Applications of Carbon-Based Multivariable Chemical Sensors for Analyte Recognition
Corresponding Author: Jianhua Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 246
Abstract
Over recent decades, carbon-based chemical sensor technologies have advanced significantly. Nevertheless, significant opportunities persist for enhancing analyte recognition capabilities, particularly in complex environments. Conventional monovariable sensors exhibit inherent limitations, such as susceptibility to interference from coexisting analytes, which results in response overlap. Although sensor arrays, through modification of multiple sensing materials, offer a potential solution for analyte recognition, their practical applications are constrained by intricate material modification processes. In this context, multivariable chemical sensors have emerged as a promising alternative, enabling the generation of multiple outputs to construct a comprehensive sensing space for analyte recognition, while utilizing a single sensing material. Among various carbon-based materials, carbon nanotubes (CNTs) and graphene have emerged as ideal candidates for constructing high-performance chemical sensors, owing to their well-established batch fabrication processes, superior electrical properties, and outstanding sensing capabilities. This review examines the progress of carbon-based multivariable chemical sensors, focusing on CNTs/graphene as sensing materials and field-effect transistors as transducers for analyte recognition. The discussion encompasses fundamental aspects of these sensors, including sensing materials, sensor architectures, performance metrics, pattern recognition algorithms, and multivariable sensing mechanism. Furthermore, the review highlights innovative multivariable extraction schemes and their practical applications when integrated with advanced pattern recognition algorithms.
Highlights:
1 This paper reviews the fundamentals and research progress of carbon-based multivariable chemical sensors, with a particular focus on the classification and identification of multiple analytes.
2 Carbon-based multivariable chemical sensors consisting of carbon nanotubes/graphene as the sensing material and field effect transistors as the transducers are discussed in detail.
3 A comprehensive analysis of multivariable sensing mechanisms is presented and design criteria for carbon-based multivariable sensors are summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F.J. Zhang, G. Qu, E. Mohammadi, J.G. Mei, Y. Diao, Solution-processed nanoporous organic semiconductor thin films: toward health and environmental monitoring of volatile markers. Adv. Funct. Mater. 27(23), 1701117 (2017). https://doi.org/10.1002/adfm.201701117
- H. Yuan, S.A.A.A. Aljneibi, J. Yuan, Y. Wang, H. Liu et al., ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31(11), e1807161 (2019). https://doi.org/10.1002/adma.201807161
- K. Lee, I. Cho, M. Kang, J. Jeong, M. Choi et al., Ultra-low-power E-nose system based on multi-micro-LED-integrated, nanostructured gas sensors and deep learning. ACS Nano 17(1), 539–551 (2023). https://doi.org/10.1021/acsnano.2c09314
- N.S.S. Capman, X.V. Zhen, J.T. Nelson, V.R.S. Kumar Chaganti, R.C. Finc et al., Machine learning-based rapid detection of volatile organic compounds in a graphene electronic nose. ACS Nano 16(11), 19567–19583 (2022). https://doi.org/10.1021/acsnano.2c10240
- Z. Wu, Q. Ding, H. Wang, J. Ye, Y. Luo et al., A humidity-resistant, sensitive, and stretchable hydrogel-based oxygen sensor for wireless health and environmental monitoring. Adv. Funct. Mater. 34(6), 2308280 (2024). https://doi.org/10.1002/adfm.202308280
- W. Huang, Q. Ding, H. Wang, Z. Wu, Y. Luo et al., Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 14(1), 5221 (2023). https://doi.org/10.1038/s41467-023-40953-z
- Z.-Y. Gu, X.-P. Yan, Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew. Chem. Int. Ed. 49(8), 1477–1480 (2010). https://doi.org/10.1002/anie.200906560
- R.A. Potyrailo, Multivariable sensors for ubiquitous monitoring of gases in the era of Internet of Things and industrial Internet. Chem. Rev. 116(19), 11877–11923 (2016). https://doi.org/10.1021/acs.chemrev.6b00187
- A. Hakeem Anwer, M. Saadaoui, A.T. Mohamed, N. Ahmad, A. Benamor, State-of-the-Art advances and challenges in wearable gas sensors for emerging applications: innovations and future prospects. Chem. Eng. J. 502, 157899 (2024). https://doi.org/10.1016/j.cej.2024.157899
- A.K. Yetisen, J.L. Martinez-Hurtado, B. Ünal, A. Khademhosseini, H. Butt, Wearables in medicine. Adv. Mater. 30(33), 1706910 (2018). https://doi.org/10.1002/adma.201706910
- B. Zong, S. Wu, Y. Yang, Q. Li, T. Tao et al., Smart gas sensors: recent developments and future prospective. Nano-Micro Lett. 17(1), 54 (2024). https://doi.org/10.1007/s40820-024-01543-w
- S. Wang, M. Sun, Y. Zhang, H. Ji, J. Gao et al., Ultrasensitive antibiotic perceiving based on aptamer-functionalized ultraclean graphene field-effect transistor biosensor. Anal. Chem. 94(42), 14785–14793 (2022). https://doi.org/10.1021/acs.analchem.2c03732
- Y. Sun, X. Fan, Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 399(1), 205–211 (2011). https://doi.org/10.1007/s00216-010-4237-z
