Tailoring the Reversible Phase Transition of Perovskite Nanofiber Electrodes for High-Performance and Durable Reversible Solid Oxide Cells
Corresponding Author: Jun Zhou
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 150
Abstract
Reversible solid oxide cells (RSOCs) are capable of converting various energy resources, between electricity and chemical fuels, with high efficiency and flexibility, making them suitable for grid balancing and renewable energy consumption. However, the practical application of RSOCs is still limited by the insufficient activity and stability of the electrodes in different operating modes. Herein, a highly efficient symmetrical electrode composed of La0.3Sr0.6Ti0.1Co0.2Fe0.7O3−δ (LSTCF) nanofibers and in situ exsolved Co3Fe7 nanoparticles is developed for boosting the performance of RSOCs. The reversible phase transition, high activity and stability of the electrode have been confirmed by a combination of experimental (e.g., transmission electron microscopy and X-ray absorption fine structure) and computational studies. Electrolyte-supported RSOCs with the symmetrical electrode demonstrate excellent catalytic activity and stability, achieving a high peak power density of 0.98 W cm−2 in the fuel cell mode using H2 as the fuel (or 0.53 W cm−2 using CH4 as the fuel) and a high current density of 1.09 A cm−2 at 1.4 V in the CO2 electrolysis mode (or 1.03 A cm−2 at 1.3 V for H2O electrolysis) at 800 °C while maintaining excellent durability for over 100 h.
Highlights:
1 La0.3Sr0.6Ti0.1Co0.2Fe0.7O3−δ (LSTCF) nanofibers showed high structural reversibility.
2 LSTCF fibers and CoFe nanoparticles were reconstructed through a reversible phase transition process.
3 The LSTCF fiber electrode demonstrated excellent activity and stability for power and fuel co-generation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Hauch, R. Küngas, P. Blennow, A.B. Hansen, J.B. Hansen et al., Recent advances in solid oxide cell technology for electrolysis. Science 370, 6513 (2020). https://doi.org/10.1126/science.aba6118
- S. He, Y. Zou, K. Chen, S.P. Jiang, A critical review of key materials and issues in solid oxide cells. Interdiscip. Mater. 2, 111–136 (2023). https://doi.org/10.1002/idm2.12068
- J. Ren, H. Lou, N. Xu, F. Zeng, G. Pei et al., Methanation of CO/CO2 for power to methane process: fundamentals, status, and perspectives. J. Energy Chem. 80, 182–206 (2023). https://doi.org/10.1016/j.jechem.2023.01.034
- J. Chen, X. Gao, X. Chen, Z. Zhen, Y. Chen et al., Recent advances of perovskite oxide-based cathodes in solid oxide electrolysis cells for CO2 electroreduction. Mater. Today Phys. 38, 101237 (2023). https://doi.org/10.1016/j.mtphys.2023.101237
- M. Yang, S. Liu, X. Shen, R. Xu, J. Feng et al., Robust cathode for efficient CO2 electrolysis driven by entropy engineering in solid oxide electrolysis cells. ACS Energy Lett. 9, 3818–3827 (2024). https://doi.org/10.1021/acsenergylett.4c01447
- D. Neagu, G. Tsekouras, D.N. Miller, H. Ménard, J.T.S. Irvine, In situ growth of nanops through control of non-stoichiometry. Nat. Chem. 5, 916–923 (2013). https://doi.org/10.1038/nchem.1773
- J.-H. Myung, D. Neagu, D.N. Miller, J.T.S. Irvine, Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016). https://doi.org/10.1038/nature19090
- N.W. Kwak, S.J. Jeong, H.G. Seo, S. Lee, Y. Kim et al., In situ synthesis of supported metal nanocatalysts through heterogeneous doping. Nat. Commun. 9, 4829 (2018). https://doi.org/10.1038/s41467-018-07050-y
- T. Zhu, H.E. Troiani, L.V. Mogni, M. Han, S.A. Barnett, Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: achieving high performance via metal alloy nanop exsolution. Joule 2, 478–496 (2018). https://doi.org/10.1016/j.joule.2018.02.006
- C. Zhao, Y. Li, W. Zhang, Y. Zheng, X. Lou et al., Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy Environ. Sci. 13, 53–85 (2020). https://doi.org/10.1039/c9ee02230a
