A Review of In-Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions
Corresponding Author: Jiujun Zhang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 19
Abstract
Electrocatalytic oxygen reduction reaction (ORR) is one of the most important reactions in electrochemical energy technologies such as fuel cells and metal–O2/air batteries, etc. However, the essential catalysts to overcome its slow reaction kinetic always undergo a complex dynamic evolution in the actual catalytic process, and the concomitant intermediates and catalytic products also occur continuous conversion and reconstruction. This makes them difficult to be accurately captured, making the identification of ORR active sites and the elucidation of ORR mechanisms difficult. Thus, it is necessary to use extensive in-situ characterization techniques to proceed the real-time monitoring of the catalyst structure and the evolution state of intermediates and products during ORR. This work reviews the major advances in the use of various in-situ techniques to characterize the catalytic processes of various catalysts. Specifically, the catalyst structure evolutions revealed directly by in-situ techniques are systematically summarized, such as phase, valence, electronic transfer, coordination, and spin states varies. In-situ revelation of intermediate adsorption/desorption behavior, and the real-time monitoring of the product nucleation, growth, and reconstruction evolution are equally emphasized in the discussion. Other interference factors, as well as in-situ signal assignment with the aid of theoretical calculations, are also covered. Finally, some major challenges and prospects of in-situ techniques for future catalysts research in the ORR process are proposed.
Highlights:
1 A comprehensive discussion of monitoring the structure evolutions of catalysts during ORR via multiple in-situ techniques to identify the active sites is presented.
2 The extensive applications of in-situ techniques in elucidating the oxygen reduction reaction (ORR) mechanisms/pathways are reviewed.
3 The challenges and recommendations of current in-situ techniques for monitoring the various dynamic evolutions in ORR are pointed out.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). https://doi.org/10.1038/nmat4834
- Y. Zheng, Z. Chen, J. Zhang, Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels. Electrochem. Energy Rev. 4(3), 508–517 (2021). https://doi.org/10.1007/s41918-021-00097-4
- D. Wu, C. Peng, C. Yin, H. Tang, Review of system integration and control of proton exchange membrane fuel cells. Electrochem. Energy Rev. 3(3), 466–505 (2020). https://doi.org/10.1007/s41918-020-00068-1
- L. Zhang, Q.A. Huang, W. Yan, Q. Shao, J. Zhang et al., Design and fabrication of non-noble metal catalyst-based air-cathodes for metal–air battery. Can. J. Chem. Eng. 97(12), 2984–2993 (2019). https://doi.org/10.1002/cjce.23616
- M. Li, X. Bi, R. Wang, Y. Li, G. Jiang et al., Relating catalysis between fuel cell and metal–air batteries. Matter 2(1), 32–49 (2020). https://doi.org/10.1016/j.matt.2019.10.007
- F. Xiao, Y.C. Wang, Z.P. Wu, G. Chen, F. Yang et al., Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater. 33(50), 2006292 (2021). https://doi.org/10.1002/adma.202006292
- F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal–nitrogen–carbon bifunctional oxygen electrocatalysts for zinc–air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
- Y. Li, Q. Li, H. Wang, L. Zhang, D.P. Wilkinson et al., Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications. Electrochem. Energy Rev. 2(4), 518–538 (2019). https://doi.org/10.1007/s41918-019-00052-4
- Y. Wang, D. Wang, Y. Li, A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2(1), 56–75 (2021). https://doi.org/10.1002/smm2.1023
- Y. Feng, B. Huang, C. Yang, Q. Shao, X. Huang, Platinum porous nanosheets with high surface distortion and Pt utilization for enhanced oxygen reduction catalysis. Adv. Funct. Mater. 29(45), 1904429 (2019). https://doi.org/10.1002/adfm.201904429
- S. Zaman, L. Huang, A.I. Douka, H. Yang, B. You et al., Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives. Angew. Chem. Int. Ed. 60(33), 17832–17852 (2021). https://doi.org/10.1002/anie.202016977
- L. Huang, S. Zaman, X. Tian, Z. Wang, W. Fang et al., Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 54(2), 311–322 (2021). https://doi.org/10.1021/acs.accounts.0c00488
- D.S. He, D. He, J. Wang, Y. Lin, P. Yin et al., Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 138(5), 1494–1497 (2016). https://doi.org/10.1021/jacs.5b12530
- H.Y. Kim, T. Kwon, Y. Ha, M. Jun, H. Baik et al., Intermetallic PtCu nanoframes as efficient oxygen reduction electrocatalysts. Nano Lett. 20(10), 7413–7421 (2020). https://doi.org/10.1021/acs.nanolett.0c02812
- Y. Xiao, J. Wang, Y. Wang, W. Zhang, A new promising catalytic activity on blue phosphorene nitrogen-doped nanosheets for the ORR as cathode in nonaqueous Li-air batteries. Appl. Surf. Sci. 488, 620–628 (2019). https://doi.org/10.1016/j.apsusc.2019.05.280
- X. Yan, Y. Chen, S. Deng, Y. Yang, Z. Huang et al., In situ integration of ultrathin PtCu nanowires with reduced graphene oxide nanosheets for efficient electrocatalytic oxygen reduction. Chemistry 23(66), 16871–16876 (2017). https://doi.org/10.1002/chem.201703900
- M.A. Hoque, F.M. Hassan, A.M. Jauhar, G. Jiang, M. Pritzker et al., Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance. ACS Sustain. Chem. Eng. 6(1), 93–98 (2017). https://doi.org/10.1021/acssuschemeng.7b03580
- L.B. Venarusso, C.V. Boone, J. Bettini, G. Maia, Carbon-supported metal nanodendrites as efficient, stable catalysts for the oxygen reduction reaction. J. Mater. Chem. A 6(4), 1714–1726 (2018). https://doi.org/10.1039/c7ta08964c
- Y.J. Wang, W. Long, L. Wang, R. Yuan, A. Ignaszak et al., Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 11(2), 258–275 (2018). https://doi.org/10.1039/c7ee02444d
- C. Wan, X. Duan, Y. Huang, Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 10(14), 1903815 (2020). https://doi.org/10.1002/aenm.201903815
- J. Troyano, A. Carne-Sanchez, C. Avci, I. Imaz, D. Maspoch, Colloidal metal-organic framework ps: the pioneering case of ZIF-8. Chem. Soc. Rev. 48(23), 5534–5546 (2019). https://doi.org/10.1039/c9cs00472f
- M. Liu, Z. Zhao, X. Duan, Y. Huang, Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 31(6), 1802234 (2019). https://doi.org/10.1002/adma.201802234
- Z. Ma, Z.P. Cano, A. Yu, Z. Chen, G. Jiang et al., Enhancing oxygen reduction activity of Pt-based electrocatalysts: from theoretical mechanisms to practical methods. Angew. Chem. Int. Ed. 59(42), 18334–18348 (2020). https://doi.org/10.1002/anie.202003654
- J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13, 24 (2020). https://doi.org/10.1007/s40820-020-00545-8
- Y. He, Q. Tan, L. Lu, J. Sokolowski, G. Wu, Metal–nitrogen–carbon catalysts for oxygen reduction in PEM fuel cells: self-template synthesis approach to enhancing catalytic activity and stability. Electrochem. Energy Rev. 2(2), 231–251 (2019). https://doi.org/10.1007/s41918-019-00031-9
- L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
- L. Xie, X.P. Zhang, B. Zhao, P. Li, J. Qi et al., Enzyme-inspired iron porphyrins for improved electrocatalytic oxygen reduction and evolution reactions. Angew. Chem. Int. Ed. 60(14), 7576–7581 (2021). https://doi.org/10.1002/anie.202015478
- Q. Hua, K.E. Madsen, A.M. Esposito, X. Chen, T.J. Woods et al., Effect of support on oxygen reduction reaction activity of supported iron porphyrins. ACS Catal. 12(2), 1139–1149 (2022). https://doi.org/10.1021/acscatal.1c04871
- L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 12(2), 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
- M. Kiani, X.Q. Tian, W. Zhang, Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: recent advances, challenges and future perspectives. Coord. Chem. Rev. 441, 213954 (2021). https://doi.org/10.1016/j.ccr.2021.213954
- K. Huang, Y. Sun, Y. Zhang, X. Wang, W. Zhang et al., Hollow-structured metal oxides as oxygen-related catalysts. Adv. Mater. 31(38), 1801430 (2019). https://doi.org/10.1002/adma.201801430
- H. Tian, L. Zeng, Y. Huang, Z. Ma, G. Meng et al., In situ electrochemical Mn(III)/Mn(IV) generation of Mn(II)O electrocatalysts for high-performance oxygen reduction. Nano-Micro Lett. 12, 161 (2020). https://doi.org/10.1007/s40820-020-00500-7
- G. Yan, Y. Wang, Z. Zhang, Y. Dong, J. Wang et al., Nanop-decorated ultrathin La2O3 nanosheets as an efficient electrocatalysis for oxygen evolution reactions. Nano-Micro Lett. 12, 49 (2020). https://doi.org/10.1007/s40820-020-0387-5
- L. Ding, T. Tang, J.S. Hu, Recent progress in proton-exchange membrane fuel cells based on metal-nitrogen-carbon catalysts. Acta Phys. Chim. Sin. 37(9), 2010048 (2021). https://doi.org/10.3866/pku.Whxb202010048