- J. Shi, Y. Jiang, Z. Duan, J. Li, Z. Yuan et al., Designing an optical gas chamber with stepped structure for non-dispersive infrared methane gas sensor. Sens. Actuat. A Phys. 367, 115052 (2024). https://doi.org/10.1016/j.sna.2024.115052
- A. Mashhadian, R. Jian, S. Tian, S. Wu, G. Xiong, An overview of electrochemical sensors based on transition metal carbides and oxides: synthesis and applications. Micromachines 15(1), 42 (2023). https://doi.org/10.3390/mi15010042
- J. Lee, N.-J. Choi, H.-K. Lee, J. Kim, S.Y. Lim et al., Low power consumption solid electrochemical-type micro CO2 gas sensor. Sens. Actuat. B Chem. 248, 957–960 (2017). https://doi.org/10.1016/j.snb.2017.02.040
- W. Zhang, J. Zou, J. Sun, W. Wang, L. Shan et al., Fabrication and sensing performance of carrier-free catalytic combustion hydrogen sensors based on electrodeposition method. Int. J. Hydrogen Energy 61, 1356 (2024). https://doi.org/10.1016/j.ijhydene.2024.03.005
- B. Shen, T. Zhou, X. Liu, X. Qin, W. Li, Numerical simulation of catalytic methane combustion in Al2O3 directional nanotubes modified by Pt and Pd catalyst. Appl. Sci. 13(11), 6547 (2023). https://doi.org/10.3390/app13116547
- X. Chen, J. Hu, P. Chen, M. Yin, F. Meng et al., UV-light-assisted NO2 gas sensor based on WS2/PbS heterostructures with full recoverability and reliable anti-humidity ability. Sens. Actuat. B Chem. 339, 129902 (2021). https://doi.org/10.1016/j.snb.2021.129902
- Y. Zhang, Y. Li, Y. Jiang, Z. Duan, Z. Yuan et al., Synergistic effect of charge transfer and interlayer swelling in V2CTx/SnS2 driving ultrafast and highly sensitive NO2 detection at room temperature. Sens. Actuat. B Chem. 411, 135788 (2024). https://doi.org/10.1016/j.snb.2024.135788
- M. Kang, I. Cho, J. Park, J. Jeong, K. Lee et al., High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens. 7(2), 430–440 (2022). https://doi.org/10.1021/acssensors.1c01204
- J. Xu, X. Fan, K. Xu, K. Wu, H. Liao et al., Ultrasensitive chemiresistive gas sensors based on dual-mesoporous zinc stannate composites for room temperature rice quality monitoring. Nano-Micro Lett. 17(1), 115 (2025). https://doi.org/10.1007/s40820-024-01645-5
- X. Yao, Y. Zhang, W. Jin, Y. Hu, Y. Cui, Carbon nanotube field-effect transistor-based chemical and biological sensors. Sensors 21(3), 995 (2021). https://doi.org/10.3390/s21030995
- S. Lim, K.V. Nguyen, W.H. Lee, Enhancing sensitivity in gas detection: porous structures in organic field-effect transistor-based sensors. Sensors 24(9), 2862 (2024). https://doi.org/10.3390/s24092862
- X. Sun, Y. Shan, M. Jian, Z. Wang, A multichannel fluorescence isothermal amplification device with integrated Internet of medical things for rapid sensing of pathogens through deep learning. Anal. Chem. 95(41), 15146–15152 (2023). https://doi.org/10.1021/acs.analchem.3c02973
- H.Y. Chae, J. Cho, R. Purbia, C.S. Park, H. Kim et al., Environment-adaptable edge-computing gas-sensor device with analog-assisted continual learning scheme. IEEE Trans. Ind. Electron. 70(10), 10720–10729 (2023). https://doi.org/10.1109/TIE.2022.3220871
- Y. Zhuang, X. Wang, P. Lai, J. Li, L. Chen et al., Wireless flexible system for highly sensitive ammonia detection based on polyaniline/carbon nanotubes. Biosensors 14(4), 191 (2024). https://doi.org/10.3390/bios14040191
- G. Kaur, M. Tintelott, M. Suranglikar, A. Masurier, X.-T. Vu et al., Time-encoded electrical detection of trace RNA biomarker by integrating programmable molecular amplifier on chip. Biosens. Bioelectron. 257, 116311 (2024). https://doi.org/10.1016/j.bios.2024.116311
- W. Liu, X. Wang, B. Dong, Y. Liu, D. Wei, Enzymatic cascade reactors on carbon nanotube transistor detecting trace prostate cancer biomarker. Biosens. Bioelectron. 263, 116603 (2024). https://doi.org/10.1016/j.bios.2024.116603
- H.-Y. Liu, Z. Zhu, J. He, Y. Yang, Y. Liang et al., Mass production of carbon nanotube transistor biosensors for point-of-care tests. Nano Lett. 24(34), 10510–10518 (2024). https://doi.org/10.1021/acs.nanolett.4c02518
- H. Peng, J. Guo, G. Chen, W. Qin, Self-powered perovskite CH3NH3PbBr3 field effect transistor with fast response and high sensitivity in sensing. Mater. Today Adv. 12, 100185 (2021). https://doi.org/10.1016/j.mtadv.2021.100185
- R. Omar, M. Yuan, J. Wang, M. Sublaban, W. Saliba et al., Self-powered freestanding multifunctional microneedle-based extended gate device for personalized health monitoring. Sens. Actuators B Chem. 398, 134788 (2024). https://doi.org/10.1016/j.snb.2023.134788
- J. Li, Y. Jiang, A. Xu, F. Luo, C. Lin et al., ZnO/Au/GaN heterojunction-based self-powered photoelectrochemical Sensor for alpha-fetoprotein detection. Talanta 268(Pt 2), 125381 (2024). https://doi.org/10.1016/j.talanta.2023.125381
- Y. Geng, Y. Ren, X. Wang, J. Li, L. Portilla et al., Highly sensitive and selective H2S sensors with ultra-low power consumption based on flexible printed carbon-nanotube-thin-film-transistors. Sens. Actuat. B Chem. 360, 131633 (2022). https://doi.org/10.1016/j.snb.2022.131633
- W. Yue, Y. Guo, J.C. Lee, E. Ganbold, J.K. Wu et al., Advancements in passive wireless sensing systems in monitoring harsh environment and healthcare applications. Nano-Micro Lett. 17(1), 106 (2025). https://doi.org/10.1007/s40820-024-01599-8