- Y.H. Kim, H. Jeong, B.R. Won, H. Jeon, C. Park et al., Nanop exsolution on perovskite oxides: insights into mechanism, characteristics and novel strategies. Nano-Micro Lett. 16, 33 (2024). https://doi.org/10.1007/s40820-023-01258-4
- J. Li, B. Wei, X. Yue, Z. Lü, A highly efficient and robust perovskite anode with iron-palladium co-exsolutions for intermediate-temperature solid-oxide fuel cells. ChemSusChem 11, 2593–2603 (2018). https://doi.org/10.1002/cssc.201800641
- B. Niu, C. Lu, W. Yi, S. Luo, X. Li et al., In-situ growth of nanops-decorated double perovskite electrode materials for symmetrical solid oxide cells. Appl. Catal. B Environ. 270, 118842 (2020). https://doi.org/10.1016/j.apcatb.2020.118842
- F. He, M. Hou, F. Zhu, D. Liu, H. Zhang et al., Building efficient and durable hetero-interfaces on a perovskite-based electrode for electrochemical CO2 reduction. Adv. Energy Mater. 12, 2202175 (2022). https://doi.org/10.1002/aenm.202202175
- Z. Wang, T. Tan, K. Du, Q. Zhang, M. Liu et al., A high-entropy layered perovskite coated with in situ exsolved core-shell CuFe@FeOx nanops for efficient CO2 electrolysis. Adv. Mater. 36, 2312119 (2024). https://doi.org/10.1002/adma.202312119
- N. Zhang, A. Naden, L. Zhang, X. Yang, P. Connor et al., Enhanced CO2 electrolysis through Mn substitution coupled with Ni exsolution in lanthanum calcium titanate electrodes. Adv. Mater. 36, 2308481 (2024). https://doi.org/10.1002/adma.202308481
- H. Lv, T. Liu, X. Zhang, Y. Song, H. Matsumoto et al., Atomic-scale insight into exsolution of CoFe alloy nanops in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ with efficient CO2 electrolysis. Angew. Chem. Int. Ed. 59, 15968–15973 (2020). https://doi.org/10.1002/anie.202006536
- J. Cao, Y. Ji, Z. Shao, Nanotechnologies in ceramic electrochemical cells. Chem. Soc. Rev. 53, 450–501 (2024). https://doi.org/10.1039/D3CS00303E
- O. Kwon, S. Sengodan, K. Kim, G. Kim, H.Y. Jeong et al., Exsolution trends and co-segregation aspects of self-grown catalyst nanops in perovskites. Nat. Commun. 8, 15967 (2017). https://doi.org/10.1038/ncomms15967
- C. Yang, Z. Yang, C. Jin, G. Xiao, F. Chen et al., Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv. Mater. 24, 1439–1443 (2012). https://doi.org/10.1002/adma.201104852
- B.-W. Zhang, M.-N. Zhu, M.-R. Gao, X. Xi, N. Duan et al., Boosting the stability of perovskites with exsolved nanops by B-site supplement mechanism. Nat. Commun. 13, 4618 (2022). https://doi.org/10.1038/s41467-022-32393-y
- B.-W. Zhang, M.-N. Zhu, M.-R. Gao, J. Chen, X. Xi et al., Phase transition engineering of host perovskite toward optimal exsolution-facilitated catalysts for carbon dioxide electrolysis. Angew. Chem. Int. Ed. 62, e202305552 (2023). https://doi.org/10.1002/anie.202305552
- H. Lv, L. Lin, X. Zhang, R. Li, Y. Song, Promoting exsolution of RuFe alloy nanops on Sr2Fe1.4Ru0.1Mo0.5O6−δ via repeated redox manipulations for CO2 electrolysis. Nat. Commun. 12, 5665 (2021). https://doi.org/10.1038/s41467-021-26001-8
- X. Shen, T. Chen, S.R. Bishop, N.H. Perry, H.L. Tuller et al., Redox cycling induced Ni exsolution in Gd0.1Ce0.8Ni0.1O2-(Sr0.9La0.1)0.9Ti0.9Ni0.1O3 composite solid oxide fuel cell anodes. J. Power Sources 370, 122–130 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.009
- C. Su, W. Wang, M. Liu, M.O. Tadé, Z. Shao, Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes. Adv. Energy Mater. 5, 1500188 (2015). https://doi.org/10.1002/aenm.201500188
- J. Wang, J. Zhou, J. Yang, Z. Zong, L. Fu et al., Nanoscale architecture of (La0.6Sr1.4)0.95Mn0.9B0.1O4 (B=Co, Ni, Cu) Ruddlesden–Popper oxides as efficient and durable catalysts for symmetrical solid oxide fuel cells. Renew. Energy 157, 840–850 (2020). https://doi.org/10.1016/j.renene.2020.05.014
