Single-Phase Ternary Compounds with a Disordered Lattice and Liquid Metal Phase for High-Performance Li-Ion Battery Anodes
Corresponding Author: Wenwu Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 63
Abstract
Si is considered as the promising anode materials for lithium-ion batteries (LIBs) owing to their high capacities of 4200 mAh g−1 and natural abundancy. However, severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications. To resolve the afore-mentioned problems, we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP2 compound, where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method. As confirmed by experimental and theoretical analyses, the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity, respectively, while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases. The resulting GaSiP2 electrodes delivered the high specific capacity of 1615 mAh g−1 and high initial Coulombic efficiency of 91%, while the graphite-modified GaSiP2 (GaSiP2@C) achieved 83% of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g−1. Furthermore, the LiNi0.8Co0.1Mn0.1O2//GaSiP2@C full cells achieved the high specific capacity of 1049 mAh g−1 after 100 cycles, paving a way for the rational design of high-performance LIB anode materials.
Highlights:
1 Single-phase ternary GaSiP2 with a disordered lattice and liquid metal was synthesized.
2 GaSiP2 electrode achieved superior Li-storage performances in both half and full cells.
3 Unique self-healing Li-storage mechanism of GaSiP2 was analyzed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: Beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
- D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13, 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
- H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012). https://doi.org/10.1016/j.nantod.2012.08.004
- C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
- C.M. Park, H.J. Sohn, Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 19, 2465–2468 (2007). https://doi.org/10.1002/adma.200602592
- H. Jin, S. Xin, C. Chuang, W. Li, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370, 192–197 (2020). https://doi.org/10.1126/science.aav5842
- D. Ma, Z. Cao, A. Hu, Si-based anode materials for Li-ion batteries: A mini review. Nano-Micro Lett. 6, 347–358 (2014). https://doi.org/10.1007/s40820-014-0008-2
- J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
- J. Liu, P. Kopold, C. Wu, P.A. van Aken, J. Maier et al., Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 8, 3531–3538 (2015). https://doi.org/10.1039/C5EE02074C
- X. Xu, J. Liu, Z. Liu, Z. Wang, R. Hu et al., FeP@C nanotube arrays grown on carbon fabric as a low potential and freestanding anode for high-performance Li-ion batteries. Small 14, 1800793 (2018). https://doi.org/10.1002/smll.201800793
- X. Xu, J. Feng, J. Liu, F. Lv, R. Hu et al., Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochim. Acta 312, 224–233 (2019). https://doi.org/10.1016/j.electacta.2019.04.149
- X. Su, Q. Wu, J. Li, X. Xiao, A. Lott et al., Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1300882 (2014). https://doi.org/10.1002/aenm.201300882
- M.J. Chon, V.A. Sethuraman, A. McCormick, V. Srinivasan, P.R. Guduru, Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107, 045503 (2011). https://doi.org/10.1103/PhysRevLett.107.045503
- J. Sun, G. Zheng, H.W. Lee, N. Liu, H. Wang et al., Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanop-graphite composite battery anodes. Nano Lett. 14, 4573 (2014). https://doi.org/10.1021/nl501617j
- C.Y. Wang, Y.H. Yi, W.C. Chang, T.L. Kao, H.Y. Tuan, Multi-walled carbon nanotube-wrapped SiP2 as a superior anode material for lithium-ion and sodium-ion batteries. J. Power Sources 399, 49–58 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.003