- J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu et al., Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13, 65 (2021). https://doi.org/10.1007/s40820-020-00579-y
- S. Navalon, A. Dhakshinamoorthy, M. Alvaro, M. Antonietti, H. Garcia, Active sites on graphene-based materials as metal-free catalysts. Chem. Soc. Rev. 46(15), 4501–4529 (2017). https://doi.org/10.1039/c7cs00156h
- H. Piao, G. Choi, X. Jin, S.J. Hwang, Y.J. Song et al., Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 14, 55 (2022). https://doi.org/10.1007/s40820-022-00794-9
- Y. Rangraz, M.M. Heravi, Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts. RSC Adv. 11(38), 23725–23778 (2021). https://doi.org/10.1039/d1ra03446d
- H. Li, L. Chen, X. Li, D. Sun, H. Zhang, Recent progress on asymmetric carbon- and silica-based nanomaterials: from synthetic strategies to their applications. Nano-Micro Lett. 14, 45 (2022). https://doi.org/10.1007/s40820-021-00789-y
- S. Chen, L. Ma, S. Wu, S. Wang, Z. Li et al., Uniform virus-like Co–N–Cs electrocatalyst derived from Prussian blue analog for stretchable fiber-shaped Zn–air batteries. Adv. Funct. Mater. 30(10), 1908945 (2020). https://doi.org/10.1002/adfm.201908945
- L.P. Yuan, T. Tang, J.S. Hu, L.J. Wan, Confinement strategies for precise synthesis of efficient electrocatalysts from the macroscopic to the atomic level. Acc. Mater. Res. 2(10), 907–919 (2021). https://doi.org/10.1021/accountsmr.1c00135
- Z. Zhu, H. Yin, Y. Wang, C.H. Chuang, L. Xing et al., Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 32(42), 2004670 (2020). https://doi.org/10.1002/adma.202004670
- X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
- M. Sun, C. Chen, M. Wu, D. Zhou, Z. Sun et al., Rational design of Fe–N–C electrocatalysts for oxygen reduction reaction: from nanops to single atoms. Nano Res. 15(3), 1753–1778 (2021). https://doi.org/10.1007/s12274-021-3827-8
- Y. Yang, Y. Xiong, R. Zeng, X. Lu, M. Krumov et al., Operando methods in electrocatalysis. ACS Catal. 11(3), 1136–1178 (2021). https://doi.org/10.1021/acscatal.0c04789
- M. Wang, L. Arnadottir, Z.J. Xu, Z. Feng, In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nano-Micro Lett. 11, 47 (2019). https://doi.org/10.1007/s40820-019-0277-x
- C.J. Chang, Y. Zhu, J. Wang, H.C. Chen, C.W. Tung et al., In situ X-ray diffraction and X-ray absorption spectroscopy of electrocatalysts for energy conversion reactions. J. Mater. Chem. A 8(37), 19079–19112 (2020). https://doi.org/10.1039/d0ta06656g
- L. Fang, S. Seifert, R.E. Winans, T. Li, Understanding synthesis and structural variation of nanomaterials through in situ/operando XAS and SAXS. Small 18(19), 2106017 (2022). https://doi.org/10.1002/smll.202106017
- T. Tang, L. Ding, Z. Jiang, J.S. Hu, L.J. Wan, Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Sci. Chin. Chem. 63(11), 1517–1542 (2020). https://doi.org/10.1007/s11426-020-9835-8
- X. Li, J. Li, W. Zhuo, Z. Li, L. Ma et al., In situ monitoring the potassium-ion storage enhancement in iron selenide with ether-based electrolyte. Nano-Micro Lett. 13, 179 (2021). https://doi.org/10.1007/s40820-021-00708-1
- X. Ma, W. Luo, M. Yan, L. He, L. Mai, In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy 24, 165–188 (2016). https://doi.org/10.1016/j.nanoen.2016.03.023
- Y. Yao, Y. You, G. Zhang, J. Liu, H. Sun et al., Highly functional bioinspired Fe/N/C oxygen reduction reaction catalysts: structure-regulating oxygen sorption. ACS Appl. Mater. Interfaces 8(10), 6464–6471 (2016). https://doi.org/10.1021/acsami.5b11870
- S. Fu, C. Zhu, J. Song, D. Du, Y. Lin, Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 7(19), 1700363 (2017). https://doi.org/10.1002/aenm.201700363
- P. Zhang, L. Liu, X. He, X. Liu, H. Wang et al., Promoting surface-mediated oxygen reduction reaction of solid catalysts in metal–O2 batteries by capturing superoxide species. J. Am. Chem. Soc. 141(15), 6263–6270 (2019). https://doi.org/10.1021/jacs.8b13568
- V. Petkov, Y. Maswadeh, Y. Zhao, A. Lu, H. Cronk et al., Nanoalloy catalysts inside fuel cells: an atomic-level perspective on the functionality by combined in operando X-ray spectroscopy and total scattering. Nano Energy 49, 209–220 (2018). https://doi.org/10.1016/j.nanoen.2018.04.049
- C.H. Choi, C. Baldizzone, G. Polymeros, E. Pizzutilo, O. Kasian et al., Minimizing operando demetallation of Fe–N–C electrocatalysts in acidic medium. ACS Catal. 6(5), 3136–3146 (2016). https://doi.org/10.1021/acscatal.6b00643
- K. Ebner, A.H. Clark, V.A. Saveleva, G. Smolentsev, J. Chen et al., Time-resolved potential-induced changes in Fe/N/C-catalysts studied by in situ modulation excitation X-ray absorption spectroscopy. Adv. Energy Mater. 12(14), 2103699 (2022). https://doi.org/10.1002/aenm.202103699
- C. Fu, C. Liu, T. Li, X. Zhang, F. Wang et al., DFT calculations: a powerful tool for better understanding of electrocatalytic oxygen reduction reactions on Pt-based metallic catalysts. Comput. Mater. Sci. 170, 109202 (2019). https://doi.org/10.1016/j.commatsci.2019.109202
- X. Liao, R. Lu, L. Xia, Q. Liu, H. Wang et al., Density functional theory for electrocatalysis. Energy Environ. Mater. 5(1), 157–185 (2021). https://doi.org/10.1002/eem2.12204
- F. Gao, X.D. Tian, J.S. Lin, J.C. Dong, X.M. Lin et al., In situ Raman, FTIR, and XRD spectroscopic studies in fuel cells and rechargeable batteries. Nano Res. (2022). https://doi.org/10.1007/s12274-021-4044-1
- C. Hu, L. Dai, Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem. Int. Ed. 55(39), 11736–11758 (2016). https://doi.org/10.1002/anie.201509982
- Y. Jia, X. Xiong, D. Wang, X. Duan, K. Sun et al., Atomically dispersed Fe–N4 modified with precisely located S for highly efficient oxygen reduction. Nano-Micro Lett. 12, 116 (2020). https://doi.org/10.1007/s40820-020-00456-8
- M. Liu, L. Wang, K. Zhao, S. Shi, Q. Shao et al., Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12(10), 2890–2923 (2019). https://doi.org/10.1039/c9ee01722d
- Z. Zhao, C. Chen, Z. Liu, J. Huang, M. Wu et al., Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv. Mater. 31(31), 1808115 (2019). https://doi.org/10.1002/adma.201808115
- W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang et al., Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanops boost the activity of Fe–Nx. J. Am. Chem. Soc. 138(10), 3570–3578 (2016). https://doi.org/10.1021/jacs.6b00757
- H. Yin, Y. Dou, S. Chen, Z. Zhu, P. Liu et al., 2D electrocatalysts for converting earth-abundant simple molecules into value-added commodity chemicals: recent progress and perspectives. Adv. Mater. 32(18), 1904870 (2020). https://doi.org/10.1002/adma.201904870
- A. Radwan, H. Jin, D. He, S. Mu, Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett. 13, 132 (2021). https://doi.org/10.1007/s40820-021-00656-w
- H. Wang, Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 15(4), 2834–2854 (2021). https://doi.org/10.1007/s12274-021-3984-9
- C.X. Zhao, J.N. Liu, J. Wang, D. Ren, B.Q. Li et al., Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 50(13), 7745–7778 (2021). https://doi.org/10.1039/d1cs00135c
- K. Fan, P. Liu, H. Zhao, Distinctive O–O bond formation pathways at different electrode potentials. Matter 4(8), 2615–2617 (2021). https://doi.org/10.1016/j.matt.2021.07.004
- Y. Liu, P. He, H. Zhou, Rechargeable solid-state Li–air and Li–S batteries: materials, construction, and challenges. Adv. Energy Mater. 8(4), 1701602 (2018). https://doi.org/10.1002/aenm.201701602
- J. Lai, Y. Xing, N. Chen, L. Li, F. Wu et al., Electrolytes for rechargeable lithium-air batteries. Angew. Chem. Int. Ed. 59(8), 2974–2997 (2020). https://doi.org/10.1002/anie.201903459
- C.Z. Shu, J.Z. Wang, J.P. Long, H.K. Liu, S.X. Dou, Understanding the reaction chemistry during charging in aprotic lithium-oxygen batteries: existing problems and solutions. Adv. Mater. 31(15), 1804587 (2019). https://doi.org/10.1002/adma.201804587
- H. Zhang, G.G. Eshetu, X. Judez, C. Li, L.M. Rodriguez-Martinez et al., Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57(46), 15002–15027 (2018). https://doi.org/10.1002/anie.201712702
- V. Pande, V. Viswanathan, Criteria and considerations for the selection of redox mediators in nonaqueous Li–O2 batteries. ACS Energy Lett. 2(1), 60–63 (2016). https://doi.org/10.1021/acsenergylett.6b00619
- J. Huang, A. Faghri, Analysis of electrolyte level change in a lithium air battery. J. Power Sources 307, 45–55 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.092
- Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn–air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
- M. Ren, J. Chen, G. Wu, E.A. McHugh, A.L. Tsai et al., Bioinspired redox mediator in lithium-oxygen batteries. ACS Catal. 11(3), 1833–1840 (2021). https://doi.org/10.1021/acscatal.0c04544