- P.R. Slater, D.P. Fagg, J.T.S. Irvine, Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells. J. Mater. Chem. 7, 2495–2498 (1997). https://doi.org/10.1039/A702865B
- X. Li, H. Zhao, X. Zhou, N. Xu, Z. Xie et al., Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells. Int. J. Hydrog. Energy 35, 7913–7918 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.043
- Z. Liu, J. Zhou, Y. Sun, X. Yue, J. Yang et al., Tuning exsolution of nanops in defect engineered layered perovskite oxides for efficient CO2 electrolysis. J. Energy Chem. 84, 219–227 (2023). https://doi.org/10.1016/j.jechem.2023.05.033
- A.I. Tsiotsias, B. Ehrhardt, B. Rudolph, L. Nodari, S. Kim et al., Bimetallic exsolved heterostructures of controlled composition with tunable catalytic properties. ACS Nano 16, 8904–8916 (2022). https://doi.org/10.1021/acsnano.1c11111
- Y. Chen, Y. Bu, Y. Zhang, R. Yan, D. Ding et al., A highly efficient and robust nanofiber cathode for solid oxide fuel cells. Adv. Energy Mater. 7, 1601890 (2017). https://doi.org/10.1002/aenm.201601890
- Y. Chen, Y. Bu, B. Zhao, Y. Zhang, D. Ding et al., A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy 26, 90–99 (2016). https://doi.org/10.1016/j.nanoen.2016.05.001
- B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719
- M. Muñoz, P. Argoul, F. Farges, Continuous cauchy wavelet transform analyses of EXAFS spectra: a qualitative approach. Am. Mineral. 88, 694–700 (2003). https://doi.org/10.2138/am-2003-0423
- M. Muñoz, F. Farges, P. Argoul, Continuous cauchy wavelet transform of XAFS spectra. Phys. Scr. 2005, 221 (2005). https://doi.org/10.1238/Physica.Topical.115a00221
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- Y. Guo, S. Wang, R. Li, J. Yu, X. Zhang et al., In situ exsolved CoFe alloy nanops for stable anodic methane reforming in solid oxide electrolysis cells. Joule 8, 2016–2032 (2024). https://doi.org/10.1016/j.joule.2024.04.009
- D. Neagu, T.-S. Oh, D. Miller, H. Ménard, S.M. Bukhari et al., Nano-socketed nickel ps with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 6, 8120 (2015). https://doi.org/10.1038/ncomms9120
- Z. Jiang, T. Fang, Dissociation mechanism of H2O on clean and oxygen-covered Cu (111) surfaces: a theoretical study. Vacuum 128, 252–258 (2016). https://doi.org/10.1016/j.vacuum.2016.03.030
- A. López-García, A.J. Carrillo, C.E. Jiménez, R.S. Anzorena, R. Garcia-Diez et al., Understanding the evolution of ternary alloyed nanops during reversible exsolution from double perovskite oxides. J. Mater. Chem. A 12, 22609–22626 (2024). https://doi.org/10.1039/D4TA03146F
- M. Jiang, C. Fu, R. Cheng, W. Zhang, T. Liu et al., Integrated and binder-free air cathodes of Co3Fe7 nanoalloy and Co5.47N encapsulated in nitrogen-doped carbon foam with superior oxygen reduction activity in flexible aluminum-air batteries. Adv. Sci. 7, 2000747 (2020). https://doi.org/10.1002/advs.202000747
- O. Kwon, S. Joo, S. Choi, S. Sengodan, G. Kim, Review on exsolution and its driving forces in perovskites. J. Phys. Energy 2, 032001 (2020). https://doi.org/10.1088/2515-7655/ab8c1f
- D. Burnat, R. Kontic, L. Holzer, P. Steiger, D. Ferri et al., Smart material concept: reversible microstructural self-regeneration for catalytic applications. J. Mater. Chem. A 4, 11939–11948 (2016). https://doi.org/10.1039/c6ta03417a
- S. Jo, Y. Han Kim, H. Jeong, C.-H. Park, B.-R. Won et al., Exsolution of phase-separated nanops via trigger effect toward reversible solid oxide cell. Appl. Energy 323, 119615 (2022). https://doi.org/10.1016/j.apenergy.2022.119615
- J. Kim, Y.J. Kim, M. Ferree, S. Gunduz, A.C. Co et al., In-situ exsolution of bimetallic CoFe nanops on (La, Sr)FeO3 perovskite: its effect on electrocatalytic oxidative coupling of methane. Appl. Catal. B Environ. 321, 122026 (2023). https://doi.org/10.1016/j.apcatb.2022.122026