- H. Shen, Y. Huang, R. Hao, Y. Chang, Z. Ma et al., Mechanical robustness two-dimensional silicon phosphide flake anodes for lithium ion batteries. ACS Sustain. Chem. Eng. 8, 17597–17605 (2020). https://doi.org/10.1021/acssuschemeng.0c07441
- X. Guo, L. Zhang, Y. Ding, J.B. Goodenough, G. Yu, Room-temperature liquid metal and alloy systems for energy storage applications. Energy Environ. Sci. 12, 2605 (2019). https://doi.org/10.1039/C9EE01707K
- J.W. Boley, E.L. White, R.K. Kramer, Mechanically sintered gallium-indium nanops. Adv. Mater. 27, 2355–2360 (2015). https://doi.org/10.1002/adma.201404790
- L. Ouyang, J. Jiang, K. Chen, M. Zhu, Z. Liu, Hydrogen production via hydrolysis and alcoholysis of light metal-based materials: A review. Nano-Micro Lett. 13, 134 (2021). https://doi.org/10.1007/s40820-021-00657-9
- C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14, 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
- Y. Wu, L. Huang, X. Huang, X. Guo, D. Liu et al., A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 10, 1854 (2017). https://doi.org/10.1039/C7EE01798G
- M. Song, J. Niu, W. Cui, Q. Bai, Z. Zhang, Self-healing liquid Ga-based anodes with regulated wetting and working temperatures for advanced Mg ion batteries. J. Mater. Chem. A 9, 17019 (2021). https://doi.org/10.1039/D1TA04677B
- Y. Shi, M. Song, Y. Zhang, C. Zhang, H. Gao et al., A self-healing CuGa2 anode for high-performance li ion batteries. J. Power Sources 437, 226889 (2019). https://doi.org/10.1016/j.jpowsour.2019.226889
- D. Wang, C. Gao, W. Wang, M. Sun, B. Guo et al., Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano 12, 10212–10220 (2018). https://doi.org/10.1021/acsnano.8b05203
- C. Zhang, B. Yang, J.M. Biazik, R.F. Webster, W. Xie et al., Gallium nanodroplets are anti-inflammatory without interfering with iron homeostasis. ACS Nano 16, 8891–8903 (2022). https://doi.org/10.1021/acsnano.1c10981
- R.D. Deshpande, J. Li, Y.T. Cheng, M.W. Verbrugge, Liquid metal alloys as self-healing negative electrodes for lithium ion batteries. J. Electrochem. Soc. 158, A845 (2011). https://doi.org/10.1149/1.3591094
- N. Ding, J. Xu, Y.X. Yao, G. Wegner, X. Fang et al., Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ion. 180, 222–225 (2009). https://doi.org/10.1016/j.ssi.2008.12.015
- Y. Feng, M. Xu, T. He, B. Chen, F. Gu et al., CoPSe: A new ternary anode material for stable and high-rate sodium/potassium-ion batteries. Adv. Mater. 33, 2007262 (2021). https://doi.org/10.1002/adma.202007262
- W. Li, H. Li, Z. Lu, L. Gan, L. Ke et al., Layered phosphorus-like GeP5: A promising anode candidate with high initial Coulombic efficiency and large capacity for lithium ion batteries. Energy Environ. Sci. 8, 3629–3636 (2015). https://doi.org/10.1039/C5EE02524A
- Z. Wu, G. Liang, J. Wu, W.K. Pang, F. Yang et al., Synchrotron X-ray absorption spectroscopy and electrochemical study of Bi2O2Se electrode for lithium-/potassium-ion storage. Adv. Energy Mater. 11, 2100185 (2021). https://doi.org/10.1002/aenm.202100185
- D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang et al., Alkali-induced 3D crinkled porous Ti3C2 Mxene architectures coupled with NiCoP bimetallic phosphide nanops as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 12, 2422 (2019). https://doi.org/10.1039/C9EE00308H
- J. Lee, A. Urban, X. Li, D. Su, G. Hautier et al., Unlocking the potential of cation disordered oxides for rechargeable lithium batteries. Science 343, 519 (2014). https://doi.org/10.1126/science.1246432
- J. Lee, D.H. Seo, M. Balasubramanian, N. Twu, X. Li et al., A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li-Ni-Ti-Mo oxides. Energy Environ. Sci. 8, 3255 (2015). https://doi.org/10.1039/C5EE02329G
- Z. Lun, B. Ouyang, D.H. Kwon, Y. Ha, E.E. Foley et al., Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021). https://doi.org/10.1038/s41563-020-00816-0