- S.F. Hung, In-situ X-ray techniques for non-noble electrocatalysts. Pure Appl. Chem. 92(5), 733–749 (2020). https://doi.org/10.1515/pac-2019-1006
- Y. Zhang, L. Song, Structural designs and in-situ X-ray characterizations of metal phosphides for electrocatalysis. ChemCatChem 12(14), 3621–3638 (2020). https://doi.org/10.1002/cctc.202000233
- S. Liu, M. Wang, X. Sun, N. Xu, J. Liu et al., Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc-air batteries. Adv. Mater. 30(4), 1704898 (2018). https://doi.org/10.1002/adma.201704898
- H. Huang, A.E. Russell, Approaches to achieve surface sensitivity in the in situ XAS of electrocatalysts. Curr. Opin. Electrochem. 27, 100681 (2021). https://doi.org/10.1016/j.coelec.2020.100681
- J. Timoshenko, B.R. Cuenya, In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121(2), 882–961 (2021). https://doi.org/10.1021/acs.chemrev.0c00396
- Y. Yang, Y. Wang, Y. Xiong, X. Huang, L. Shen et al., In situ X-ray absorption spectroscopy of a synergistic Co–Mn oxide catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 141(4), 1463–1466 (2019). https://doi.org/10.1021/jacs.8b12243
- H.Q. Chen, L. Zou, D.Y. Wei, L.L. Zheng, Y.F. Wu et al., In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy. Chin. J. Catal. 43(1), 33–46 (2022). https://doi.org/10.1016/s1872-2067(21)63874-3
- A.M. Tripathi, W.N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 47(3), 736–851 (2018). https://doi.org/10.1039/c7cs00180k
- C. Hess, New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem. Soc. Rev. 50(5), 3519–3564 (2021). https://doi.org/10.1039/d0cs01059f
- H. Li, P. Wei, D. Gao, G. Wang, In situ Raman spectroscopy studies for electrochemical CO2 reduction over Cu catalysts. Curr. Opin. Green Sustain. Chem. 34, 100589 (2022). https://doi.org/10.1016/j.cogsc.2022.100589
- J.C. Dong, X.G. Zhang, V. Briega-Martos, X. Jin, J. Yang et al., In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019). https://doi.org/10.1038/s41560-018-0292-z
- D. Liu, Z. Shadike, R. Lin, K. Qian, H. Li et al., Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 31(28), 1806620 (2019). https://doi.org/10.1002/adma.201806620
- S. Wu, Y. Sun, In situ techniques for probing kinetics and mechanism of hollowing nanostructures through direct chemical transformations. Small Methods 2(11), 1800165 (2018). https://doi.org/10.1002/smtd.201800165
- Y. Da, X. Li, C. Zhong, Y. Deng, X. Han et al., Advanced characterization techniques for identifying the key active sites of gas-involved electrocatalysts. Adv. Funct. Mater. 30(35), 2001704 (2020). https://doi.org/10.1002/adfm.202001704
- S. Nayak, I.J. McPherson, K.A. Vincent, Adsorbed intermediates in oxygen reduction on platinum nanops observed by in situ IR spectroscopy. Angew. Chem. Int. Ed. 57(39), 12855–12858 (2018). https://doi.org/10.1002/anie.201804978
- H.D. Espinosa, R.A. Bernal, T. Filleter, In situ TEM electromechanical testing of nanowires and nanotubes. Small 8(21), 3233–3252 (2012). https://doi.org/10.1002/smll.201200342
- K.W. Urban, Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321(5888), 506–510 (2008). https://doi.org/10.1126/science.1152800
- M. Gong, D. Xiao, Z. Deng, R. Zhang, W. Xia et al., Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Appl. Catal. B 282, 119617 (2021). https://doi.org/10.1016/j.apcatb.2020.119617
- Z.Z. Shen, C. Zhou, R. Wen, L.J. Wan, Surface mechanism of catalytic electrodes in lithium-oxygen batteries: how nanostructures mediate the interfacial reactions. J. Am. Chem. Soc. 142(37), 16007–16015 (2020). https://doi.org/10.1021/jacs.0c07167
- Z.Z. Shen, Y.Z. Zhang, C. Zhou, R. Wen, L.J. Wan, Revealing the correlations between morphological evolution and surface reactivity of catalytic cathodes in lithium-oxygen batteries. J. Am. Chem. Soc. 143(51), 21604–21612 (2021). https://doi.org/10.1021/jacs.1c09700
- Z. Jin, P. Li, Z. Fang, G. Yu, Emerging electrochemical techniques for probing site behavior in single-atom electrocatalysts. Acc. Chem. Res. 55(5), 759–769 (2022). https://doi.org/10.1021/acs.accounts.1c00785
- Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao et al., Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4(7), 615–622 (2021). https://doi.org/10.1038/s41929-021-00650-w
- P. Li, Z. Jin, Y. Qian, Z. Fang, D. Xiao et al., Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater. Today 35, 78–86 (2020). https://doi.org/10.1016/j.mattod.2019.10.006
- M. Ding, Q. He, G. Wang, H.C. Cheng, Y. Huang et al., An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nat. Commun. 6, 7867 (2015). https://doi.org/10.1038/ncomms8867
- M. Ding, G. Zhong, Z. Zhao, Z. Huang, M. Li et al., On-chip in situ monitoring of competitive interfacial anionic chemisorption as a descriptor for oxygen reduction kinetics. ACS Cent. Sci. 4(5), 590–599 (2018). https://doi.org/10.1021/acscentsci.8b00082
- C. Long, J. Han, J. Guo, C. Yang, S. Liu et al., Operando toolbox for heterogeneous interface in electrocatalysis. Chem Catal. 1(3), 509–522 (2021). https://doi.org/10.1016/j.checat.2021.07.012
- K. Liu, A.I. Rykov, J. Wang, T. Zhang, Chapter one - recent advances in the application of Mößbauer spectroscopy in heterogeneous catalysis. Adv. Catal. 58, 1–142 (2015). https://doi.org/10.1016/bs.acat.2015.09.001
- Y. Zeng, X. Li, J. Wang, M.T. Sougrati, Y. Huang et al., In situ/operando Mössbauer spectroscopy for probing heterogeneous catalysis. Chem Catal. 1(6), 1215–1233 (2021). https://doi.org/10.1016/j.checat.2021.08.013
- T. Mineva, I. Matanovic, P. Atanassov, M.T. Sougrati, L. Stievano et al., Understanding active sites in pyrolyzed Fe–N–C catalysts for fuel cell cathodes by bridging density functional theory calculations and 57Fe Mössbauer spectroscopy. ACS Catal. 9(10), 9359–9371 (2019). https://doi.org/10.1021/acscatal.9b02586
- M. Xiao, J. Zhu, L. Ma, Z. Jin, J. Ge et al., Microporous framework induced synthesis of single-atom dispersed Fe–N–C acidic ORR catalyst and its in situ reduced Fe–N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 8(4), 2824–2832 (2018). https://doi.org/10.1021/acscatal.8b00138
- X. Li, C.S. Cao, S.F. Hung, Y.R. Lu, W. Cai et al., Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem 6(12), 3440–3454 (2020). https://doi.org/10.1016/j.chempr.2020.10.027
- M. Escudero-Escribano, A.F. Pedersen, E.T. Ulrikkeholm, K.D. Jensen, M.H. Hansen et al., Active-phase formation and stability of Gd/Pt(111) electrocatalysts for oxygen reduction: an in situ grazing incidence X-ray diffraction study. Chem. Eur. J. 24(47), 12280–12290 (2018). https://doi.org/10.1002/chem.201801587
- R. Gao, D. Zhou, D. Ning, W. Zhang, L. Huang et al., Probing the self-boosting catalysis of LiCoO2 in Li–O2 battery with multiple in situ/operando techniques. Adv. Funct. Mater. 30(28), 2002223 (2020). https://doi.org/10.1002/adfm.202002223
- M. Gong, J. Zhu, M. Liu, P. Liu, Z. Deng et al., Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization. Nanoscale 11(42), 20301–20306 (2019). https://doi.org/10.1039/c9nr04975d
- X. Zhao, H. Cheng, L. Song, L. Han, R. Zhang et al., Rhombohedral ordered intermetallic nanocatalyst boosts the oxygen reduction reaction. ACS Catal. 11(1), 184–192 (2020). https://doi.org/10.1021/acscatal.0c04021
- H. Qin, L. Lin, J. Jia, H. Ni, Y. He et al., Synchrotron radiation in situ X-ray absorption fine structure and in situ X-ray diffraction analysis of a high-performance cobalt catalyst towards the oxygen reduction reaction. Phys. Chem. Chem. Phys. 19(45), 30749–30755 (2017). https://doi.org/10.1039/c7cp05888h
- M. Tong, F. Sun, Y. Xie, Y. Wang, Y. Yang et al., Operando cooperated catalytic mechanism of atomically dispersed Cu–N4 and Zn–N4 for promoting oxygen reduction reaction. Angew. Chem. Int. Ed. 60(25), 14005–14012 (2021). https://doi.org/10.1002/anie.202102053
- X. Han, T. Zhang, W. Chen, B. Dong, G. Meng et al., Mn–N4 oxygen reduction electrocatalyst: operando investigation of active sites and high performance in zinc-air battery. Adv. Energy Mater. 11(6), 2002753 (2020). https://doi.org/10.1002/aenm.202002753
- Y. Ma, W. Gao, H. Shan, W. Chen, W. Shang et al., Platinum-based nanowires as active catalysts toward oxygen reduction reaction: in situ observation of surface-diffusion-assisted, solid-state oriented attachment. Adv. Mater. 29(46), 1703460 (2017). https://doi.org/10.1002/adma.201703460
- M. Gocyla, S. Kuehl, M. Shviro, H. Heyen, S. Selve et al., Shape stability of octahedral PtNi nanocatalysts for electrochemical oxygen reduction reaction studied by in situ transmission electron microscopy. ACS Nano 12(6), 5306–5311 (2018). https://doi.org/10.1021/acsnano.7b09202