- J. Xu, X. Luo, H. Chen, B. Guo, L. Jia et al., A self-powered biosensor with cascade amplification capability facilitates ultra-sensitive detection of microRNA biomarkers. Biosens. Bioelectron. 275, 117233 (2025). https://doi.org/10.1016/j.bios.2025.117233
- M. Sun, S. Wang, Y. Zhang, Z. Zhang, S. Wang et al., An ultrasensitive flexible biosensor enabled by high-performance graphene field-effect transistors with defect-free van der Waals contacts for breast cancer miRNA fast detection. Talanta 287, 127637 (2025). https://doi.org/10.1016/j.talanta.2025.127637
- J. Gao, C. Wang, C. Wang, Y. Chu, S. Wang et al., Poly-l-lysine-modified graphene field-effect transistor biosensors for ultrasensitive breast cancer miRNAs and SARS-CoV-2 RNA detection. Anal. Chem. 94(3), 1626–1636 (2022). https://doi.org/10.1021/acs.analchem.1c03786
- G. Maduraiveeran, M. Sasidharan, V. Ganesan, Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 103, 113–129 (2018). https://doi.org/10.1016/j.bios.2017.12.031
- M. Huang, X. Ma, Z. Wu, J. Li, Y. Shi et al., Ammonium sensing patch with ultrawide linear range and eliminated interference for universal body fluids analysis. Nano-Micro Lett. 17(1), 92 (2024). https://doi.org/10.1007/s40820-024-01602-2
- R. Paolesse, S. Nardis, D. Monti, M. Stefanelli, C. Di Natale, Porphyrinoids for chemical sensor applications. Chem. Rev. 117(4), 2517–2583 (2017). https://doi.org/10.1021/acs.chemrev.6b00361
- J.W. Gardner, P.N. Bartlett, Electronic Noses: Principles and Applications (Oxford University Press, Oxford, 1999). https://doi.org/10.1093/oso/9780198559559.001.0001
- A. Rivadeneyra, J. Fernández-Salmerón, M. Agudo-Acemel, J.A. López-Villanueva, A.J. Palma et al., A printed capacitive–resistive double sensor for toluene and moisture sensing. Sens. Actuat. B Chem. 210, 542–549 (2015). https://doi.org/10.1016/j.snb.2015.01.036
- R.A. Potyrailo, W.G. Morris, Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. Anal. Chem. 79, 45 (2007). https://doi.org/10.1021/ac061748o
- R. Paul Wali, P.R. Wilkinson, S.P. Eaimkhong, J. Hernando-Garcia, J.L. Sánchez-Rojas et al., Fourier transform mechanical spectroscopy of micro-fabricated electromechanical resonators: a novel, information-rich pulse method for sensor applications. Sens. Actuat. B Chem. 147(2), 508–516 (2010). https://doi.org/10.1016/j.snb.2010.03.086
- N.C. Speller, N. Siraj, B.P. Regmi, H. Marzoughi, C. Neal et al., Rational design of QCM-D virtual sensor arrays based on film thickness, viscoelasticity, and harmonics for vapor discrimination. Anal. Chem. 87(10), 5156–5166 (2015). https://doi.org/10.1021/ac5046824
- N.A. Joy, M.I. Nandasiri, P.H. Rogers, W. Jiang, T. Varga et al., Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film. Anal. Chem. 84(11), 5025–5034 (2012). https://doi.org/10.1021/ac3006846
- R.A. Potyrailo, M. Larsen, O. Riccobono, Detection of individual vapors and their mixtures using a selectivity-tunable three-dimensional network of plasmonic nanops. Angew. Chem. Int. Ed. 52(39), 10360–10364 (2013). https://doi.org/10.1002/anie.201305303
- H.J. Jang, H.A. Joung, A. Goncharov, A.G. Kanegusuku, C.W. Chan et al., Deep learning-based kinetic analysis in paper-based analytical cartridges integrated with field-effect transistors. ACS Nano 18(36), 24792–24802 (2024). https://doi.org/10.1021/acsnano.4c02897
- B. Wang, T.P. Huynh, W. Wu, N. Hayek, T.T. Do et al., A highly sensitive diketopyrrolopyrrole-based ambipolar transistor for selective detection and discrimination of xylene isomers. Adv. Mater. 28(21), 4012–4018 (2016). https://doi.org/10.1002/adma.201505641
- U.N. Thakur, R. Bhardwaj, A. Hazra, A multivariate computational approach with hybrid graphene oxide sensor array for partial fulfillment of breath acetone sensing. IEEE Sens. J. 22(21), 20207–20215 (2022). https://doi.org/10.1109/JSEN.2022.3208712
- K. Drozdowska, S. Rumyantsev, J. Smulko, A. Kwiatkowski, P. Sai et al., The effects of gas exposure on the graphene/AlGaN/GaN heterostructure under UV irradiation. Sens. Actuat. B Chem. 381, 133430 (2023). https://doi.org/10.1016/j.snb.2023.133430
- Y. Tong, Y. Liu, Y. Zhao, J. Thong, D.S.H. Chan et al., Selectivity of MoS2 gas sensors based on a time constant spectrum method. Sens. Actuat. A Phys. 255, 28–33 (2017). https://doi.org/10.1016/j.sna.2016.12.024
- J. Park, R. Rautela, N. Alzate-Carvajal, S. Scarfe, L. Scarfe et al., UV illumination as a method to improve the performance of gas sensors based on graphene field-effect transistors. ACS Sens. 6(12), 4417–4424 (2021). https://doi.org/10.1021/acssensors.1c01783
- M. Sun, Y. Zhang, S. Wang, S. Wang, L. Gao et al., Laser-induced graphene van der Waals contact-enabled high-performance 2D-materials-based field-effect transistor. Carbon 225, 119151 (2024). https://doi.org/10.1016/j.carbon.2024.119151
- S. Zhou, M. Xiao, F. Liu, J. He, Y. Lin et al., Sub-10 parts per billion detection of hydrogen with floating gate transistors built on semiconducting carbon nanotube film. Carbon 180, 41 (2021). https://doi.org/10.1016/j.carbon.2021.04.076