- Z. Lun, B. Ouyang, Z. Cai, R.J. Clément, D.-H. Kwon et al., Design principles for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153 (2020). https://doi.org/10.1016/j.chempr.2019.10.001
- H. Liu, Z. Zhu, Q. Yan, S. Yu, X. He et al., A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63 (2020). https://doi.org/10.1038/s41586-020-2637-6
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- D. Shin, R. Arróyave, Z.K. Liu, A. van de Walle, Thermodynamic properties of binary hcp solution phases from special quasirandom structures. Phys. Rev. B 74, 024204 (2006). https://doi.org/10.1103/PhysRevB.74.024204
- D. Shin, A.van de Walle, Y. Wang, Z.K. Liu, First-principles study of ternary fcc solution phases from special quasirandom structures. Phys. Rev. B 76, 144204 (2007). https://doi.org/10.1103/PhysRevB.76.144204
- F. Liu, Y. Zou, H. Wang, Z. Wang, M. Zhang et al., Boosting Li-ion diffusion kinetics of Na2Ti6-xMoxO13 via coherent dimensional engineering and lattice tailoring: an alternative high-rate anode. ACS Nano 16, 9117–9129 (2022). https://doi.org/10.1021/acsnano.2c01200
- W. Li, X. Li, J. Liao, B. Zhao, L. Zhang et al., A new family of cation-disordered Zn(Cu)-Si-P compounds as high-performance anodes for next-generation Li-ion batteries. Energy Environ. Sci. 12, 2286–2297 (2019). https://doi.org/10.1039/C9EE00953A
- H. Liu, W. Pei, W.H. Lai, Z. Yan, H. Yang et al., Electrocatalyzing S cathodes via multisulfiphilic sites for superior room-temperature sodium-sulfur batteries. ACS Nano 14, 7259–7268 (2020). https://doi.org/10.1021/acsnano.0c02488
- B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu et al., MOF-derived ZnS nanodots/Ti3C2Tx Mxene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 13, 202 (2021). https://doi.org/10.1007/s40820-021-00728-x
- Y. Wei, L. Huang, J. Chen, Y. Guo, S. Wang et al., Level the conversion/alloying voltage gap by grafting the endogenetic Sb2Te3 building block into layered GeTe to build Ge2Sb2Te5 for Li-ion batteries. ACS Appl. Mater. Interfaces 11, 41374–41382 (2019). https://doi.org/10.1021/acsami.9b14293
- J. Liang, X. Li, Z. Hou, W. Zhang, Y. Zhu et al., A deep reduction and partial oxidation strategy for fabrication of mesoporous Si anode for lithium ion batteries. ACS Nano 10, 2295–2304 (2016). https://doi.org/10.1021/acsnano.5b06995
- Q. Zhang, X. Xiao, W. Zhou, Y.T. Cheng, M.W. Verbrugge, Toward high cycle efficiency of silicon-based negative electrodes by designing the solid electrolyte interphase. Adv. Energy Mater. 5, 1401398 (2015). https://doi.org/10.1002/aenm.201401398
- W. Li, J. Yu, J. Wen, J. Liao, Z. Ye et al., An amorphous Zn-P/graphite composite with chemical bonding for ultra-reversible lithium storage. J. Mater. Chem. A 7, 16785–16792 (2019). https://doi.org/10.1039/C9TA01431D
- Y. Zhu, C. Wang, Galvanostatic intermittent titration technique for phase-transformation electrodes. J. Phys. Chem. C 114, 2830–2841 (2010). https://doi.org/10.1021/jp9113333
- Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/sodium-ion batteries: Carbon dots evoked high initial coulombic efficiency. Nano-Micro Lett. 14, 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
- Y. Tang, Y. Wei, A.F. Hollenkamp, M. Musameh, A. Seeber et al., Electrolyte/structure-dependent cocktail mediation enabling high-rate/low-plateau metal sulfide anodes for sodium storage. Nano-Micro Lett. 13, 178 (2021). https://doi.org/10.1007/s40820-021-00686-4
- W. Xie, F.M. Allioux, R. Namivandi-Zangeneh, M.B. Ghasemian, J. Han et al., Polydopamine shell as a Ga3+ reservoir for triggering gallium-indium phase separation in eutectic gallium-indium nanoalloys. ACS Nano 15, 16839–16850 (2021). https://doi.org/10.1021/acsnano.1c07278
- H.I. Park, M. Sohn, J.H. Choi, C. Park, J.H. Kim et al., Microstructural tuning of Si/TiFeSi2 nanocomposite as lithium storage materials by mechanical deformation. Electrochim. Acta 210, 301–307 (2016). https://doi.org/10.1016/j.electacta.2016.05.168