- H. Li, Y. Song, M. Xu, W. Wang, R. Ran et al., Exsolved alloy nanops decorated Ruddlesden–Popper perovskite as sulfur-tolerant anodes for solid oxide fuel cells. Energy Fuels 34, 11449–11457 (2020). https://doi.org/10.1021/acs.energyfuels.0c02228
- Y. Gao, D. Chen, M. Saccoccio, Z. Lu, F. Ciucci, From material design to mechanism study: nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy 27, 499–508 (2016). https://doi.org/10.1016/j.nanoen.2016.07.013
- S. Jo, H.G. Jeong, Y.H. Kim, D. Neagu, J.-H. Myung, Stability and activity controls of Cu nanops for high-performance solid oxide fuel cells. Appl. Catal. B Environ. 285, 119828 (2021). https://doi.org/10.1016/j.apcatb.2020.119828
- D. Kim, J.W. Park, M.S. Chae, I. Jeong, J.H. Park et al., An efficient and robust lanthanum strontium cobalt ferrite catalyst as a bifunctional oxygen electrode for reversible solid oxide cells. J. Mater. Chem. A 9, 5507–5521 (2021). https://doi.org/10.1039/d0ta11233j
- Y. Tian, W. Wang, Y. Liu, A. Naden, M. Xu et al., Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells. ACS Catal. 11, 3704–3714 (2021). https://doi.org/10.1021/acscatal.0c05543
- X. Wang, S. Xi, P. Huang, Y. Du, H. Zhong et al., Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022). https://doi.org/10.1038/s41586-022-05296-7
- O. Haas, U.F. Vogt, C. Soltmann, A. Braun, W.S. Yoon et al., The Fe K-edge X-ray absorption characteristics of La1−xSrxFeO3−δ prepared by solid state reaction. Mater. Res. Bull. 44, 1397–1404 (2009). https://doi.org/10.1016/j.materresbull.2008.11.026
- X. Yang, J. Cheng, H. Li, Y. Xu, W. Tu et al., Self-supported N-doped hierarchical Co3O4 electrocatalyst with abundant oxygen vacancies for acidic water oxidation. Chem. Eng. J. 465, 142745 (2023). https://doi.org/10.1016/j.cej.2023.142745
- X. Kong, X. Zhou, Y. Tian, X. Wu, J. Zhang et al., Niobium doped lanthanum calcium ferrite perovskite as a novel electrode material for symmetrical solid oxide fuel cells. J. Power Sources 326, 35–42 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.111
- M. Chanthanumataporn, J. Hui, X. Yue, K. Kakinuma, J.T.S. Irvine et al., Electrical reduction of perovskite electrodes for accelerating exsolution of nanops. Electrochim. Acta 306, 159–166 (2019). https://doi.org/10.1016/j.electacta.2019.03.126
- Y. Gu, Y. Zhang, Y. Zheng, H. Chen, L. Ge et al., PrBaMn2O5+δ with praseodymium oxide nano-catalyst as electrode for symmetrical solid oxide fuel cells. Appl. Catal. B Environ. 257, 117868 (2019). https://doi.org/10.1016/j.apcatb.2019.117868
- V. Kyriakou, D. Neagu, E.I. Papaioannou, I.S. Metcalfe, M.C.M. van de Sanden et al., Co-electrolysis of H2O and CO2 on exsolved Ni nanops for efficient syngas generation at controllable H2/CO ratios. Appl. Catal. B Environ. 258, 117950 (2019). https://doi.org/10.1016/j.apcatb.2019.117950
- S. He, M. Li, J. Hui, X. Yue, In-situ construction of ceria-metal/titanate heterostructure with controllable architectures for efficient fuel electrochemical conversion. Appl. Catal. B Environ. 298, 120588 (2021). https://doi.org/10.1016/j.apcatb.2021.120588
- M. Xu, R. Cao, S. Wu, J. Lee, D. Chen et al., Nanop exsolution via electrochemical switching in perovskite fibers for solid oxide fuel cell electrodes. J. Mater. Chem. A 11, 13007–13015 (2023). https://doi.org/10.1039/d3ta00535f
- J. Yang, J. Zhou, Z. Liu, Y. Sun, C. Yin et al., Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution. J. Power Sources 580, 233369 (2023). https://doi.org/10.1016/j.jpowsour.2023.233369
- Y. Tian, L. Zhang, Y. Liu, L. Jia, J. Yang et al., A self-recovering robust electrode for highly efficient CO2 electrolysis in symmetrical solid oxide electrolysis cells. J. Mater. Chem. A 7, 6395–6400 (2019). https://doi.org/10.1039/C9TA00643E
