.T. Mao, S.Q. Gao, H. Huang, G.L. Xia et al., O-, N-atoms-coordinated mn cofactors within a graphene framework as bioinspired oxygen reduction reaction electrocatalysts. Adv. Mater. 30, 1801732 (2018). https://doi.org/10.1002/adma.201801732
L.L. Han, M. Hou, P.F. Ou, H. Cheng, Z. Ren et al., Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 11, 509–516 (2021). https://doi.org/10.1021/acscatal.0c04102
J.Z. Li, M.J. Chen, D.A. Cullen, S. Hwang, M.Y. Wang et al., Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 1, 935–945 (2018). https://doi.org/10.1038/s41929-018-0164-8
J.X. Li, H.M. Xu, Y. Liao, Y.X. Qiu, N.Q. Yan et al., Atomically dispersed manganese on a carbon-based material for the capture of gaseous mercury: mechanisms and environmental applications. Environ. Sci. Technol. 54, 5249–5257 (2020). https://doi.org/10.1021/acs.est.9b07524
Y. Guo, T.R. Wang, Q. Yang, X.L. Li, H.F. Li et al., Highly efficient electrochemical reduction of nitrogen to ammonia on surface termination modified Ti3C2Tx mxene nanosheets. ACS Nano 14, 9089–9097 (2020). https://doi.org/10.1021/acsnano.0c04284
Z.G. Geng, Y. Liu, X.D. Kong, P. Li, K. Li et al., Achieving a record-high yield rate of 120.9 μgNH3 mgcat-1 h-1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 30, 1803498 (2018). https://doi.org/10.1002/adma.201803498
G.W. Watt, J.D. Chrisp, A spectrophotometric method for the determination of hydrazine. Anal. Chem. 24, 2006–2008 (1952). https://doi.org/10.1021/ac60072a044
G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344
Z. Wu, X.X. Li, C.Y. Hou, Y. Qian, Solubility of folic acid in water at pH values between 0 and 7 at temperatures (298.15, 303.15, and 313.15) K. J. Chem. Eng. Data 55, 3958–3961 (2010). https://doi.org/10.1021/je1000268
Z. Szakacs, B. Noszai, Determination of dissociation constants of folic acid, methotrexate, and other photolabile pteridines by pressure-assisted capillary electrophoresis. Electrophoresis 27, 3399–3409 (2006). https://doi.org/10.1002/elps.200600128
P.Y. Xing, X.X. Chu, M.F. Ma, S.Y. Li, A.Y. Hao, Supramolecular gel from folic acid with multiple responsiveness, rapid self-recovery and orthogonal self-assemblies. Phys. Chem. Chem. Phys. 16, 8346–8359 (2014). https://doi.org/10.1039/c4cp00367e
P.Q. Yin, T. Yao, Y. Wu, L.R. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
H.B. Yang, S.F. Hung, S. Liu, K.D. Yuan, S. Miao et al., Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018). https://doi.org/10.1038/s41560-017-0078-8
Y. Pan, Y.J. Chen, K.L. Wu, Z. Chen, S.J. Liu et al., Regulating the coordination structure of single-atom fe-nxcy catalytic sites for benzene oxidation. Nat. Commun. 10, 4290 (2019). https://doi.org/10.1038/s41467-019-12362-8
S. Wang, Z.P. Kang, S.J. Li, J.G. Tu, J. Zhu et al., High specific capacitance based on N-doped microporous carbon in [EMIM]AlxCly ionic liquid electrolyte. J. Electrochem. Soc. 164, A3319–A3325 (2017). https://doi.org/10.1149/2.1741713jes
E.S. Ilton, J.E. Post, P.J. Heaney, F.T. Ling, S.N. Kerisit, XPS determination of mn oxidation states in Mn (hydr)oxides. Appl. Surf. Sci. 366, 475–485 (2016). https://doi.org/10.1016/j.apsusc.2015.12.159
X.W. Wang, G.Z. Sun, P. Routh, D.H. Kim, W. Huang et al., Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 43, 7067–7098 (2014). https://doi.org/10.1039/c4cs00141a
W. Ju, A. Bagger, G.P. Hao, A.S. Varela, I. Sinev et al., Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 8, 944 (2017). https://doi.org/10.1038/s41467-017-01035-z
M. Kubin, M.Y. Guo, T. Kroll, H. Lochel, E. Kallman et al., Probing the oxidation state of transition metal complexes: A case study on how charge and spin densities determine Mn L-edge X-ray absorption energies. Chem. Sci. 9, 6813–6829 (2018). https://doi.org/10.1039/c8sc00550h
S. Fang, X.R. Zhu, X.K. Liu, J. Gu, W. Liu et al., Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020). https://doi.org/10.1038/s41467-020-14848-2
P.Z. Chen, T.P. Zhou, L.L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56, 610–614 (2017). https://doi.org/10.1002/anie.201610119
M.A. Legare, G. Belanger-Chabot, R.D. Dewhurst, E. Welz, I. Krummenacher et al., Nitrogen fixation and reduction at boron. Science 359, 896–899 (2018). https://doi.org/10.1126/science.aaq1684
S.S. Liu, M.F. Wang, T. Qian, H.Q. Ji, J. Liu et al., Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation. Nat. Commun. 10, 3898 (2019). https://doi.org/10.1038/s41467-019-11846-x
W.B. Qiu, X.Y. Xie, J.D. Qiu, W.H. Fang, R.P. Liang et al., High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 9, 3485 (2018). https://doi.org/10.1038/s41467-018-05758-5