- M.N. Obrovac, L.J. Krause, Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103 (2007). https://doi.org/10.1149/1.2402112
- M. Seel, R. Pandey, Ab initio electronic structure of superionic conductor Li3P. Solid State Ion. 53–56, 924–927 (1992). https://doi.org/10.1016/0167-2738(92)90272-Q
- J. Saint, M. Morcrette, D. Larcher, J.M. Tarascon, Exploring the Li-Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li. Solid State Ion. 176, 189–197 (2005). https://doi.org/10.1016/j.ssi.2004.05.021
- Y. Jiang, Y. Song, Z. Pan, Y. Meng, L. Jiang et al., Rapid amorphization in metastable CoSeO3.H2O nanosheets for ultrafast lithiation kinetics. ACS Nano 12, 5011–5020 (2018). https://doi.org/10.1021/acsnano.8b02352
- H. Chen, Y. Lu, H. Zhu, Y. Guo, R. Hu et al., Crystalline SnO2@amorphous TiO2 core-shell nanostructures for high-performance lithium ion batteries. Electrochim. Acta 310, 203–212 (2019). https://doi.org/10.1016/j.electacta.2019.04.134
- W. Zhang, M. Sun, J. Yin, K. Lu, U. Schwingenschlögl et al., Accordion-like carbon with high nitrogen doping for fast and stable K ion storage. Adv. Energy Mater. 11, 2101928 (2021). https://doi.org/10.1002/aenm.202101928
- E. Zhang, X. Jia, B. Wang, J. Wang, X. Yu et al., Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv. Sci. 7, 2000470 (2020). https://doi.org/10.1002/advs.202000470
- L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim et al., General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006). https://doi.org/10.1063/1.2196057
- F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970). https://doi.org/10.1063/1.1674108
- P. Heitjans, E. Tobschall, M. Wilkening, Ion transport and diffusion in nanocrystalline and glassy ceramics. Eur. Phys. J. Spec. Top. 161, 97–108 (2008). https://doi.org/10.1140/epjst/e2008-00753-4
- S. Zhang, Y. Zhang, Z. Zhang, H. Wang, Y. Cao et al., Bi works as a Li reservoir for promoting the fast-charging performance of phosphorus anode for Li-ion batteries. Adv. Energy Mater. 12, 2103888 (2022). https://doi.org/10.1002/aenm.202103888
- Q. Qin, H. Jang, P. Li, B. Yuan, X. Liu et al., A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc-air batteries. Adv. Energy Mater. 9, 1803312 (2019). https://doi.org/10.1002/aenm.201803312
References
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: Beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
M. Jiang, P. Mu, H. Zhang, T. Dong, B. Tang et al., An endotenon sheath-inspired double-network binder enables superior cycling performance of silicon electrodes. Nano-Micro Lett. 14, 87 (2022). https://doi.org/10.1007/s40820-022-00833-5
D. Su, Y. Pei, L. Liu, Z. Liu, J. Liu et al., Wire-in-wire TiO2/C nanofibers free-standing anodes for Li-ion and K-ion batteries with long cycling stability and high capacity. Nano-Micro Lett. 13, 107 (2021). https://doi.org/10.1007/s40820-021-00632-4
H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414–429 (2012). https://doi.org/10.1016/j.nantod.2012.08.004
C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang et al., High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008). https://doi.org/10.1038/nnano.2007.411
C.M. Park, H.J. Sohn, Black phosphorus and its composite for lithium rechargeable batteries. Adv. Mater. 19, 2465–2468 (2007). https://doi.org/10.1002/adma.200602592
H. Jin, S. Xin, C. Chuang, W. Li, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370, 192–197 (2020). https://doi.org/10.1126/science.aav5842
D. Ma, Z. Cao, A. Hu, Si-based anode materials for Li-ion batteries: A mini review. Nano-Micro Lett. 6, 347–358 (2014). https://doi.org/10.1007/s40820-014-0008-2
J. Zhong, T. Wang, L. Wang, L. Peng, S. Fu et al., A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity. Nano-Micro Lett. 14, 50 (2022). https://doi.org/10.1007/s40820-022-00790-z