- Z. Pan, H. Shi, S. Wang, H. Jiang, Y. Zheng, Highly active and stable A-site Pr-doped LaSrCrMnO-based fuel electrode for direct CO2 solid oxide electrolyzer cells. Int. J. Hydrog. Energy 45, 14648–14659 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.224
- L. Ye, M. Zhang, P. Huang, G. Guo, M. Hong et al., Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 8, 14785 (2017). https://doi.org/10.1038/ncomms14785
- T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
- Y. Zhou, Z. Zhou, Y. Song, X. Zhang, F. Guan et al., Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. Nano Energy 50, 43–51 (2018). https://doi.org/10.1016/j.nanoen.2018.04.054
- A. Akhmadjonov, K.T. Bae, K.T. Lee, Novel perovskite oxide hybrid nanofibers embedded with nanocatalysts for highly efficient and durable electrodes in direct CO2 electrolysis. Nano-Micro Lett. 16, 93 (2024). https://doi.org/10.1007/s40820-023-01298-w
References
A. Hauch, R. Küngas, P. Blennow, A.B. Hansen, J.B. Hansen et al., Recent advances in solid oxide cell technology for electrolysis. Science 370, 6513 (2020). https://doi.org/10.1126/science.aba6118
S. He, Y. Zou, K. Chen, S.P. Jiang, A critical review of key materials and issues in solid oxide cells. Interdiscip. Mater. 2, 111–136 (2023). https://doi.org/10.1002/idm2.12068
J. Ren, H. Lou, N. Xu, F. Zeng, G. Pei et al., Methanation of CO/CO2 for power to methane process: fundamentals, status, and perspectives. J. Energy Chem. 80, 182–206 (2023). https://doi.org/10.1016/j.jechem.2023.01.034
J. Chen, X. Gao, X. Chen, Z. Zhen, Y. Chen et al., Recent advances of perovskite oxide-based cathodes in solid oxide electrolysis cells for CO2 electroreduction. Mater. Today Phys. 38, 101237 (2023). https://doi.org/10.1016/j.mtphys.2023.101237
M. Yang, S. Liu, X. Shen, R. Xu, J. Feng et al., Robust cathode for efficient CO2 electrolysis driven by entropy engineering in solid oxide electrolysis cells. ACS Energy Lett. 9, 3818–3827 (2024). https://doi.org/10.1021/acsenergylett.4c01447
D. Neagu, G. Tsekouras, D.N. Miller, H. Ménard, J.T.S. Irvine, In situ growth of nanops through control of non-stoichiometry. Nat. Chem. 5, 916–923 (2013). https://doi.org/10.1038/nchem.1773
J.-H. Myung, D. Neagu, D.N. Miller, J.T.S. Irvine, Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016). https://doi.org/10.1038/nature19090
N.W. Kwak, S.J. Jeong, H.G. Seo, S. Lee, Y. Kim et al., In situ synthesis of supported metal nanocatalysts through heterogeneous doping. Nat. Commun. 9, 4829 (2018). https://doi.org/10.1038/s41467-018-07050-y
T. Zhu, H.E. Troiani, L.V. Mogni, M. Han, S.A. Barnett, Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: achieving high performance via metal alloy nanop exsolution. Joule 2, 478–496 (2018). https://doi.org/10.1016/j.joule.2018.02.006
C. Zhao, Y. Li, W. Zhang, Y. Zheng, X. Lou et al., Heterointerface engineering for enhancing the electrochemical performance of solid oxide cells. Energy Environ. Sci. 13, 53–85 (2020). https://doi.org/10.1039/c9ee02230a
Y.H. Kim, H. Jeong, B.R. Won, H. Jeon, C. Park et al., Nanop exsolution on perovskite oxides: insights into mechanism, characteristics and novel strategies. Nano-Micro Lett. 16, 33 (2024). https://doi.org/10.1007/s40820-023-01258-4
J. Li, B. Wei, X. Yue, Z. Lü, A highly efficient and robust perovskite anode with iron-palladium co-exsolutions for intermediate-temperature solid-oxide fuel cells. ChemSusChem 11, 2593–2603 (2018). https://doi.org/10.1002/cssc.201800641
B. Niu, C. Lu, W. Yi, S. Luo, X. Li et al., In-situ growth of nanops-decorated double perovskite electrode materials for symmetrical solid oxide cells. Appl. Catal. B Environ. 270, 118842 (2020). https://doi.org/10.1016/j.apcatb.2020.118842
F. He, M. Hou, F. Zhu, D. Liu, H. Zhang et al., Building efficient and durable hetero-interfaces on a perovskite-based electrode for electrochemical CO2 reduction. Adv. Energy Mater. 12, 2202175 (2022). https://doi.org/10.1002/aenm.202202175