- R. Kour, S. Arya, S.-J. Young, V. Gupta, P. Bandhoria et al., Review: recent advances in carbon nanomaterials as electrochemical biosensors. J. Electrochem. Soc. 167(3), 037555 (2020). https://doi.org/10.1149/1945-7111/ab6bc4
- R. Eivazzadeh-Keihan, E. Bahojb Noruzi, E. Chidar, M. Jafari, F. Davoodi et al., Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 442, 136183 (2022). https://doi.org/10.1016/j.cej.2022.136183
- C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31, 1801072 (2019). https://doi.org/10.1002/adma.201801072
- V. Pavlenko, S.H. Khosravi, S. Żółtowska, A.B. Haruna, M. Zahid et al., A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Mater. Sci. Eng. R Rep. 149, 100682 (2022). https://doi.org/10.1016/j.mser.2022.100682
- C. Gutiérrez-Sánchez, E. Lorenzo, Review: advances on oxidase enzymes modified nanoporous carbon and gold surfaces for bioelectrochemical applications. J. Electrochem. Soc. 169(2), 027513 (2022). https://doi.org/10.1149/1945-7111/ac527b
- A. Salvi, S. Kharbanda, P. Thakur, M. Shandilya, A. Thakur, Biomedical application of carbon quantum dots: a review. Carbon Trends 17, 100407 (2024). https://doi.org/10.1016/j.cartre.2024.100407
- C. Ding, A. Zhu, Y. Tian, Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47, 20 (2014). https://doi.org/10.1021/ar400023s
- J. Liu, J. Liu, Z. Li, L. Zhao, T. Wang et al., Carbon dots-modified hollow mesoporous photonic crystal materials for sensitivity- and selectivity-enhanced sensing of chloroform vapor. Nano-Micro Lett. 17(1), 96 (2024). https://doi.org/10.1007/s40820-024-01598-9
- S. Afreen, K. Muthoosamy, S. Manickam, U. Hashim, Functionalized fullerene (C60) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens. Bioelectron. 63, 354–364 (2015). https://doi.org/10.1016/j.bios.2014.07.044
- X. Shen, J. Song, K. Kawakami, K. Ariga, Molecule-to-material-to-bio nanoarchitectonics with biomedical fullerene nanops. Materials 15(15), 5404 (2022). https://doi.org/10.3390/ma15155404
- M. Sun, S. Wang, Y. Liang, C. Wang, Y. Zhang et al., Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Lett. 17(1), 34 (2024). https://doi.org/10.1007/s40820-024-01534-x
- J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48(31), 3686–3699 (2012). https://doi.org/10.1039/c2cc00110a
- Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay et al., Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10), 1027–1036 (2010). https://doi.org/10.1002/elan.200900571
- K. Luo, H. Peng, B. Zhang, L. Chen, P. Zhang et al., Advances in carbon nanotube-based gas sensors: Exploring the path to the future. Coord. Chem. Rev. 518, 216049 (2024). https://doi.org/10.1016/j.ccr.2024.216049
- Z. Cohen, R.M. Williams, Single-walled carbon nanotubes as optical transducers for nanobiosensors in vivo. ACS Nano 18(52), 35164–35181 (2024). https://doi.org/10.1021/acsnano.4c13076
- V. Schroeder, S. Savagatrup, M. He, S. Lin, T.M. Swager, Carbon nanotube chemical sensors. Chem. Rev. 119(1), 599–663 (2019). https://doi.org/10.1021/acs.chemrev.8b00340
- A.K. Katiyar, J. Choi, J.H. Ahn, Recent advances in CMOS-compatible synthesis and integration of 2D materials. Nano Converg. 12(1), 11 (2025). https://doi.org/10.1186/s40580-025-00478-1
- X. Zang, Q. Zhou, J. Chang, Y. Liu, L. Lin, Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron. Eng. 132, 192–206 (2015). https://doi.org/10.1016/j.mee.2014.10.023
- H.S.P. Wong, Beyond the conventional transistor. IBM J. Res. Dev. 46(2.3), 133–168 (2002). https://doi.org/10.1147/rd.462.0133
- L. Lin, B. Deng, J. Sun, H. Peng, Z. Liu, Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118(18), 9281–9343 (2018). https://doi.org/10.1021/acs.chemrev.8b00325
- L. Zhang, J. Dong, F. Ding, Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 121(11), 6321–6372 (2021). https://doi.org/10.1021/acs.chemrev.0c01191
- B. Sun, J. Pang, Q. Cheng, S. Zhang, Y. Li et al., Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications. Adv. Mater. Technol. 6(7), 2000744 (2021). https://doi.org/10.1002/admt.202000744
- W. Gao, J. Kono, Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration. R. Soc. Open Sci. 6(3), 181605 (2019). https://doi.org/10.1098/rsos.181605
- S. Kim, G. Singh, Y. Kim, J. Park, I. Jeon et al., Gate-tunable graphene/ZnO-based dual- channel field-effect transistor gas sensor for simultaneous detection of CO2 and NO2 gases. IEEE Sens. J. 23(20), 24214–24223 (2023). https://doi.org/10.1109/JSEN.2023.3309413
- S. Tripathy, A. Sett, S. Majumder, T.K. Bhattacharyya, Study of gate induced sensitivity amplification in carbon nanotube thin film transistor based ammonia sensor. Sens. Actuat. B Chem. 382, 133511 (2023). https://doi.org/10.1016/j.snb.2023.133511
- M. Zhao, Y. Tian, L. Yan, R. Liu, P. Chen et al., Unique modulation effects on the performance of graphene-based ammonia sensors via ultrathin bimetallic Au/Pt layers and gate voltages. Phys. Chem. Chem. Phys. 25(29), 19764–19772 (2023). https://doi.org/10.1039/D3CP01813J
- U. Weimar, W. Göpel, Chemical imaging: II. Trends in practical multiparameter sensor systems. Sens. Actuat. B Chem. 52(1–2), 143–161 (1998). https://doi.org/10.1016/S0925-4005(98)00268-8