J. Liu, P. Kopold, C. Wu, P.A. van Aken, J. Maier et al., Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 8, 3531–3538 (2015). https://doi.org/10.1039/C5EE02074C
X. Xu, J. Liu, Z. Liu, Z. Wang, R. Hu et al., FeP@C nanotube arrays grown on carbon fabric as a low potential and freestanding anode for high-performance Li-ion batteries. Small 14, 1800793 (2018). https://doi.org/10.1002/smll.201800793
X. Xu, J. Feng, J. Liu, F. Lv, R. Hu et al., Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochim. Acta 312, 224–233 (2019). https://doi.org/10.1016/j.electacta.2019.04.149
X. Su, Q. Wu, J. Li, X. Xiao, A. Lott et al., Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1300882 (2014). https://doi.org/10.1002/aenm.201300882
M.J. Chon, V.A. Sethuraman, A. McCormick, V. Srinivasan, P.R. Guduru, Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 107, 045503 (2011). https://doi.org/10.1103/PhysRevLett.107.045503
J. Sun, G. Zheng, H.W. Lee, N. Liu, H. Wang et al., Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanop-graphite composite battery anodes. Nano Lett. 14, 4573 (2014). https://doi.org/10.1021/nl501617j
C.Y. Wang, Y.H. Yi, W.C. Chang, T.L. Kao, H.Y. Tuan, Multi-walled carbon nanotube-wrapped SiP2 as a superior anode material for lithium-ion and sodium-ion batteries. J. Power Sources 399, 49–58 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.003
H. Shen, Y. Huang, R. Hao, Y. Chang, Z. Ma et al., Mechanical robustness two-dimensional silicon phosphide flake anodes for lithium ion batteries. ACS Sustain. Chem. Eng. 8, 17597–17605 (2020). https://doi.org/10.1021/acssuschemeng.0c07441
X. Guo, L. Zhang, Y. Ding, J.B. Goodenough, G. Yu, Room-temperature liquid metal and alloy systems for energy storage applications. Energy Environ. Sci. 12, 2605 (2019). https://doi.org/10.1039/C9EE01707K
J.W. Boley, E.L. White, R.K. Kramer, Mechanically sintered gallium-indium nanops. Adv. Mater. 27, 2355–2360 (2015). https://doi.org/10.1002/adma.201404790
L. Ouyang, J. Jiang, K. Chen, M. Zhu, Z. Liu, Hydrogen production via hydrolysis and alcoholysis of light metal-based materials: A review. Nano-Micro Lett. 13, 134 (2021). https://doi.org/10.1007/s40820-021-00657-9
C. Guo, L. He, Y. Yao, W. Lin, Y. Zhang et al., Bifunctional liquid metals allow electrical insulating phase change materials to dual-mode thermal manage the Li-ion batteries. Nano-Micro Lett. 14, 202 (2022). https://doi.org/10.1007/s40820-022-00947-w
Y. Wu, L. Huang, X. Huang, X. Guo, D. Liu et al., A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life. Energy Environ. Sci. 10, 1854 (2017). https://doi.org/10.1039/C7EE01798G
M. Song, J. Niu, W. Cui, Q. Bai, Z. Zhang, Self-healing liquid Ga-based anodes with regulated wetting and working temperatures for advanced Mg ion batteries. J. Mater. Chem. A 9, 17019 (2021). https://doi.org/10.1039/D1TA04677B
Y. Shi, M. Song, Y. Zhang, C. Zhang, H. Gao et al., A self-healing CuGa2 anode for high-performance li ion batteries. J. Power Sources 437, 226889 (2019). https://doi.org/10.1016/j.jpowsour.2019.226889
D. Wang, C. Gao, W. Wang, M. Sun, B. Guo et al., Shape-transformable, fusible rodlike swimming liquid metal nanomachine. ACS Nano 12, 10212–10220 (2018). https://doi.org/10.1021/acsnano.8b05203
C. Zhang, B. Yang, J.M. Biazik, R.F. Webster, W. Xie et al., Gallium nanodroplets are anti-inflammatory without interfering with iron homeostasis. ACS Nano 16, 8891–8903 (2022). https://doi.org/10.1021/acsnano.1c10981
R.D. Deshpande, J. Li, Y.T. Cheng, M.W. Verbrugge, Liquid metal alloys as self-healing negative electrodes for lithium ion batteries. J. Electrochem. Soc. 158, A845 (2011). https://doi.org/10.1149/1.3591094
N. Ding, J. Xu, Y.X. Yao, G. Wegner, X. Fang et al., Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ion. 180, 222–225 (2009). https://doi.org/10.1016/j.ssi.2008.12.015