Z. Wang, T. Tan, K. Du, Q. Zhang, M. Liu et al., A high-entropy layered perovskite coated with in situ exsolved core-shell CuFe@FeOx nanops for efficient CO2 electrolysis. Adv. Mater. 36, 2312119 (2024). https://doi.org/10.1002/adma.202312119
N. Zhang, A. Naden, L. Zhang, X. Yang, P. Connor et al., Enhanced CO2 electrolysis through Mn substitution coupled with Ni exsolution in lanthanum calcium titanate electrodes. Adv. Mater. 36, 2308481 (2024). https://doi.org/10.1002/adma.202308481
H. Lv, T. Liu, X. Zhang, Y. Song, H. Matsumoto et al., Atomic-scale insight into exsolution of CoFe alloy nanops in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ with efficient CO2 electrolysis. Angew. Chem. Int. Ed. 59, 15968–15973 (2020). https://doi.org/10.1002/anie.202006536
J. Cao, Y. Ji, Z. Shao, Nanotechnologies in ceramic electrochemical cells. Chem. Soc. Rev. 53, 450–501 (2024). https://doi.org/10.1039/D3CS00303E
O. Kwon, S. Sengodan, K. Kim, G. Kim, H.Y. Jeong et al., Exsolution trends and co-segregation aspects of self-grown catalyst nanops in perovskites. Nat. Commun. 8, 15967 (2017). https://doi.org/10.1038/ncomms15967
C. Yang, Z. Yang, C. Jin, G. Xiao, F. Chen et al., Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv. Mater. 24, 1439–1443 (2012). https://doi.org/10.1002/adma.201104852
B.-W. Zhang, M.-N. Zhu, M.-R. Gao, X. Xi, N. Duan et al., Boosting the stability of perovskites with exsolved nanops by B-site supplement mechanism. Nat. Commun. 13, 4618 (2022). https://doi.org/10.1038/s41467-022-32393-y
B.-W. Zhang, M.-N. Zhu, M.-R. Gao, J. Chen, X. Xi et al., Phase transition engineering of host perovskite toward optimal exsolution-facilitated catalysts for carbon dioxide electrolysis. Angew. Chem. Int. Ed. 62, e202305552 (2023). https://doi.org/10.1002/anie.202305552
H. Lv, L. Lin, X. Zhang, R. Li, Y. Song, Promoting exsolution of RuFe alloy nanops on Sr2Fe1.4Ru0.1Mo0.5O6−δ via repeated redox manipulations for CO2 electrolysis. Nat. Commun. 12, 5665 (2021). https://doi.org/10.1038/s41467-021-26001-8
X. Shen, T. Chen, S.R. Bishop, N.H. Perry, H.L. Tuller et al., Redox cycling induced Ni exsolution in Gd0.1Ce0.8Ni0.1O2-(Sr0.9La0.1)0.9Ti0.9Ni0.1O3 composite solid oxide fuel cell anodes. J. Power Sources 370, 122–130 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.009
C. Su, W. Wang, M. Liu, M.O. Tadé, Z. Shao, Progress and prospects in symmetrical solid oxide fuel cells with two identical electrodes. Adv. Energy Mater. 5, 1500188 (2015). https://doi.org/10.1002/aenm.201500188
J. Wang, J. Zhou, J. Yang, Z. Zong, L. Fu et al., Nanoscale architecture of (La0.6Sr1.4)0.95Mn0.9B0.1O4 (B=Co, Ni, Cu) Ruddlesden–Popper oxides as efficient and durable catalysts for symmetrical solid oxide fuel cells. Renew. Energy 157, 840–850 (2020). https://doi.org/10.1016/j.renene.2020.05.014
P.R. Slater, D.P. Fagg, J.T.S. Irvine, Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells. J. Mater. Chem. 7, 2495–2498 (1997). https://doi.org/10.1039/A702865B
X. Li, H. Zhao, X. Zhou, N. Xu, Z. Xie et al., Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells. Int. J. Hydrog. Energy 35, 7913–7918 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.043
Z. Liu, J. Zhou, Y. Sun, X. Yue, J. Yang et al., Tuning exsolution of nanops in defect engineered layered perovskite oxides for efficient CO2 electrolysis. J. Energy Chem. 84, 219–227 (2023). https://doi.org/10.1016/j.jechem.2023.05.033
A.I. Tsiotsias, B. Ehrhardt, B. Rudolph, L. Nodari, S. Kim et al., Bimetallic exsolved heterostructures of controlled composition with tunable catalytic properties. ACS Nano 16, 8904–8916 (2022). https://doi.org/10.1021/acsnano.1c11111
Y. Chen, Y. Bu, Y. Zhang, R. Yan, D. Ding et al., A highly efficient and robust nanofiber cathode for solid oxide fuel cells. Adv. Energy Mater. 7, 1601890 (2017). https://doi.org/10.1002/aenm.201601890