- W. Göpel, Chemical imaging: I. Concepts and visions for electronic and bioelectronic noses1. Sens. Actuator B Chem. 52, 125 (1998). https://doi.org/10.1016/S0925-4005(98)00267-6
- A. Hierlemann, R. Gutierrez-Osuna, Higher-order chemical sensing. Chem. Rev. 108(2), 563–613 (2008). https://doi.org/10.1021/cr068116m
- R.A. Potyrailo, C. Surman, N. Nagraj, A. Burns, Materials and transducers toward selective wireless gas sensing. Chem. Rev. 111(11), 7315–7354 (2011). https://doi.org/10.1021/cr2000477
- R. Potyrailo, R.R. Naik, Bionanomaterials and bioinspired nanostructures for selective vapor sensing. Annu. Rev. Mater. Res. 43, 307–334 (2013). https://doi.org/10.1146/annurev-matsci-071312-121710
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- S. Park, Y. Suh, H. Floresca, M. Kim, HRTEM observation of mechanically exfoliated graphene from natural graphite and HOPG. ECS Trans. 19(5), 81–85 (2009). https://doi.org/10.1149/1.3119530
- S.H. Dave, C. Gong, A.W. Robertson, J.H. Warner, J.C. Grossman, Chemistry and structure of graphene oxide via direct imaging. ACS Nano 10(8), 7515–7522 (2016). https://doi.org/10.1021/acsnano.6b02391
- C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch et al., Atomic structure of reduced graphene oxide. Nano Lett. 10(4), 1144–1148 (2010). https://doi.org/10.1021/nl9031617
- S.Z.N. Demon, A.I. Kamisan, N. Abdullah, S.A.M. Noor, O.K. Khim et al., Graphene-based materials in gas sensor applications: a review. Sens. Mater. 32(2), 759 (2020). https://doi.org/10.18494/sam.2020.2492
- I.H. Kim, T. Yun, J.E. Kim, H. Yu, S.P. Sasikala et al., Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity. Adv. Mater. (2018). https://doi.org/10.1002/adma.201803267
- A. Xavier Mendes, S. Moraes Silva, C.D. O’Connell, S. Duchi, A.F. Quigley et al., Enhanced electroactivity, mechanical properties, and printability through the addition of graphene oxide to photo-cross-linkable gelatin methacryloyl hydrogel. ACS Biomater. Sci. Eng. 7(6), 2279–2295 (2021). https://doi.org/10.1021/acsbiomaterials.0c01734
- J. Siddiqui, M. Jamal Deen, Biodegradable asparagine-graphene oxide free chlorine sensors fabricated using solution-based processing. Analyst 147(16), 3643–3651 (2022). https://doi.org/10.1039/d2an00533f
- Y. Ravi Kumar, K. Deshmukh, T. Kovářík, S.K. Khadheer Pasha, A systematic review on 2D materials for volatile organic compound sensing. Coord. Chem. Rev. 461, 214502 (2022). https://doi.org/10.1016/j.ccr.2022.214502
- M. Nami, M. Taheri, I.A. Deen, M. Packirisamy, M.J. Deen, Nanomaterials in chemiresistive and potentiometric gas sensors for intelligent food packaging. TrAC Trends. Anal. Chem. 174, 117664 (2024). https://doi.org/10.1016/j.trac.2024.117664
- N.R. Tanguy, M. Arjmand, N. Yan, Nanocomposite of nitrogen-doped graphene/polyaniline for enhanced ammonia gas detection. Adv. Mater. Interfaces 6(16), 1900552 (2019). https://doi.org/10.1002/admi.201900552
- X. Tang, M. Debliquy, D. Lahem, Y. Yan, J.-P. Raskin, A review on functionalized graphene sensors for detection of ammonia. Sensors 21(4), 1443 (2021). https://doi.org/10.3390/s21041443
- M. Sun, C. Zhang, S. Lu, S. Mahmood, J. Wang et al., Recent advances in graphene field-effect transistor toward biological detection. Adv. Funct. Mater. 34(44), 2405471 (2024). https://doi.org/10.1002/adfm.202405471
- F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). https://doi.org/10.1038/nmat1967
- N. Srikanth, A.C. Kumar, History of carbon nanotubes, in Handbook of Carbon Nanotubes. ed. by J. Abraham, S. Thomas, N. Kalarikkal (Springer International Publishing, Cham, 2020), pp.1–22. https://doi.org/10.1007/978-3-319-70614-6_51-1
- J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek et al., Methods for carbon nanotubes synthesis: review. J. Mater. Chem. 21(40), 15872 (2011). https://doi.org/10.1039/c1jm12254a
- M. Asaftei, M. Lucidi, C. Cirtoaje, A.-M. Holban, C.A. Charitidis et al., Fighting bacterial pathogens with carbon nanotubes: focused review of recent progress. RSC Adv. 13(29), 19682–19694 (2023). https://doi.org/10.1039/d3ra01745a
- V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115(11), 4744–4822 (2015). https://doi.org/10.1021/cr500304f
- M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly et al., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000). https://doi.org/10.1126/science.287.5453.637
- E. Muchuweni, E.T. Mombeshora, Enhanced thermoelectric performance by single-walled carbon nanotube composites for thermoelectric generators: a review. Appl. Surf. Sci. Adv. 13, 100379 (2023). https://doi.org/10.1016/j.apsadv.2023.100379
- T. Dürkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4(1), 35–39 (2004). https://doi.org/10.1021/nl034841q
- J.M. Herrera-Ramirez, R. Perez-Bustamante, A. Aguilar-Elguezabal, Chapter two - an overview of the synthesis, characterization, and applications of carbon nanotubes. in Carbon-Based Nanofillers and Their Rubber Nanocomposites, edited by S. Yaragalla, R. Mishra, S. Thomas, N. Kalarikkal, and H. J. Maria. Elsevier, (2019), pp. 47–75. https://doi.org/10.1016/B978-0-12-813248-7.00002-X
- J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998). https://doi.org/10.1038/34139