Y. Feng, M. Xu, T. He, B. Chen, F. Gu et al., CoPSe: A new ternary anode material for stable and high-rate sodium/potassium-ion batteries. Adv. Mater. 33, 2007262 (2021). https://doi.org/10.1002/adma.202007262
W. Li, H. Li, Z. Lu, L. Gan, L. Ke et al., Layered phosphorus-like GeP5: A promising anode candidate with high initial Coulombic efficiency and large capacity for lithium ion batteries. Energy Environ. Sci. 8, 3629–3636 (2015). https://doi.org/10.1039/C5EE02524A
Z. Wu, G. Liang, J. Wu, W.K. Pang, F. Yang et al., Synchrotron X-ray absorption spectroscopy and electrochemical study of Bi2O2Se electrode for lithium-/potassium-ion storage. Adv. Energy Mater. 11, 2100185 (2021). https://doi.org/10.1002/aenm.202100185
D. Zhao, R. Zhao, S. Dong, X. Miao, Z. Zhang et al., Alkali-induced 3D crinkled porous Ti3C2 Mxene architectures coupled with NiCoP bimetallic phosphide nanops as anodes for high-performance sodium-ion batteries. Energy Environ. Sci. 12, 2422 (2019). https://doi.org/10.1039/C9EE00308H
J. Lee, A. Urban, X. Li, D. Su, G. Hautier et al., Unlocking the potential of cation disordered oxides for rechargeable lithium batteries. Science 343, 519 (2014). https://doi.org/10.1126/science.1246432
J. Lee, D.H. Seo, M. Balasubramanian, N. Twu, X. Li et al., A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li-Ni-Ti-Mo oxides. Energy Environ. Sci. 8, 3255 (2015). https://doi.org/10.1039/C5EE02329G
Z. Lun, B. Ouyang, D.H. Kwon, Y. Ha, E.E. Foley et al., Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries. Nat. Mater. 20, 214–221 (2021). https://doi.org/10.1038/s41563-020-00816-0
Z. Lun, B. Ouyang, Z. Cai, R.J. Clément, D.-H. Kwon et al., Design principles for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153 (2020). https://doi.org/10.1016/j.chempr.2019.10.001
H. Liu, Z. Zhu, Q. Yan, S. Yu, X. He et al., A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 585, 63 (2020). https://doi.org/10.1038/s41586-020-2637-6
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
D. Shin, R. Arróyave, Z.K. Liu, A. van de Walle, Thermodynamic properties of binary hcp solution phases from special quasirandom structures. Phys. Rev. B 74, 024204 (2006). https://doi.org/10.1103/PhysRevB.74.024204
D. Shin, A.van de Walle, Y. Wang, Z.K. Liu, First-principles study of ternary fcc solution phases from special quasirandom structures. Phys. Rev. B 76, 144204 (2007). https://doi.org/10.1103/PhysRevB.76.144204
F. Liu, Y. Zou, H. Wang, Z. Wang, M. Zhang et al., Boosting Li-ion diffusion kinetics of Na2Ti6-xMoxO13 via coherent dimensional engineering and lattice tailoring: an alternative high-rate anode. ACS Nano 16, 9117–9129 (2022). https://doi.org/10.1021/acsnano.2c01200
W. Li, X. Li, J. Liao, B. Zhao, L. Zhang et al., A new family of cation-disordered Zn(Cu)-Si-P compounds as high-performance anodes for next-generation Li-ion batteries. Energy Environ. Sci. 12, 2286–2297 (2019). https://doi.org/10.1039/C9EE00953A
H. Liu, W. Pei, W.H. Lai, Z. Yan, H. Yang et al., Electrocatalyzing S cathodes via multisulfiphilic sites for superior room-temperature sodium-sulfur batteries. ACS Nano 14, 7259–7268 (2020). https://doi.org/10.1021/acsnano.0c02488
B. Cao, H. Liu, X. Zhang, P. Zhang, Q. Zhu et al., MOF-derived ZnS nanodots/Ti3C2Tx Mxene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 13, 202 (2021). https://doi.org/10.1007/s40820-021-00728-x
Y. Wei, L. Huang, J. Chen, Y. Guo, S. Wang et al., Level the conversion/alloying voltage gap by grafting the endogenetic Sb2Te3 building block into layered GeTe to build Ge2Sb2Te5 for Li-ion batteries. ACS Appl. Mater. Interfaces 11, 41374–41382 (2019). https://doi.org/10.1021/acsami.9b14293
J. Liang, X. Li, Z. Hou, W. Zhang, Y. Zhu et al., A deep reduction and partial oxidation strategy for fabrication of mesoporous Si anode for lithium ion batteries. ACS Nano 10, 2295–2304 (2016). https://doi.org/10.1021/acsnano.5b06995