Y. Chen, Y. Bu, B. Zhao, Y. Zhang, D. Ding et al., A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy 26, 90–99 (2016). https://doi.org/10.1016/j.nanoen.2016.05.001
B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005). https://doi.org/10.1107/S0909049505012719
M. Muñoz, P. Argoul, F. Farges, Continuous cauchy wavelet transform analyses of EXAFS spectra: a qualitative approach. Am. Mineral. 88, 694–700 (2003). https://doi.org/10.2138/am-2003-0423
M. Muñoz, F. Farges, P. Argoul, Continuous cauchy wavelet transform of XAFS spectra. Phys. Scr. 2005, 221 (2005). https://doi.org/10.1238/Physica.Topical.115a00221
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
Y. Guo, S. Wang, R. Li, J. Yu, X. Zhang et al., In situ exsolved CoFe alloy nanops for stable anodic methane reforming in solid oxide electrolysis cells. Joule 8, 2016–2032 (2024). https://doi.org/10.1016/j.joule.2024.04.009
D. Neagu, T.-S. Oh, D. Miller, H. Ménard, S.M. Bukhari et al., Nano-socketed nickel ps with enhanced coking resistance grown in situ by redox exsolution. Nat. Commun. 6, 8120 (2015). https://doi.org/10.1038/ncomms9120
Z. Jiang, T. Fang, Dissociation mechanism of H2O on clean and oxygen-covered Cu (111) surfaces: a theoretical study. Vacuum 128, 252–258 (2016). https://doi.org/10.1016/j.vacuum.2016.03.030
A. López-García, A.J. Carrillo, C.E. Jiménez, R.S. Anzorena, R. Garcia-Diez et al., Understanding the evolution of ternary alloyed nanops during reversible exsolution from double perovskite oxides. J. Mater. Chem. A 12, 22609–22626 (2024). https://doi.org/10.1039/D4TA03146F
M. Jiang, C. Fu, R. Cheng, W. Zhang, T. Liu et al., Integrated and binder-free air cathodes of Co3Fe7 nanoalloy and Co5.47N encapsulated in nitrogen-doped carbon foam with superior oxygen reduction activity in flexible aluminum-air batteries. Adv. Sci. 7, 2000747 (2020). https://doi.org/10.1002/advs.202000747
O. Kwon, S. Joo, S. Choi, S. Sengodan, G. Kim, Review on exsolution and its driving forces in perovskites. J. Phys. Energy 2, 032001 (2020). https://doi.org/10.1088/2515-7655/ab8c1f
D. Burnat, R. Kontic, L. Holzer, P. Steiger, D. Ferri et al., Smart material concept: reversible microstructural self-regeneration for catalytic applications. J. Mater. Chem. A 4, 11939–11948 (2016). https://doi.org/10.1039/c6ta03417a
S. Jo, Y. Han Kim, H. Jeong, C.-H. Park, B.-R. Won et al., Exsolution of phase-separated nanops via trigger effect toward reversible solid oxide cell. Appl. Energy 323, 119615 (2022). https://doi.org/10.1016/j.apenergy.2022.119615
J. Kim, Y.J. Kim, M. Ferree, S. Gunduz, A.C. Co et al., In-situ exsolution of bimetallic CoFe nanops on (La, Sr)FeO3 perovskite: its effect on electrocatalytic oxidative coupling of methane. Appl. Catal. B Environ. 321, 122026 (2023). https://doi.org/10.1016/j.apcatb.2022.122026
H. Li, Y. Song, M. Xu, W. Wang, R. Ran et al., Exsolved alloy nanops decorated Ruddlesden–Popper perovskite as sulfur-tolerant anodes for solid oxide fuel cells. Energy Fuels 34, 11449–11457 (2020). https://doi.org/10.1021/acs.energyfuels.0c02228
Y. Gao, D. Chen, M. Saccoccio, Z. Lu, F. Ciucci, From material design to mechanism study: nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy 27, 499–508 (2016). https://doi.org/10.1016/j.nanoen.2016.07.013
S. Jo, H.G. Jeong, Y.H. Kim, D. Neagu, J.-H. Myung, Stability and activity controls of Cu nanops for high-performance solid oxide fuel cells. Appl. Catal. B Environ. 285, 119828 (2021). https://doi.org/10.1016/j.apcatb.2020.119828
D. Kim, J.W. Park, M.S. Chae, I. Jeong, J.H. Park et al., An efficient and robust lanthanum strontium cobalt ferrite catalyst as a bifunctional oxygen electrode for reversible solid oxide cells. J. Mater. Chem. A 9, 5507–5521 (2021). https://doi.org/10.1039/d0ta11233j