- J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng et al., Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000). https://doi.org/10.1126/science.287.5453.622
- Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391), 1105–1107 (1998). https://doi.org/10.1126/science.282.5391.1105
- W. Zhou, Z. Han, J. Wang, Y. Zhang, Z. Jin et al., Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 6(12), 2987–2990 (2006). https://doi.org/10.1021/nl061871v
- L. Shi, L. Gong, Y. Wang, Y. Li, Y. Zhang, Extended-gate structure for carbon-based field effect transistor type formaldehyde gas sensor. Sens. Actuat. B Chem. 400, 134944 (2024). https://doi.org/10.1016/j.snb.2023.134944
- L.S. Liyanage, H. Lee, N. Patil, S. Park, S. Mitra et al., Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks. ACS Nano 6(1), 451–458 (2012). https://doi.org/10.1021/nn203771u
- D. Kiriya, K. Chen, H. Ota, Y. Lin, P. Zhao et al., Design of surfactant-substrate interactions for roll-to-roll assembly of carbon nanotubes for thin-film transistors. J. Am. Chem. Soc. 136(31), 11188–11194 (2014). https://doi.org/10.1021/ja506315j
- G. Yuan, W. Liu, X. Huang, Z. Wan, C. Wang et al., Stacking transfer of wafer-scale graphene-based van der Waals superlattices. Nat. Commun. 14(1), 5457 (2023). https://doi.org/10.1038/s41467-023-41296-5
- B. Jiang, S.W. Wang, J.Y. Sun, Z.F. Liu, Controllable synthesis of wafer-scale graphene films: challenges, status, and perspectives. Small 17(37), 2008017 (2021). https://doi.org/10.1002/smll.202008017
- M.D. Bishop, G. Hills, T. Srimani, C. Lau, D. Murphy et al., Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 3(8), 492–501 (2020). https://doi.org/10.1038/s41928-020-0419-7
- F. Liu, M. Xiao, Y. Ning, S. Zhou, J. He et al., Toward practical gas sensing with rapid recovery semiconducting carbon nanotube film sensors. Sci. China Inf. Sci. 65(6), 162402 (2022). https://doi.org/10.1007/s11432-021-3286-3
- M. Xiao, S. Liang, J. Han, D. Zhong, J. Liu et al., Batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS Sens. 3(4), 749–756 (2018). https://doi.org/10.1021/acssensors.8b00006
- Y. Liang, M. Xiao, D. Wu, Y. Lin, L. Liu et al., Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. ACS Nano 14(7), 8866–8874 (2020). https://doi.org/10.1021/acsnano.0c03523
- S. Zhan, H. Zuo, B. Liu, W. Xu, J. Cao et al., Wafer-scale field-effect transistor-type sensor using a carbon nanotube film as a channel for ppb-level hydrogen sulfide detection. ACS Sens. 8(8), 3060–3067 (2023). https://doi.org/10.1021/acssensors.3c00653
- Y. Sun, Y. Zhang, Wafer-scale floating-gate field effect transistor sensor built on carbon nanotubes film for Ppb-level NO2 detection. Chem. Eng. J. 473, 145480 (2023). https://doi.org/10.1016/j.cej.2023.145480
- M. Soikkeli, A. Murros, A. Rantala, O. Txoperena, O.P. Kilpi et al., Wafer-scale graphene field-effect transistor biosensor arrays with monolithic CMOS readout. ACS Appl. Electron. Mater. 5(9), 4925–4932 (2023). https://doi.org/10.1021/acsaelm.3c00706
- C. Wang, J. Zhang, C. Zhou, Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 4(12), 7123–7132 (2010). https://doi.org/10.1021/nn1021378
- L. Liu, J. Han, L. Xu, J. Zhou, C. Zhao et al., Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368(6493), 850–856 (2020). https://doi.org/10.1126/science.aba5980
- U. Weimar, K.D. Schierbaum, W. Göpel, R. Kowalkowski, Pattern recognition methods for gas mixture analysis: application to sensor arrays based upon SnO2. Sens. Actuat. B Chem. 1(1–6), 93–96 (1990). https://doi.org/10.1016/0925-4005(90)80179-4
- W. Huang, R.C. Hayward, Orthogonal ambipolar semiconductors with inherently multi-dimensional responses for the discriminative sensing of chemical vapors. ACS Appl. Mater. Interfaces 10, 33353 (2018). https://doi.org/10.1021/acsami.8b10789
- L. Shi, P. Tang, J. Hu, Y. Zhang, A strategy for multigas identification using multielectrical parameters extracted from a single carbon-based field-effect transistor sensor. ACS Sens. 9(6), 3126–3136 (2024). https://doi.org/10.1021/acssensors.4c00357
- T. Hayasaka, A. Lin, V.C. Copa, L.P. Lopez Jr., R.A. Loberternos et al., An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol. Microsyst. Nanoeng. 6, 50 (2020). https://doi.org/10.1038/s41378-020-0161-3
- O.G. Agbonlahor, M. Muruganathan, A. Banerjee, H. Mizuta, Machine learning identification of atmospheric gases by mapping the graphene-molecule van der waals complex bonding evolution. Sens. Actuat. B Chem. 380, 133383 (2023). https://doi.org/10.1016/j.snb.2023.133383
- B. Liu, Y. Huang, K.W. Kam, W.-F. Cheung, N. Zhao et al., Functionalized graphene-based chemiresistive electronic nose for discrimination of disease-related volatile organic compounds. Biosens. Bioelectron. X 1, 100016 (2019). https://doi.org/10.1016/j.biosx.2019.100016
- J. Sun, M. Muruganathan, H. Mizuta, Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Sci. Adv. 2(4), e1501518 (2016). https://doi.org/10.1126/sciadv.1501518
- W. Fu, L. Feng, G. Panaitov, D. Kireev, D. Mayer et al., Biosensing near the neutrality point of graphene. Sci. Adv. 3(10), e1701247 (2017). https://doi.org/10.1126/sciadv.1701247