- S. Dai, Y. Hou, M. Onoue, S. Zhang, W. Gao et al., Revealing surface elemental composition and dynamic processes involved in facet-dependent oxidation of Pt3Co nanops via in situ transmission electron microscopy. Nano Lett. 17(8), 4683–4688 (2017). https://doi.org/10.1021/acs.nanolett.7b01325
- Z. Wang, X. Ke, K. Zhou, X. Xu, Y. Jin et al., Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction. J. Mater. Chem. A 9(34), 18515–18525 (2021). https://doi.org/10.1039/d1ta03036a
- B.M. Gibbons, M. Wette, M.B. Stevens, R.C. Davis, S. Siahrostami et al., In situ X-ray absorption spectroscopy disentangles the roles of copper and silver in a bimetallic catalyst for the oxygen reduction reaction. Chem. Mater. 32(5), 1819–1827 (2020). https://doi.org/10.1021/acs.chemmater.9b03963
- P. Li, Z. Jin, Y. Qian, Z. Fang, D. Xiao et al., Probing enhanced site activity of Co–Fe bimetallic subnanoclusters derived from dual cross-linked hydrogels for oxygen electrocatalysis. ACS Energy Lett. 4(8), 1793–1802 (2019). https://doi.org/10.1021/acsenergylett.9b00893
- J. Wang, L. Lin, Y. He, H. Qin, S. Yan et al., Vacancy-assisted oxygen reduction reaction on cobalt-based catalysts in direct borohydride fuel cell revealed by in-situ XAFS and XRD. Electrochim. Acta 254, 72–78 (2017). https://doi.org/10.1016/j.electacta.2017.09.102
- J. Li, M.T. Sougrati, A. Zitolo, J.M. Ablett, I.C. Oğuz et al., Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2020). https://doi.org/10.1038/s41929-020-00545-2
- Z. Chen, H. Niu, J. Ding, H. Liu, P.H. Chen et al., Unraveling the origin of sulfur–doped Fe–N–C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning. Angew. Chem. Int. Ed. 60(48), 25404–25410 (2021). https://doi.org/10.1002/anie.202110243
- Y. Lin, Z. Liu, L. Yu, G.R. Zhang, H. Tan et al., Overall oxygen electrocatalysis on nitrogen-modified carbon catalysts: identification of active sites and in situ observation of reactive intermediates. Angew. Chem. Int. Ed. 60(6), 3299–3306 (2021). https://doi.org/10.1002/anie.202012615
- W. Cheng, X. Zhao, H. Su, F. Tang, W. Che et al., Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4(2), 115–122 (2019). https://doi.org/10.1038/s41560-018-0308-8
- C. Tang, L. Chen, H. Li, L. Li, Y. Jiao et al., Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143(20), 7819–7827 (2021). https://doi.org/10.1021/jacs.1c03135
- J.C. Dong, M. Su, V. Briega-Martos, L. Li, J.B. Le et al., Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 142(2), 715–719 (2020). https://doi.org/10.1021/jacs.9b12803
- H. Ze, X. Chen, X.T. Wang, Y.H. Wang, Q.Q. Chen et al., Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J. Am. Chem. Soc. 143(3), 1318–1322 (2021). https://doi.org/10.1021/jacs.0c12755
- H.Q. Chen, H. Ze, M.F. Yue, D.Y. Wei, A. Yao-Lin et al., Unmasking the critical role of the ordering degree of bimetallic nanocatalysts on oxygen reduction reaction by in situ Raman spectroscopy. Angew. Chem. Int. Ed. 61(16), e202117834 (2022). https://doi.org/10.1002/anie.202117834
- Y.Y. Wang, D.J. Chen, Y.J. Tong, Mechanistic insight into sulfide-enhanced oxygen reduction reaction activity and stability of commercial Pt black: an in situ Raman spectroscopic study. ACS Catal. 6(8), 5000–5004 (2016). https://doi.org/10.1021/acscatal.6b00907
- Y. Zhu, F. Yang, M. Guo, L. Chen, M. Gu, Real-time imaging of the electrochemical process in Na–O2 nanobatteries using Pt@CNT and Pt0.8Ir0.2@CNT air cathodes. ACS Nano 13(12), 14399–14407 (2019). https://doi.org/10.1021/acsnano.9b07961
- D. Lee, H. Park, Y. Ko, H. Park, T. Hyeon et al., Direct observation of redox mediator-assisted solution-phase discharging of Li–O2 battery by liquid-phase transmission electron microscopy. J. Am. Chem. Soc. 141(20), 8047–8052 (2019). https://doi.org/10.1021/jacs.9b02332
- S. Han, C. Cai, F. Yang, Y. Zhu, Q. Sun et al., Interrogation of the reaction mechanism in a Na–O2 battery using in situ transmission electron microscopy. ACS Nano 14(3), 3669–3677 (2020). https://doi.org/10.1021/acsnano.0c00283
- M. Nesselberger, M. Arenz, In situ FTIR spectroscopy: probing the electrochemical interface during the oxygen reduction reaction on a commercial platinum high-surface-area catalyst. ChemCatChem 8(6), 1125–1131 (2016). https://doi.org/10.1002/cctc.201501193
- A. Lachenwitzer, N. Li, J. Lipkowski, Determination of the acid dissociation constant for bisulfate adsorbed at the Pt(111) electrode by subtractively normalized interfacial Fourier transform infrared spectroscopy. J. Electroanal. Chem. 532(1), 85–98 (2002). https://doi.org/10.1016/S0022-0728(02)00759-3
- J. Yang, W. Liu, M. Xu, X. Liu, H. Qi et al., Dynamic behavior of single-atom catalysts in electrocatalysis: identification of Cu–N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 143(36), 14530–14539 (2021). https://doi.org/10.1021/jacs.1c03788
- K. Sengupta, S. Chatterjee, A. Dey, In situ mechanistic investigation of O2 reduction by iron porphyrin electrocatalysts using surface-enhanced resonance Raman spectroscopy coupled to rotating disk electrode (SERRS-RDE) setup. ACS Catal. 6(10), 6838–6852 (2016). https://doi.org/10.1021/acscatal.6b01122
- Y.H. Wang, J.B. Le, W.Q. Li, J. Wei, P.M. Radjenovic et al., In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR). Angew. Chem. Int. Ed. 58(45), 16062–16066 (2019). https://doi.org/10.1002/anie.201908907
- J. Wei, D. Xia, Y. Wei, X. Zhu, J. Li et al., Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe–N–C electrocatalysts by in situ Raman spectroscopy. ACS Catal. 12(13), 7811–7820 (2022). https://doi.org/10.1021/acscatal.2c00771
- L. Ni, P. Theis, S. Paul, R.W. Stark, U.I. Kramm, In situ 57Fe Mössbauer study of a porphyrin based FeNC catalyst for ORR. Electrochim. Acta 395, 139200 (2021). https://doi.org/10.1016/j.electacta.2021.139200
- X. Xu, X. Zhang, Z. Kuang, Z. Xia, A.I. Rykov et al., Investigation on the demetallation of Fe–N–C for oxygen reduction reaction: the influence of structure and structural evolution of active site. Appl. Catal. B 309, 121290 (2022). https://doi.org/10.1016/j.apcatb.2022.121290
- Q. Jia, K. Caldwell, D.E. Ramaker, J.M. Ziegelbauer, Z. Liu et al., In situ spectroscopic evidence for ordered core-ultrathin shell Pt1Co1 nanops with enhanced activity and stability as oxygen reduction electrocatalysts. J. Phys. Chem. C 118(35), 20496–20503 (2014). https://doi.org/10.1021/jp507204k
- H.T. Lien, S.T. Chang, P.T. Chen, D.P. Wong, Y.C. Chang et al., Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy. Nat. Commun. 11, 4233 (2020). https://doi.org/10.1038/s41467-020-17975-y
- M. Jiang, F. Wang, F. Yang, H. He, J. Yang et al., Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. Nano Energy 93, 106793 (2022). https://doi.org/10.1016/j.nanoen.2021.106793
- H. Zhang, H.T. Chung, D.A. Cullen, S. Wagner, U.I. Kramm et al., High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 12(8), 2548–2558 (2019). https://doi.org/10.1039/c9ee00877b
- S. Kosasang, N. Ma, P. Wuamprakhon, N. Phattharasupakun, T. Maihom et al., Insight into the effect of intercalated alkaline cations of layered manganese oxides on the oxygen reduction reaction and oxygen evolution reaction. Chem. Commun. 54(62), 8575–8578 (2018). https://doi.org/10.1039/c8cc03775b
- D. Tian, S.R. Denny, K. Li, H. Wang, S. Kattel et al., Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem. Soc. Rev. 50(22), 12338–12376 (2021). https://doi.org/10.1039/d1cs00590a
- Z. Zeng, J. Greeley, Characterization of oxygenated species at water/Pt(111) interfaces from DFT energetics and XPS simulations. Nano Energy 29, 369–377 (2016). https://doi.org/10.1016/j.nanoen.2016.05.044
- H. Xu, D. Wang, P. Yang, A. Liu, R. Li et al., Atomically dispersed M–N–C catalysts for the oxygen reduction reaction. J. Mater. Chem. A 8(44), 23187–23201 (2020). https://doi.org/10.1039/d0ta08732g
- N. Yang, L. Peng, L. Li, J. Li, Q. Liao et al., Theoretically probing the possible degradation mechanisms of an FeNC catalyst during the oxygen reduction reaction. Chem. Sci. 12(37), 12476–12484 (2021). https://doi.org/10.1039/d1sc02901k
- Q.J. Fang, J.K. Pan, W. Zhang, F.L. Sun, W.X. Chen et al., Cooperatively interface role of surface atoms and aqueous media on single atom catalytic property for H2O2 synthesis. J. Colloid. Interface Sci. 617, 752–763 (2022). https://doi.org/10.1016/j.jcis.2022.03.052
- H. Ji, M. Wang, S. Liu, H. Sun, J. Liu et al., In-situ observation as activity descriptor enables rational design of oxygen reduction catalyst for zinc-air battery. Energy Storage Mater. 27, 226–231 (2020). https://doi.org/10.1016/j.ensm.2020.02.002
- E.M. Erickson, M.S. Thorum, R. Vasic, N.S. Marinkovic, A.I. Frenkel et al., In situ electrochemical X-ray absorption spectroscopy of oxygen reduction electrocatalysis with high oxygen flux. J. Am. Chem. Soc. 134(1), 197–200 (2012). https://doi.org/10.1021/ja210465x