Y. Tian, W. Wang, Y. Liu, A. Naden, M. Xu et al., Achieving strong coherency for a composite electrode via one-pot method with enhanced electrochemical performance in reversible solid oxide cells. ACS Catal. 11, 3704–3714 (2021). https://doi.org/10.1021/acscatal.0c05543
X. Wang, S. Xi, P. Huang, Y. Du, H. Zhong et al., Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 611, 702–708 (2022). https://doi.org/10.1038/s41586-022-05296-7
O. Haas, U.F. Vogt, C. Soltmann, A. Braun, W.S. Yoon et al., The Fe K-edge X-ray absorption characteristics of La1−xSrxFeO3−δ prepared by solid state reaction. Mater. Res. Bull. 44, 1397–1404 (2009). https://doi.org/10.1016/j.materresbull.2008.11.026
X. Yang, J. Cheng, H. Li, Y. Xu, W. Tu et al., Self-supported N-doped hierarchical Co3O4 electrocatalyst with abundant oxygen vacancies for acidic water oxidation. Chem. Eng. J. 465, 142745 (2023). https://doi.org/10.1016/j.cej.2023.142745
X. Kong, X. Zhou, Y. Tian, X. Wu, J. Zhang et al., Niobium doped lanthanum calcium ferrite perovskite as a novel electrode material for symmetrical solid oxide fuel cells. J. Power Sources 326, 35–42 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.111
M. Chanthanumataporn, J. Hui, X. Yue, K. Kakinuma, J.T.S. Irvine et al., Electrical reduction of perovskite electrodes for accelerating exsolution of nanops. Electrochim. Acta 306, 159–166 (2019). https://doi.org/10.1016/j.electacta.2019.03.126
Y. Gu, Y. Zhang, Y. Zheng, H. Chen, L. Ge et al., PrBaMn2O5+δ with praseodymium oxide nano-catalyst as electrode for symmetrical solid oxide fuel cells. Appl. Catal. B Environ. 257, 117868 (2019). https://doi.org/10.1016/j.apcatb.2019.117868
V. Kyriakou, D. Neagu, E.I. Papaioannou, I.S. Metcalfe, M.C.M. van de Sanden et al., Co-electrolysis of H2O and CO2 on exsolved Ni nanops for efficient syngas generation at controllable H2/CO ratios. Appl. Catal. B Environ. 258, 117950 (2019). https://doi.org/10.1016/j.apcatb.2019.117950
S. He, M. Li, J. Hui, X. Yue, In-situ construction of ceria-metal/titanate heterostructure with controllable architectures for efficient fuel electrochemical conversion. Appl. Catal. B Environ. 298, 120588 (2021). https://doi.org/10.1016/j.apcatb.2021.120588
M. Xu, R. Cao, S. Wu, J. Lee, D. Chen et al., Nanop exsolution via electrochemical switching in perovskite fibers for solid oxide fuel cell electrodes. J. Mater. Chem. A 11, 13007–13015 (2023). https://doi.org/10.1039/d3ta00535f
J. Yang, J. Zhou, Z. Liu, Y. Sun, C. Yin et al., Exploring heterogeneous phases in highly A-site-deficient titanate with Ni exsolution. J. Power Sources 580, 233369 (2023). https://doi.org/10.1016/j.jpowsour.2023.233369
Y. Tian, L. Zhang, Y. Liu, L. Jia, J. Yang et al., A self-recovering robust electrode for highly efficient CO2 electrolysis in symmetrical solid oxide electrolysis cells. J. Mater. Chem. A 7, 6395–6400 (2019). https://doi.org/10.1039/C9TA00643E
Z. Pan, H. Shi, S. Wang, H. Jiang, Y. Zheng, Highly active and stable A-site Pr-doped LaSrCrMnO-based fuel electrode for direct CO2 solid oxide electrolyzer cells. Int. J. Hydrog. Energy 45, 14648–14659 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.224
L. Ye, M. Zhang, P. Huang, G. Guo, M. Hong et al., Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures. Nat. Commun. 8, 14785 (2017). https://doi.org/10.1038/ncomms14785
T.H. Wan, M. Saccoccio, C. Chen, F. Ciucci, Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta 184, 483–499 (2015). https://doi.org/10.1016/j.electacta.2015.09.097
Y. Zhou, Z. Zhou, Y. Song, X. Zhang, F. Guan et al., Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. Nano Energy 50, 43–51 (2018). https://doi.org/10.1016/j.nanoen.2018.04.054
A. Akhmadjonov, K.T. Bae, K.T. Lee, Novel perovskite oxide hybrid nanofibers embedded with nanocatalysts for highly efficient and durable electrodes in direct CO2 electrolysis. Nano-Micro Lett. 16, 93 (2024). https://doi.org/10.1007/s40820-023-01298-w