- O.G. Agbonlahor, M. Muruganathan, T. Imamura, H. Mizuta, Adsorbed molecules as interchangeable dopants and scatterers with a van der waals bonding memory in graphene sensors. ACS Sens. 5(7), 2003–2009 (2020). https://doi.org/10.1021/acssensors.0c00403
- I. Lundström, S. Shivaraman, C. Svensson, L. Lundkvist, A hydrogen−sensitive MOS field−effect transistor. Appl. Phys. Lett. 26(2), 55–57 (1975). https://doi.org/10.1063/1.88053
- F. Liao, C. Chen, V. Subramanian, Organic TFTs as gas sensors for electronic nose applications. Sens. Actuat. B Chem. 107(2), 849–855 (2005). https://doi.org/10.1016/j.snb.2004.12.026
- L. Torsi, A. Dodabalapur, L. Sabbatini, P.G. Zambonin, Multi-parameter gas sensors based on organic thin-film-transistors. Sens. Actuator B Chem. 67, 312 (2000). https://doi.org/10.1016/S0925-4005(00)00541-4
- M. Josowicz, J. Janata, Suspended gate field effect transistors modified with polypyrrole as alcohol sensor. Anal. Chem. 58(3), 514–517 (1986). https://doi.org/10.1021/ac00294a003
- C.-H. Kim, I.-T. Cho, J.-M. Shin, K.-B. Choi, J.-K. Lee et al., A new gas sensor based on MOSFET having a horizontal floating-gate. IEEE Electron Device Lett. 35(2), 265–267 (2014). https://doi.org/10.1109/LED.2013.2294722
- I. Lundström, H. Sundgren, F. Winquist, M. Eriksson, C. Krantz-Rülcker et al., Twenty-five years of field effect gas sensor research in Linköping. Sens. Actuat. B Chem. 121(1), 247–262 (2007). https://doi.org/10.1016/j.snb.2006.09.046
- Z. Shen, W. Huang, L. Li, H. Li, J. Huang et al., Research progress of organic field-effect transistor based chemical sensors. Small 19, 2302406 (2023). https://doi.org/10.1002/smll.202302406
- S.A. Dr, M.F. Dr, B. Souharce, H.T. Dr, U.S.P. Dr, Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed. 47(22), 4070–4098 (2008). https://doi.org/10.1002/anie.200701920
- S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998). https://doi.org/10.1038/29954
- A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Ballistic carbon nanotube field-effect transistors. Nature 424(6949), 654–657 (2003). https://doi.org/10.1038/nature01797
- Z. Zhang, X. Liang, S. Wang, K. Yao, Y. Hu et al., Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 7(12), 3603–3607 (2007). https://doi.org/10.1021/nl0717107
- Y. Zhang, N.W. Franklin, R.J. Chen, H. Dai, Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction. Chem. Phys. Lett. 331(1), 35–41 (2000). https://doi.org/10.1016/S0009-2614(00)01162-3
- D.R. Kauffman, A. Star, Chemically induced potential barriers at the carbon nanotube-metal nanop interface. Nano Lett. 7(7), 1863–1868 (2007). https://doi.org/10.1021/nl070330i
- O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, Hydrogen sensing using titania nanotubes. Sens. Actuat. B Chem. 93(1–3), 338–344 (2003). https://doi.org/10.1016/S0925-4005(03)00222-3
- S.-Y. Guo, P.-X. Hou, F. Zhang, C. Liu, H.-M. Cheng, Gas sensors based on single-wall carbon nanotubes. Molecules 27(17), 5381 (2022). https://doi.org/10.3390/molecules27175381
- A.C. Romain, J. Nicolas, Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview. Sens. Actuat. B Chem. 146(2), 502–506 (2010). https://doi.org/10.1016/j.snb.2009.12.027
- J.F. Fennell Jr., S.F. Liu, J.M. Azzarelli, J.G. Weis, S. Rochat et al., Nanowire chemical/biological sensors: status and a roadmap for the future. Angew. Chem. Int. Ed. 55(4), 1266–1281 (2016). https://doi.org/10.1002/anie.201505308
- F.M. Albarghouthi, D. Semeniak, I. Khanani, J.L. Doherty, B.N. Smith et al., Addressing signal drift and screening for detection of biomarkers with carbon nanotube transistors. ACS Nano 18, 5698 (2024). https://doi.org/10.1021/acsnano.3c11679
- IUPAC, Nomenclature, symbols, units and their usage in spectrochemical analysis - II. Data interpretation. Pure Appl. Chem. 45, 99 (1976). https://doi.org/10.1351/pac197645020099
- J.A.C. Broekaert, Daniel C. Harris: quantitative chemical analysis, 9th ed. Anal. Bioanal. Chem. 407(30), 8943–8944 (2015). https://doi.org/10.1007/s00216-015-9059-6
- C. Mackin, A. Fasoli, M. Xue, Y. Lin, A. Adebiyi, L. Bozano, T. Palacios, Chemical sensor systems based on 2D and thin film materials. 2D Mater. 7(2), 022002 (2020). https://doi.org/10.1088/2053-1583/ab6e88
- H.-P. Loock, P.D. Wentzell, Detection limits of chemical sensors: applications and misapplications. Sens. Actuat. B Chem. 173, 157–163 (2012). https://doi.org/10.1016/j.snb.2012.06.071
- L. Torsi, M. Magliulo, K. Manoli, G. Palazzo, Organic field-effect transistor sensors: a tutorial review. Chem. Soc. Rev. 42, 8612 (2013). https://doi.org/10.1039/C3CS60127G
- M. Püntener, T. Vigassy, E. Baier, A. Ceresa, E. Pretsch, Improving the lower detection limit of potentiometric sensors by covalently binding the ionophore to a polymer backbone. Anal. Chim. Acta 503(2), 187–194 (2004). https://doi.org/10.1016/j.aca.2003.10.030
- W. Shin, R.-H. Koo, S. Hong, G. Jung, Y. Jeong et al., Effects of sensor platform scaling on signal-to-noise ratio in the resistor- and horizontal floating-gate FET-type gas sensors. IEEE Trans. Electron Devices 70(11), 5845–5850 (2023). https://doi.org/10.1109/TED.2023.3312060
- J.R. Vig, F.L. Walls, A review of sensor sensitivity and stability. Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition. June 9–9, 2000, Kansas City, MO, USA. IEEE, (2000)., pp. 30–33.