- V. Beermann, M.E. Holtz, E. Padgett, J.F. Araujo, D.A. Muller et al., Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM. Energy Environ. Sci. 12(8), 2476–2485 (2019). https://doi.org/10.1039/c9ee01185d
- R. Wen, M. Hong, H.R. Byon, In situ AFM imaging of Li–O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. J. Am. Chem. Soc. 135(29), 10870–10876 (2013). https://doi.org/10.1021/ja405188g
- Y. Xiao, J. Hong, X. Wang, T. Chen, T. Hyeon et al., Revealing kinetics of two-electron oxygen reduction reaction at single-molecule level. J. Am. Chem. Soc. 142(30), 13201–13209 (2020). https://doi.org/10.1021/jacs.0c06020
- Y. Suchorski, J. Zeininger, S. Buhr, M. Raab, M. Stöger-Pollach et al., Resolving multifrequential oscillations and nanoscale interfacet communication in single-p catalysis. Science 372(6548), 1314–1318 (2021). https://doi.org/10.1126/science.abf8107
References
S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). https://doi.org/10.1038/nmat4834
Y. Zheng, Z. Chen, J. Zhang, Solid oxide electrolysis of H2O and CO2 to produce hydrogen and low-carbon fuels. Electrochem. Energy Rev. 4(3), 508–517 (2021). https://doi.org/10.1007/s41918-021-00097-4
D. Wu, C. Peng, C. Yin, H. Tang, Review of system integration and control of proton exchange membrane fuel cells. Electrochem. Energy Rev. 3(3), 466–505 (2020). https://doi.org/10.1007/s41918-020-00068-1
L. Zhang, Q.A. Huang, W. Yan, Q. Shao, J. Zhang et al., Design and fabrication of non-noble metal catalyst-based air-cathodes for metal–air battery. Can. J. Chem. Eng. 97(12), 2984–2993 (2019). https://doi.org/10.1002/cjce.23616
M. Li, X. Bi, R. Wang, Y. Li, G. Jiang et al., Relating catalysis between fuel cell and metal–air batteries. Matter 2(1), 32–49 (2020). https://doi.org/10.1016/j.matt.2019.10.007
F. Xiao, Y.C. Wang, Z.P. Wu, G. Chen, F. Yang et al., Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells. Adv. Mater. 33(50), 2006292 (2021). https://doi.org/10.1002/adma.202006292
F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal–nitrogen–carbon bifunctional oxygen electrocatalysts for zinc–air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
Y. Li, Q. Li, H. Wang, L. Zhang, D.P. Wilkinson et al., Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications. Electrochem. Energy Rev. 2(4), 518–538 (2019). https://doi.org/10.1007/s41918-019-00052-4
Y. Wang, D. Wang, Y. Li, A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2(1), 56–75 (2021). https://doi.org/10.1002/smm2.1023
Y. Feng, B. Huang, C. Yang, Q. Shao, X. Huang, Platinum porous nanosheets with high surface distortion and Pt utilization for enhanced oxygen reduction catalysis. Adv. Funct. Mater. 29(45), 1904429 (2019). https://doi.org/10.1002/adfm.201904429
S. Zaman, L. Huang, A.I. Douka, H. Yang, B. You et al., Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives. Angew. Chem. Int. Ed. 60(33), 17832–17852 (2021). https://doi.org/10.1002/anie.202016977
L. Huang, S. Zaman, X. Tian, Z. Wang, W. Fang et al., Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 54(2), 311–322 (2021). https://doi.org/10.1021/acs.accounts.0c00488
D.S. He, D. He, J. Wang, Y. Lin, P. Yin et al., Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. J. Am. Chem. Soc. 138(5), 1494–1497 (2016). https://doi.org/10.1021/jacs.5b12530
H.Y. Kim, T. Kwon, Y. Ha, M. Jun, H. Baik et al., Intermetallic PtCu nanoframes as efficient oxygen reduction electrocatalysts. Nano Lett. 20(10), 7413–7421 (2020). https://doi.org/10.1021/acs.nanolett.0c02812
Y. Xiao, J. Wang, Y. Wang, W. Zhang, A new promising catalytic activity on blue phosphorene nitrogen-doped nanosheets for the ORR as cathode in nonaqueous Li-air batteries. Appl. Surf. Sci. 488, 620–628 (2019). https://doi.org/10.1016/j.apsusc.2019.05.280
X. Yan, Y. Chen, S. Deng, Y. Yang, Z. Huang et al., In situ integration of ultrathin PtCu nanowires with reduced graphene oxide nanosheets for efficient electrocatalytic oxygen reduction. Chemistry 23(66), 16871–16876 (2017). https://doi.org/10.1002/chem.201703900
M.A. Hoque, F.M. Hassan, A.M. Jauhar, G. Jiang, M. Pritzker et al., Web-like 3D architecture of Pt nanowires and sulfur-doped carbon nanotube with superior electrocatalytic performance. ACS Sustain. Chem. Eng. 6(1), 93–98 (2017). https://doi.org/10.1021/acssuschemeng.7b03580
L.B. Venarusso, C.V. Boone, J. Bettini, G. Maia, Carbon-supported metal nanodendrites as efficient, stable catalysts for the oxygen reduction reaction. J. Mater. Chem. A 6(4), 1714–1726 (2018). https://doi.org/10.1039/c7ta08964c
Y.J. Wang, W. Long, L. Wang, R. Yuan, A. Ignaszak et al., Unlocking the door to highly active ORR catalysts for PEMFC applications: polyhedron-engineered Pt-based nanocrystals. Energy Environ. Sci. 11(2), 258–275 (2018). https://doi.org/10.1039/c7ee02444d
C. Wan, X. Duan, Y. Huang, Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 10(14), 1903815 (2020). https://doi.org/10.1002/aenm.201903815
J. Troyano, A. Carne-Sanchez, C. Avci, I. Imaz, D. Maspoch, Colloidal metal-organic framework ps: the pioneering case of ZIF-8. Chem. Soc. Rev. 48(23), 5534–5546 (2019). https://doi.org/10.1039/c9cs00472f
M. Liu, Z. Zhao, X. Duan, Y. Huang, Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 31(6), 1802234 (2019). https://doi.org/10.1002/adma.201802234
Z. Ma, Z.P. Cano, A. Yu, Z. Chen, G. Jiang et al., Enhancing oxygen reduction activity of Pt-based electrocatalysts: from theoretical mechanisms to practical methods. Angew. Chem. Int. Ed. 59(42), 18334–18348 (2020). https://doi.org/10.1002/anie.202003654
J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13, 24 (2020). https://doi.org/10.1007/s40820-020-00545-8
Y. He, Q. Tan, L. Lu, J. Sokolowski, G. Wu, Metal–nitrogen–carbon catalysts for oxygen reduction in PEM fuel cells: self-template synthesis approach to enhancing catalytic activity and stability. Electrochem. Energy Rev. 2(2), 231–251 (2019). https://doi.org/10.1007/s41918-019-00031-9
L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
L. Xie, X.P. Zhang, B. Zhao, P. Li, J. Qi et al., Enzyme-inspired iron porphyrins for improved electrocatalytic oxygen reduction and evolution reactions. Angew. Chem. Int. Ed. 60(14), 7576–7581 (2021). https://doi.org/10.1002/anie.202015478
Q. Hua, K.E. Madsen, A.M. Esposito, X. Chen, T.J. Woods et al., Effect of support on oxygen reduction reaction activity of supported iron porphyrins. ACS Catal. 12(2), 1139–1149 (2022). https://doi.org/10.1021/acscatal.1c04871
L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 12(2), 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
M. Kiani, X.Q. Tian, W. Zhang, Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: recent advances, challenges and future perspectives. Coord. Chem. Rev. 441, 213954 (2021). https://doi.org/10.1016/j.ccr.2021.213954
K. Huang, Y. Sun, Y. Zhang, X. Wang, W. Zhang et al., Hollow-structured metal oxides as oxygen-related catalysts. Adv. Mater. 31(38), 1801430 (2019). https://doi.org/10.1002/adma.201801430
H. Tian, L. Zeng, Y. Huang, Z. Ma, G. Meng et al., In situ electrochemical Mn(III)/Mn(IV) generation of Mn(II)O electrocatalysts for high-performance oxygen reduction. Nano-Micro Lett. 12, 161 (2020). https://doi.org/10.1007/s40820-020-00500-7
G. Yan, Y. Wang, Z. Zhang, Y. Dong, J. Wang et al., Nanop-decorated ultrathin La2O3 nanosheets as an efficient electrocatalysis for oxygen evolution reactions. Nano-Micro Lett. 12, 49 (2020). https://doi.org/10.1007/s40820-020-0387-5
L. Ding, T. Tang, J.S. Hu, Recent progress in proton-exchange membrane fuel cells based on metal-nitrogen-carbon catalysts. Acta Phys. Chim. Sin. 37(9), 2010048 (2021). https://doi.org/10.3866/pku.Whxb202010048
J. Zhang, J. Zhang, F. He, Y. Chen, J. Zhu et al., Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett. 13, 65 (2021). https://doi.org/10.1007/s40820-020-00579-y
S. Navalon, A. Dhakshinamoorthy, M. Alvaro, M. Antonietti, H. Garcia, Active sites on graphene-based materials as metal-free catalysts. Chem. Soc. Rev. 46(15), 4501–4529 (2017). https://doi.org/10.1039/c7cs00156h
H. Piao, G. Choi, X. Jin, S.J. Hwang, Y.J. Song et al., Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 14, 55 (2022). https://doi.org/10.1007/s40820-022-00794-9
Y. Rangraz, M.M. Heravi, Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts. RSC Adv. 11(38), 23725–23778 (2021). https://doi.org/10.1039/d1ra03446d
H. Li, L. Chen, X. Li, D. Sun, H. Zhang, Recent progress on asymmetric carbon- and silica-based nanomaterials: from synthetic strategies to their applications. Nano-Micro Lett. 14, 45 (2022). https://doi.org/10.1007/s40820-021-00789-y
S. Chen, L. Ma, S. Wu, S. Wang, Z. Li et al., Uniform virus-like Co–N–Cs electrocatalyst derived from Prussian blue analog for stretchable fiber-shaped Zn–air batteries. Adv. Funct. Mater. 30(10), 1908945 (2020). https://doi.org/10.1002/adfm.201908945