Q. Zhang, X. Xiao, W. Zhou, Y.T. Cheng, M.W. Verbrugge, Toward high cycle efficiency of silicon-based negative electrodes by designing the solid electrolyte interphase. Adv. Energy Mater. 5, 1401398 (2015). https://doi.org/10.1002/aenm.201401398
W. Li, J. Yu, J. Wen, J. Liao, Z. Ye et al., An amorphous Zn-P/graphite composite with chemical bonding for ultra-reversible lithium storage. J. Mater. Chem. A 7, 16785–16792 (2019). https://doi.org/10.1039/C9TA01431D
Y. Zhu, C. Wang, Galvanostatic intermittent titration technique for phase-transformation electrodes. J. Phys. Chem. C 114, 2830–2841 (2010). https://doi.org/10.1021/jp9113333
Y. Xiang, L. Xu, L. Yang, Y. Ye, Z. Ge et al., Natural stibnite for lithium-/sodium-ion batteries: Carbon dots evoked high initial coulombic efficiency. Nano-Micro Lett. 14, 136 (2022). https://doi.org/10.1007/s40820-022-00873-x
Y. Tang, Y. Wei, A.F. Hollenkamp, M. Musameh, A. Seeber et al., Electrolyte/structure-dependent cocktail mediation enabling high-rate/low-plateau metal sulfide anodes for sodium storage. Nano-Micro Lett. 13, 178 (2021). https://doi.org/10.1007/s40820-021-00686-4
W. Xie, F.M. Allioux, R. Namivandi-Zangeneh, M.B. Ghasemian, J. Han et al., Polydopamine shell as a Ga3+ reservoir for triggering gallium-indium phase separation in eutectic gallium-indium nanoalloys. ACS Nano 15, 16839–16850 (2021). https://doi.org/10.1021/acsnano.1c07278
H.I. Park, M. Sohn, J.H. Choi, C. Park, J.H. Kim et al., Microstructural tuning of Si/TiFeSi2 nanocomposite as lithium storage materials by mechanical deformation. Electrochim. Acta 210, 301–307 (2016). https://doi.org/10.1016/j.electacta.2016.05.168
M.N. Obrovac, L.J. Krause, Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103 (2007). https://doi.org/10.1149/1.2402112
M. Seel, R. Pandey, Ab initio electronic structure of superionic conductor Li3P. Solid State Ion. 53–56, 924–927 (1992). https://doi.org/10.1016/0167-2738(92)90272-Q
J. Saint, M. Morcrette, D. Larcher, J.M. Tarascon, Exploring the Li-Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs. Li. Solid State Ion. 176, 189–197 (2005). https://doi.org/10.1016/j.ssi.2004.05.021
Y. Jiang, Y. Song, Z. Pan, Y. Meng, L. Jiang et al., Rapid amorphization in metastable CoSeO3.H2O nanosheets for ultrafast lithiation kinetics. ACS Nano 12, 5011–5020 (2018). https://doi.org/10.1021/acsnano.8b02352
H. Chen, Y. Lu, H. Zhu, Y. Guo, R. Hu et al., Crystalline SnO2@amorphous TiO2 core-shell nanostructures for high-performance lithium ion batteries. Electrochim. Acta 310, 203–212 (2019). https://doi.org/10.1016/j.electacta.2019.04.134
W. Zhang, M. Sun, J. Yin, K. Lu, U. Schwingenschlögl et al., Accordion-like carbon with high nitrogen doping for fast and stable K ion storage. Adv. Energy Mater. 11, 2101928 (2021). https://doi.org/10.1002/aenm.202101928
E. Zhang, X. Jia, B. Wang, J. Wang, X. Yu et al., Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode. Adv. Sci. 7, 2000470 (2020). https://doi.org/10.1002/advs.202000470
L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim et al., General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006). https://doi.org/10.1063/1.2196057
F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130 (1970). https://doi.org/10.1063/1.1674108
P. Heitjans, E. Tobschall, M. Wilkening, Ion transport and diffusion in nanocrystalline and glassy ceramics. Eur. Phys. J. Spec. Top. 161, 97–108 (2008). https://doi.org/10.1140/epjst/e2008-00753-4
S. Zhang, Y. Zhang, Z. Zhang, H. Wang, Y. Cao et al., Bi works as a Li reservoir for promoting the fast-charging performance of phosphorus anode for Li-ion batteries. Adv. Energy Mater. 12, 2103888 (2022). https://doi.org/10.1002/aenm.202103888
Q. Qin, H. Jang, P. Li, B. Yuan, X. Liu et al., A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc-air batteries. Adv. Energy Mater. 9, 1803312 (2019). https://doi.org/10.1002/aenm.201803312