L.P. Yuan, T. Tang, J.S. Hu, L.J. Wan, Confinement strategies for precise synthesis of efficient electrocatalysts from the macroscopic to the atomic level. Acc. Mater. Res. 2(10), 907–919 (2021). https://doi.org/10.1021/accountsmr.1c00135
Z. Zhu, H. Yin, Y. Wang, C.H. Chuang, L. Xing et al., Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 32(42), 2004670 (2020). https://doi.org/10.1002/adma.202004670
X. Wu, H. Zhang, S. Zuo, J. Dong, Y. Li et al., Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 13, 136 (2021). https://doi.org/10.1007/s40820-021-00668-6
M. Sun, C. Chen, M. Wu, D. Zhou, Z. Sun et al., Rational design of Fe–N–C electrocatalysts for oxygen reduction reaction: from nanops to single atoms. Nano Res. 15(3), 1753–1778 (2021). https://doi.org/10.1007/s12274-021-3827-8
Y. Yang, Y. Xiong, R. Zeng, X. Lu, M. Krumov et al., Operando methods in electrocatalysis. ACS Catal. 11(3), 1136–1178 (2021). https://doi.org/10.1021/acscatal.0c04789
M. Wang, L. Arnadottir, Z.J. Xu, Z. Feng, In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts. Nano-Micro Lett. 11, 47 (2019). https://doi.org/10.1007/s40820-019-0277-x
C.J. Chang, Y. Zhu, J. Wang, H.C. Chen, C.W. Tung et al., In situ X-ray diffraction and X-ray absorption spectroscopy of electrocatalysts for energy conversion reactions. J. Mater. Chem. A 8(37), 19079–19112 (2020). https://doi.org/10.1039/d0ta06656g
L. Fang, S. Seifert, R.E. Winans, T. Li, Understanding synthesis and structural variation of nanomaterials through in situ/operando XAS and SAXS. Small 18(19), 2106017 (2022). https://doi.org/10.1002/smll.202106017
T. Tang, L. Ding, Z. Jiang, J.S. Hu, L.J. Wan, Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Sci. Chin. Chem. 63(11), 1517–1542 (2020). https://doi.org/10.1007/s11426-020-9835-8
X. Li, J. Li, W. Zhuo, Z. Li, L. Ma et al., In situ monitoring the potassium-ion storage enhancement in iron selenide with ether-based electrolyte. Nano-Micro Lett. 13, 179 (2021). https://doi.org/10.1007/s40820-021-00708-1
X. Ma, W. Luo, M. Yan, L. He, L. Mai, In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy 24, 165–188 (2016). https://doi.org/10.1016/j.nanoen.2016.03.023
Y. Yao, Y. You, G. Zhang, J. Liu, H. Sun et al., Highly functional bioinspired Fe/N/C oxygen reduction reaction catalysts: structure-regulating oxygen sorption. ACS Appl. Mater. Interfaces 8(10), 6464–6471 (2016). https://doi.org/10.1021/acsami.5b11870
S. Fu, C. Zhu, J. Song, D. Du, Y. Lin, Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction. Adv. Energy Mater. 7(19), 1700363 (2017). https://doi.org/10.1002/aenm.201700363
P. Zhang, L. Liu, X. He, X. Liu, H. Wang et al., Promoting surface-mediated oxygen reduction reaction of solid catalysts in metal–O2 batteries by capturing superoxide species. J. Am. Chem. Soc. 141(15), 6263–6270 (2019). https://doi.org/10.1021/jacs.8b13568
V. Petkov, Y. Maswadeh, Y. Zhao, A. Lu, H. Cronk et al., Nanoalloy catalysts inside fuel cells: an atomic-level perspective on the functionality by combined in operando X-ray spectroscopy and total scattering. Nano Energy 49, 209–220 (2018). https://doi.org/10.1016/j.nanoen.2018.04.049
C.H. Choi, C. Baldizzone, G. Polymeros, E. Pizzutilo, O. Kasian et al., Minimizing operando demetallation of Fe–N–C electrocatalysts in acidic medium. ACS Catal. 6(5), 3136–3146 (2016). https://doi.org/10.1021/acscatal.6b00643
K. Ebner, A.H. Clark, V.A. Saveleva, G. Smolentsev, J. Chen et al., Time-resolved potential-induced changes in Fe/N/C-catalysts studied by in situ modulation excitation X-ray absorption spectroscopy. Adv. Energy Mater. 12(14), 2103699 (2022). https://doi.org/10.1002/aenm.202103699
C. Fu, C. Liu, T. Li, X. Zhang, F. Wang et al., DFT calculations: a powerful tool for better understanding of electrocatalytic oxygen reduction reactions on Pt-based metallic catalysts. Comput. Mater. Sci. 170, 109202 (2019). https://doi.org/10.1016/j.commatsci.2019.109202
X. Liao, R. Lu, L. Xia, Q. Liu, H. Wang et al., Density functional theory for electrocatalysis. Energy Environ. Mater. 5(1), 157–185 (2021). https://doi.org/10.1002/eem2.12204
F. Gao, X.D. Tian, J.S. Lin, J.C. Dong, X.M. Lin et al., In situ Raman, FTIR, and XRD spectroscopic studies in fuel cells and rechargeable batteries. Nano Res. (2022). https://doi.org/10.1007/s12274-021-4044-1
C. Hu, L. Dai, Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem. Int. Ed. 55(39), 11736–11758 (2016). https://doi.org/10.1002/anie.201509982
Y. Jia, X. Xiong, D. Wang, X. Duan, K. Sun et al., Atomically dispersed Fe–N4 modified with precisely located S for highly efficient oxygen reduction. Nano-Micro Lett. 12, 116 (2020). https://doi.org/10.1007/s40820-020-00456-8
M. Liu, L. Wang, K. Zhao, S. Shi, Q. Shao et al., Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 12(10), 2890–2923 (2019). https://doi.org/10.1039/c9ee01722d
Z. Zhao, C. Chen, Z. Liu, J. Huang, M. Wu et al., Pt-based nanocrystal for electrocatalytic oxygen reduction. Adv. Mater. 31(31), 1808115 (2019). https://doi.org/10.1002/adma.201808115
W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang et al., Understanding the high activity of Fe–N–C electrocatalysts in oxygen reduction: Fe/Fe3C nanops boost the activity of Fe–Nx. J. Am. Chem. Soc. 138(10), 3570–3578 (2016). https://doi.org/10.1021/jacs.6b00757
H. Yin, Y. Dou, S. Chen, Z. Zhu, P. Liu et al., 2D electrocatalysts for converting earth-abundant simple molecules into value-added commodity chemicals: recent progress and perspectives. Adv. Mater. 32(18), 1904870 (2020). https://doi.org/10.1002/adma.201904870
A. Radwan, H. Jin, D. He, S. Mu, Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett. 13, 132 (2021). https://doi.org/10.1007/s40820-021-00656-w
H. Wang, Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 15(4), 2834–2854 (2021). https://doi.org/10.1007/s12274-021-3984-9
C.X. Zhao, J.N. Liu, J. Wang, D. Ren, B.Q. Li et al., Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 50(13), 7745–7778 (2021). https://doi.org/10.1039/d1cs00135c
K. Fan, P. Liu, H. Zhao, Distinctive O–O bond formation pathways at different electrode potentials. Matter 4(8), 2615–2617 (2021). https://doi.org/10.1016/j.matt.2021.07.004
Y. Liu, P. He, H. Zhou, Rechargeable solid-state Li–air and Li–S batteries: materials, construction, and challenges. Adv. Energy Mater. 8(4), 1701602 (2018). https://doi.org/10.1002/aenm.201701602
J. Lai, Y. Xing, N. Chen, L. Li, F. Wu et al., Electrolytes for rechargeable lithium-air batteries. Angew. Chem. Int. Ed. 59(8), 2974–2997 (2020). https://doi.org/10.1002/anie.201903459
C.Z. Shu, J.Z. Wang, J.P. Long, H.K. Liu, S.X. Dou, Understanding the reaction chemistry during charging in aprotic lithium-oxygen batteries: existing problems and solutions. Adv. Mater. 31(15), 1804587 (2019). https://doi.org/10.1002/adma.201804587
H. Zhang, G.G. Eshetu, X. Judez, C. Li, L.M. Rodriguez-Martinez et al., Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57(46), 15002–15027 (2018). https://doi.org/10.1002/anie.201712702
V. Pande, V. Viswanathan, Criteria and considerations for the selection of redox mediators in nonaqueous Li–O2 batteries. ACS Energy Lett. 2(1), 60–63 (2016). https://doi.org/10.1021/acsenergylett.6b00619
J. Huang, A. Faghri, Analysis of electrolyte level change in a lithium air battery. J. Power Sources 307, 45–55 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.092
Y. Xue, Y. Guo, Q. Zhang, Z. Xie, J. Wei et al., MOF-derived Co and Fe species loaded on N-doped carbon networks as efficient oxygen electrocatalysts for Zn–air batteries. Nano-Micro Lett. 14, 162 (2022). https://doi.org/10.1007/s40820-022-00890-w
M. Ren, J. Chen, G. Wu, E.A. McHugh, A.L. Tsai et al., Bioinspired redox mediator in lithium-oxygen batteries. ACS Catal. 11(3), 1833–1840 (2021). https://doi.org/10.1021/acscatal.0c04544
S.F. Hung, In-situ X-ray techniques for non-noble electrocatalysts. Pure Appl. Chem. 92(5), 733–749 (2020). https://doi.org/10.1515/pac-2019-1006
Y. Zhang, L. Song, Structural designs and in-situ X-ray characterizations of metal phosphides for electrocatalysis. ChemCatChem 12(14), 3621–3638 (2020). https://doi.org/10.1002/cctc.202000233
S. Liu, M. Wang, X. Sun, N. Xu, J. Liu et al., Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc-air batteries. Adv. Mater. 30(4), 1704898 (2018). https://doi.org/10.1002/adma.201704898
H. Huang, A.E. Russell, Approaches to achieve surface sensitivity in the in situ XAS of electrocatalysts. Curr. Opin. Electrochem. 27, 100681 (2021). https://doi.org/10.1016/j.coelec.2020.100681
J. Timoshenko, B.R. Cuenya, In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121(2), 882–961 (2021). https://doi.org/10.1021/acs.chemrev.0c00396
Y. Yang, Y. Wang, Y. Xiong, X. Huang, L. Shen et al., In situ X-ray absorption spectroscopy of a synergistic Co–Mn oxide catalyst for the oxygen reduction reaction. J. Am. Chem. Soc. 141(4), 1463–1466 (2019). https://doi.org/10.1021/jacs.8b12243
H.Q. Chen, L. Zou, D.Y. Wei, L.L. Zheng, Y.F. Wu et al., In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy. Chin. J. Catal. 43(1), 33–46 (2022). https://doi.org/10.1016/s1872-2067(21)63874-3
A.M. Tripathi, W.N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 47(3), 736–851 (2018). https://doi.org/10.1039/c7cs00180k
C. Hess, New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem. Soc. Rev. 50(5), 3519–3564 (2021). https://doi.org/10.1039/d0cs01059f
H. Li, P. Wei, D. Gao, G. Wang, In situ Raman spectroscopy studies for electrochemical CO2 reduction over Cu catalysts. Curr. Opin. Green Sustain. Chem. 34, 100589 (2022). https://doi.org/10.1016/j.cogsc.2022.100589
J.C. Dong, X.G. Zhang, V. Briega-Martos, X. Jin, J. Yang et al., In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019). https://doi.org/10.1038/s41560-018-0292-z
D. Liu, Z. Shadike, R. Lin, K. Qian, H. Li et al., Review of recent development of in situ/operando characterization techniques for lithium battery research. Adv. Mater. 31(28), 1806620 (2019). https://doi.org/10.1002/adma.201806620
S. Wu, Y. Sun, In situ techniques for probing kinetics and mechanism of hollowing nanostructures through direct chemical transformations. Small Methods 2(11), 1800165 (2018). https://doi.org/10.1002/smtd.201800165
Y. Da, X. Li, C. Zhong, Y. Deng, X. Han et al., Advanced characterization techniques for identifying the key active sites of gas-involved electrocatalysts. Adv. Funct. Mater. 30(35), 2001704 (2020). https://doi.org/10.1002/adfm.202001704
S. Nayak, I.J. McPherson, K.A. Vincent, Adsorbed intermediates in oxygen reduction on platinum nanops observed by in situ IR spectroscopy. Angew. Chem. Int. Ed. 57(39), 12855–12858 (2018). https://doi.org/10.1002/anie.201804978
H.D. Espinosa, R.A. Bernal, T. Filleter, In situ TEM electromechanical testing of nanowires and nanotubes. Small 8(21), 3233–3252 (2012). https://doi.org/10.1002/smll.201200342
K.W. Urban, Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321(5888), 506–510 (2008). https://doi.org/10.1126/science.1152800
M. Gong, D. Xiao, Z. Deng, R. Zhang, W. Xia et al., Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Appl. Catal. B 282, 119617 (2021). https://doi.org/10.1016/j.apcatb.2020.119617
Z.Z. Shen, C. Zhou, R. Wen, L.J. Wan, Surface mechanism of catalytic electrodes in lithium-oxygen batteries: how nanostructures mediate the interfacial reactions. J. Am. Chem. Soc. 142(37), 16007–16015 (2020). https://doi.org/10.1021/jacs.0c07167
Z.Z. Shen, Y.Z. Zhang, C. Zhou, R. Wen, L.J. Wan, Revealing the correlations between morphological evolution and surface reactivity of catalytic cathodes in lithium-oxygen batteries. J. Am. Chem. Soc. 143(51), 21604–21612 (2021). https://doi.org/10.1021/jacs.1c09700
Z. Jin, P. Li, Z. Fang, G. Yu, Emerging electrochemical techniques for probing site behavior in single-atom electrocatalysts. Acc. Chem. Res. 55(5), 759–769 (2022). https://doi.org/10.1021/acs.accounts.1c00785
Z. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao et al., Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4(7), 615–622 (2021). https://doi.org/10.1038/s41929-021-00650-w
P. Li, Z. Jin, Y. Qian, Z. Fang, D. Xiao et al., Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater. Today 35, 78–86 (2020). https://doi.org/10.1016/j.mattod.2019.10.006
M. Ding, Q. He, G. Wang, H.C. Cheng, Y. Huang et al., An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces. Nat. Commun. 6, 7867 (2015). https://doi.org/10.1038/ncomms8867
M. Ding, G. Zhong, Z. Zhao, Z. Huang, M. Li et al., On-chip in situ monitoring of competitive interfacial anionic chemisorption as a descriptor for oxygen reduction kinetics. ACS Cent. Sci. 4(5), 590–599 (2018). https://doi.org/10.1021/acscentsci.8b00082
C. Long, J. Han, J. Guo, C. Yang, S. Liu et al., Operando toolbox for heterogeneous interface in electrocatalysis. Chem Catal. 1(3), 509–522 (2021). https://doi.org/10.1016/j.checat.2021.07.012
K. Liu, A.I. Rykov, J. Wang, T. Zhang, Chapter one - recent advances in the application of Mößbauer spectroscopy in heterogeneous catalysis. Adv. Catal. 58, 1–142 (2015). https://doi.org/10.1016/bs.acat.2015.09.001
Y. Zeng, X. Li, J. Wang, M.T. Sougrati, Y. Huang et al., In situ/operando Mössbauer spectroscopy for probing heterogeneous catalysis. Chem Catal. 1(6), 1215–1233 (2021). https://doi.org/10.1016/j.checat.2021.08.013
T. Mineva, I. Matanovic, P. Atanassov, M.T. Sougrati, L. Stievano et al., Understanding active sites in pyrolyzed Fe–N–C catalysts for fuel cell cathodes by bridging density functional theory calculations and 57Fe Mössbauer spectroscopy. ACS Catal. 9(10), 9359–9371 (2019). https://doi.org/10.1021/acscatal.9b02586
M. Xiao, J. Zhu, L. Ma, Z. Jin, J. Ge et al., Microporous framework induced synthesis of single-atom dispersed Fe–N–C acidic ORR catalyst and its in situ reduced Fe–N4 active site identification revealed by X-ray absorption spectroscopy. ACS Catal. 8(4), 2824–2832 (2018). https://doi.org/10.1021/acscatal.8b00138
X. Li, C.S. Cao, S.F. Hung, Y.R. Lu, W. Cai et al., Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem 6(12), 3440–3454 (2020). https://doi.org/10.1016/j.chempr.2020.10.027
M. Escudero-Escribano, A.F. Pedersen, E.T. Ulrikkeholm, K.D. Jensen, M.H. Hansen et al., Active-phase formation and stability of Gd/Pt(111) electrocatalysts for oxygen reduction: an in situ grazing incidence X-ray diffraction study. Chem. Eur. J. 24(47), 12280–12290 (2018). https://doi.org/10.1002/chem.201801587
R. Gao, D. Zhou, D. Ning, W. Zhang, L. Huang et al., Probing the self-boosting catalysis of LiCoO2 in Li–O2 battery with multiple in situ/operando techniques. Adv. Funct. Mater. 30(28), 2002223 (2020). https://doi.org/10.1002/adfm.202002223
M. Gong, J. Zhu, M. Liu, P. Liu, Z. Deng et al., Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization. Nanoscale 11(42), 20301–20306 (2019). https://doi.org/10.1039/c9nr04975d
X. Zhao, H. Cheng, L. Song, L. Han, R. Zhang et al., Rhombohedral ordered intermetallic nanocatalyst boosts the oxygen reduction reaction. ACS Catal. 11(1), 184–192 (2020). https://doi.org/10.1021/acscatal.0c04021
H. Qin, L. Lin, J. Jia, H. Ni, Y. He et al., Synchrotron radiation in situ X-ray absorption fine structure and in situ X-ray diffraction analysis of a high-performance cobalt catalyst towards the oxygen reduction reaction. Phys. Chem. Chem. Phys. 19(45), 30749–30755 (2017). https://doi.org/10.1039/c7cp05888h
M. Tong, F. Sun, Y. Xie, Y. Wang, Y. Yang et al., Operando cooperated catalytic mechanism of atomically dispersed Cu–N4 and Zn–N4 for promoting oxygen reduction reaction. Angew. Chem. Int. Ed. 60(25), 14005–14012 (2021). https://doi.org/10.1002/anie.202102053
X. Han, T. Zhang, W. Chen, B. Dong, G. Meng et al., Mn–N4 oxygen reduction electrocatalyst: operando investigation of active sites and high performance in zinc-air battery. Adv. Energy Mater. 11(6), 2002753 (2020). https://doi.org/10.1002/aenm.202002753
Y. Ma, W. Gao, H. Shan, W. Chen, W. Shang et al., Platinum-based nanowires as active catalysts toward oxygen reduction reaction: in situ observation of surface-diffusion-assisted, solid-state oriented attachment. Adv. Mater. 29(46), 1703460 (2017). https://doi.org/10.1002/adma.201703460
M. Gocyla, S. Kuehl, M. Shviro, H. Heyen, S. Selve et al., Shape stability of octahedral PtNi nanocatalysts for electrochemical oxygen reduction reaction studied by in situ transmission electron microscopy. ACS Nano 12(6), 5306–5311 (2018). https://doi.org/10.1021/acsnano.7b09202
S. Dai, Y. Hou, M. Onoue, S. Zhang, W. Gao et al., Revealing surface elemental composition and dynamic processes involved in facet-dependent oxidation of Pt3Co nanops via in situ transmission electron microscopy. Nano Lett. 17(8), 4683–4688 (2017). https://doi.org/10.1021/acs.nanolett.7b01325
Z. Wang, X. Ke, K. Zhou, X. Xu, Y. Jin et al., Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction. J. Mater. Chem. A 9(34), 18515–18525 (2021). https://doi.org/10.1039/d1ta03036a
B.M. Gibbons, M. Wette, M.B. Stevens, R.C. Davis, S. Siahrostami et al., In situ X-ray absorption spectroscopy disentangles the roles of copper and silver in a bimetallic catalyst for the oxygen reduction reaction. Chem. Mater. 32(5), 1819–1827 (2020). https://doi.org/10.1021/acs.chemmater.9b03963
P. Li, Z. Jin, Y. Qian, Z. Fang, D. Xiao et al., Probing enhanced site activity of Co–Fe bimetallic subnanoclusters derived from dual cross-linked hydrogels for oxygen electrocatalysis. ACS Energy Lett. 4(8), 1793–1802 (2019). https://doi.org/10.1021/acsenergylett.9b00893
J. Wang, L. Lin, Y. He, H. Qin, S. Yan et al., Vacancy-assisted oxygen reduction reaction on cobalt-based catalysts in direct borohydride fuel cell revealed by in-situ XAFS and XRD. Electrochim. Acta 254, 72–78 (2017). https://doi.org/10.1016/j.electacta.2017.09.102
J. Li, M.T. Sougrati, A. Zitolo, J.M. Ablett, I.C. Oğuz et al., Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2020). https://doi.org/10.1038/s41929-020-00545-2
Z. Chen, H. Niu, J. Ding, H. Liu, P.H. Chen et al., Unraveling the origin of sulfur–doped Fe–N–C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning. Angew. Chem. Int. Ed. 60(48), 25404–25410 (2021). https://doi.org/10.1002/anie.202110243
Y. Lin, Z. Liu, L. Yu, G.R. Zhang, H. Tan et al., Overall oxygen electrocatalysis on nitrogen-modified carbon catalysts: identification of active sites and in situ observation of reactive intermediates. Angew. Chem. Int. Ed. 60(6), 3299–3306 (2021). https://doi.org/10.1002/anie.202012615
W. Cheng, X. Zhao, H. Su, F. Tang, W. Che et al., Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4(2), 115–122 (2019). https://doi.org/10.1038/s41560-018-0308-8
C. Tang, L. Chen, H. Li, L. Li, Y. Jiao et al., Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143(20), 7819–7827 (2021). https://doi.org/10.1021/jacs.1c03135
J.C. Dong, M. Su, V. Briega-Martos, L. Li, J.B. Le et al., Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 142(2), 715–719 (2020). https://doi.org/10.1021/jacs.9b12803
H. Ze, X. Chen, X.T. Wang, Y.H. Wang, Q.Q. Chen et al., Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J. Am. Chem. Soc. 143(3), 1318–1322 (2021). https://doi.org/10.1021/jacs.0c12755
H.Q. Chen, H. Ze, M.F. Yue, D.Y. Wei, A. Yao-Lin et al., Unmasking the critical role of the ordering degree of bimetallic nanocatalysts on oxygen reduction reaction by in situ Raman spectroscopy. Angew. Chem. Int. Ed. 61(16), e202117834 (2022). https://doi.org/10.1002/anie.202117834
Y.Y. Wang, D.J. Chen, Y.J. Tong, Mechanistic insight into sulfide-enhanced oxygen reduction reaction activity and stability of commercial Pt black: an in situ Raman spectroscopic study. ACS Catal. 6(8), 5000–5004 (2016). https://doi.org/10.1021/acscatal.6b00907
Y. Zhu, F. Yang, M. Guo, L. Chen, M. Gu, Real-time imaging of the electrochemical process in Na–O2 nanobatteries using Pt@CNT and Pt0.8Ir0.2@CNT air cathodes. ACS Nano 13(12), 14399–14407 (2019). https://doi.org/10.1021/acsnano.9b07961
D. Lee, H. Park, Y. Ko, H. Park, T. Hyeon et al., Direct observation of redox mediator-assisted solution-phase discharging of Li–O2 battery by liquid-phase transmission electron microscopy. J. Am. Chem. Soc. 141(20), 8047–8052 (2019). https://doi.org/10.1021/jacs.9b02332
S. Han, C. Cai, F. Yang, Y. Zhu, Q. Sun et al., Interrogation of the reaction mechanism in a Na–O2 battery using in situ transmission electron microscopy. ACS Nano 14(3), 3669–3677 (2020). https://doi.org/10.1021/acsnano.0c00283
M. Nesselberger, M. Arenz, In situ FTIR spectroscopy: probing the electrochemical interface during the oxygen reduction reaction on a commercial platinum high-surface-area catalyst. ChemCatChem 8(6), 1125–1131 (2016). https://doi.org/10.1002/cctc.201501193
A. Lachenwitzer, N. Li, J. Lipkowski, Determination of the acid dissociation constant for bisulfate adsorbed at the Pt(111) electrode by subtractively normalized interfacial Fourier transform infrared spectroscopy. J. Electroanal. Chem. 532(1), 85–98 (2002). https://doi.org/10.1016/S0022-0728(02)00759-3
J. Yang, W. Liu, M. Xu, X. Liu, H. Qi et al., Dynamic behavior of single-atom catalysts in electrocatalysis: identification of Cu–N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 143(36), 14530–14539 (2021). https://doi.org/10.1021/jacs.1c03788
K. Sengupta, S. Chatterjee, A. Dey, In situ mechanistic investigation of O2 reduction by iron porphyrin electrocatalysts using surface-enhanced resonance Raman spectroscopy coupled to rotating disk electrode (SERRS-RDE) setup. ACS Catal. 6(10), 6838–6852 (2016). https://doi.org/10.1021/acscatal.6b01122
Y.H. Wang, J.B. Le, W.Q. Li, J. Wei, P.M. Radjenovic et al., In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR). Angew. Chem. Int. Ed. 58(45), 16062–16066 (2019). https://doi.org/10.1002/anie.201908907
J. Wei, D. Xia, Y. Wei, X. Zhu, J. Li et al., Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe–N–C electrocatalysts by in situ Raman spectroscopy. ACS Catal. 12(13), 7811–7820 (2022). https://doi.org/10.1021/acscatal.2c00771
L. Ni, P. Theis, S. Paul, R.W. Stark, U.I. Kramm, In situ 57Fe Mössbauer study of a porphyrin based FeNC catalyst for ORR. Electrochim. Acta 395, 139200 (2021). https://doi.org/10.1016/j.electacta.2021.139200
X. Xu, X. Zhang, Z. Kuang, Z. Xia, A.I. Rykov et al., Investigation on the demetallation of Fe–N–C for oxygen reduction reaction: the influence of structure and structural evolution of active site. Appl. Catal. B 309, 121290 (2022). https://doi.org/10.1016/j.apcatb.2022.121290
Q. Jia, K. Caldwell, D.E. Ramaker, J.M. Ziegelbauer, Z. Liu et al., In situ spectroscopic evidence for ordered core-ultrathin shell Pt1Co1 nanops with enhanced activity and stability as oxygen reduction electrocatalysts. J. Phys. Chem. C 118(35), 20496–20503 (2014). https://doi.org/10.1021/jp507204k
H.T. Lien, S.T. Chang, P.T. Chen, D.P. Wong, Y.C. Chang et al., Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy. Nat. Commun. 11, 4233 (2020). https://doi.org/10.1038/s41467-020-17975-y
M. Jiang, F. Wang, F. Yang, H. He, J. Yang et al., Rationalization on high-loading iron and cobalt dual metal single atoms and mechanistic insight into the oxygen reduction reaction. Nano Energy 93, 106793 (2022). https://doi.org/10.1016/j.nanoen.2021.106793
H. Zhang, H.T. Chung, D.A. Cullen, S. Wagner, U.I. Kramm et al., High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 12(8), 2548–2558 (2019). https://doi.org/10.1039/c9ee00877b
S. Kosasang, N. Ma, P. Wuamprakhon, N. Phattharasupakun, T. Maihom et al., Insight into the effect of intercalated alkaline cations of layered manganese oxides on the oxygen reduction reaction and oxygen evolution reaction. Chem. Commun. 54(62), 8575–8578 (2018). https://doi.org/10.1039/c8cc03775b
D. Tian, S.R. Denny, K. Li, H. Wang, S. Kattel et al., Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem. Soc. Rev. 50(22), 12338–12376 (2021). https://doi.org/10.1039/d1cs00590a
Z. Zeng, J. Greeley, Characterization of oxygenated species at water/Pt(111) interfaces from DFT energetics and XPS simulations. Nano Energy 29, 369–377 (2016). https://doi.org/10.1016/j.nanoen.2016.05.044
H. Xu, D. Wang, P. Yang, A. Liu, R. Li et al., Atomically dispersed M–N–C catalysts for the oxygen reduction reaction. J. Mater. Chem. A 8(44), 23187–23201 (2020). https://doi.org/10.1039/d0ta08732g
N. Yang, L. Peng, L. Li, J. Li, Q. Liao et al., Theoretically probing the possible degradation mechanisms of an FeNC catalyst during the oxygen reduction reaction. Chem. Sci. 12(37), 12476–12484 (2021). https://doi.org/10.1039/d1sc02901k
Q.J. Fang, J.K. Pan, W. Zhang, F.L. Sun, W.X. Chen et al., Cooperatively interface role of surface atoms and aqueous media on single atom catalytic property for H2O2 synthesis. J. Colloid. Interface Sci. 617, 752–763 (2022). https://doi.org/10.1016/j.jcis.2022.03.052
H. Ji, M. Wang, S. Liu, H. Sun, J. Liu et al., In-situ observation as activity descriptor enables rational design of oxygen reduction catalyst for zinc-air battery. Energy Storage Mater. 27, 226–231 (2020). https://doi.org/10.1016/j.ensm.2020.02.002
E.M. Erickson, M.S. Thorum, R. Vasic, N.S. Marinkovic, A.I. Frenkel et al., In situ electrochemical X-ray absorption spectroscopy of oxygen reduction electrocatalysis with high oxygen flux. J. Am. Chem. Soc. 134(1), 197–200 (2012). https://doi.org/10.1021/ja210465x
V. Beermann, M.E. Holtz, E. Padgett, J.F. Araujo, D.A. Muller et al., Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM. Energy Environ. Sci. 12(8), 2476–2485 (2019). https://doi.org/10.1039/c9ee01185d
R. Wen, M. Hong, H.R. Byon, In situ AFM imaging of Li–O2 electrochemical reaction on highly oriented pyrolytic graphite with ether-based electrolyte. J. Am. Chem. Soc. 135(29), 10870–10876 (2013). https://doi.org/10.1021/ja405188g
Y. Xiao, J. Hong, X. Wang, T. Chen, T. Hyeon et al., Revealing kinetics of two-electron oxygen reduction reaction at single-molecule level. J. Am. Chem. Soc. 142(30), 13201–13209 (2020). https://doi.org/10.1021/jacs.0c06020
Y. Suchorski, J. Zeininger, S. Buhr, M. Raab, M. Stöger-Pollach et al., Resolving multifrequential oscillations and nanoscale interfacet communication in single-p catalysis. Science 372(6548), 1314–1318 (2021). https://doi.org/10.1126/science.abf8107