- X. Zhao, L. Lu, Y. Zou, C. Xiang, F. Xu et al., Morphology tuning of NiMo layered double hydroxide-modified MXene for highly sensitive detection of NH3 with long-term stability. ACS Appl. Nano Mater. 7(18), 21860–21870 (2024). https://doi.org/10.1021/acsanm.4c03794
- S.M. Scott, D. James, Z. Ali, Data analysis for electronic nose systems. Microchim. Acta 156(3), 183–207 (2006). https://doi.org/10.1007/s00604-006-0623-9
- P.C. Jurs, G.A. Bakken, H.E. McClelland, Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 100(7), 2649–2678 (2000). https://doi.org/10.1021/cr9800964
- M. Ranbir, G. Kumar, J. Singh, N.K. Singh et al., Machine learning-based analytical systems: food forensics. ACS Omega 7(51), 47518–47535 (2022). https://doi.org/10.1021/acsomega.2c05632
- F. Cui, Y. Yue, Y. Zhang, Z. Zhang, H.S. Zhou, Advancing biosensors with machine learning. ACS Sens. 5(11), 3346–3364 (2020). https://doi.org/10.1021/acssensors.0c01424
- D. Karakaya, O. Ulucan, M. Turkan, Electronic nose and its applications: a survey. Int. J. Autom. Comput. 17(2), 179–209 (2020). https://doi.org/10.1007/s11633-019-1212-9
- J. Tan, J. Xu, Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: a review. Artif. Intell. Agric. 4, 104–115 (2020). https://doi.org/10.1016/j.aiia.2020.06.003
- S. Feng, F. Farha, Q. Li, Y. Wan, Y. Xu et al., Review on smart gas sensing technology. Sens. 19, 3760 (2019). https://doi.org/10.3390/s19173760
- H. Mei, J. Peng, T. Wang, T. Zhou, H. Zhao et al., Overcoming the limits of cross-sensitivity: pattern recognition methods for chemiresistive gas sensor array. Nano-Micro Lett. 16(1), 269 (2024). https://doi.org/10.1007/s40820-024-01489-z
- S. Satter, F. Bender, N. Post, A.J. Ricco, F. Josse, Analysis of multivariable sensor responses to multi-analyte gas samples in the presence of interferents and humidity. ACS Sens. 9(11), 6247–6256 (2024). https://doi.org/10.1021/acssensors.4c02200
- Q. Teng, K. Zhou, K. Yu, X. Zhang, Z. Li et al., Principal component analysis-assisted zirconium-based metal-organic frameworks/DNA biosensor for the analysis of various phosphates. Talanta 271, 125733 (2024). https://doi.org/10.1016/j.talanta.2024.125733
- A. Boujnah, A. Boubaker, S. Pecqueur, K. Lmimouni, A. Kalboussi, An electronic nose using conductometric gas sensors based on P3HT doped with triflates for gas detection using computational techniques (PCA, LDA, and kNN). J. Mater. Sci. Mater. Electron. 33(36), 27132–27146 (2022). https://doi.org/10.1007/s10854-022-09376-2
- T. Itoh, Y. Koyama, Y. Sakumura, T. Akamatsu, A. Tsuruta et al., Discrimination of volatile organic compounds using a sensor array via a rapid method based on linear discriminant analysis. Sens. Actuat. B Chem. 387, 133803 (2023). https://doi.org/10.1016/j.snb.2023.133803
- A. Zhang, Y. Zhang, W. Cheng, X. Li, K. Chen et al., Dual-gas sensing via SnO2-TiO2 heterojunction on MXene: machine learning-enhanced selectivity and sensitivity for hydrogen and ammonia detection. Sens. Actuat. B Chem. 429, 137340 (2025). https://doi.org/10.1016/j.snb.2025.137340
- J. Shan, K. Liu, J. Jiang, T. Liu, H. Yin, Application of support vector machine in quantitative analysis of mixed gas. Acta Opt. Sin. 43, 1206001 (2023). https://doi.org/10.3788/AOS221681
- Q. Zhang, T. Ren, K. Cao, Z. Xu, Advances of machine learning-assisted small extracellular vesicles detection strategy. Biosens. Bioelectron. 251, 116076 (2024). https://doi.org/10.1016/j.bios.2024.116076
- Y. Yang, D. Xie, D. Chen, L. Geng, Y. Zhang et al., A quadrilateral gas sensor cell by complete MEMS process for gas identification. IEEE Sens. J. 25(2), 2267–2275 (2025). https://doi.org/10.1109/JSEN.2024.3502637
- V.K. Ojha, A. Abraham, V. Snášel, Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017). https://doi.org/10.1016/j.engappai.2017.01.013
- L. Höfler, Good results from sensor data: performance of machine learning algorithms for regression problems in chemical sensors. Sens. Actuat. B Chem. 421, 136528 (2024). https://doi.org/10.1016/j.snb.2024.136528
- D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323, 533 (1986). https://doi.org/10.1038/323533a0
- Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539
- D. Kwon, G. Jung, W. Shin, Y. Jeong, S. Hong et al., Low-power and reliable gas sensing system based on recurrent neural networks. Sens. Actuat. B Chem. 340, 129258 (2021). https://doi.org/10.1016/j.snb.2020.129258
- N. Lim, S. Hong, J. Jung, G.Y. Jung, D.H. Woo et al., Enhancing mixed gas discrimination in e-nose system: Sparse recurrent neural networks using transient current fluctuation of SMO array sensor. J. Ind. Inf. Integr. 42, 100715 (2024). https://doi.org/10.1016/j.jii.2024.100715
- G. Wei, G. Li, J. Zhao, A. He, Development of a LeNet-5 gas identification CNN structure for electronic noses. Sensors 19(1), 217 (2019). https://doi.org/10.3390/s19010217
- L. Guo, T. Wang, Z. Wu, J. Wang, M. Wang et al., Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks. Adv. Mater. 32(45), e2004805 (2020). https://doi.org/10.1002/adma.202004805
- Y. Jiang, Z. Wang, Y. Hu, W. Lin, L. Yao et al., Intelligent sniffer: a chip-based portable e-nose for accurate and fast essence evaluation. Sens. Actuat. B Chem. 426, 136989 (2025). https://doi.org/10.1016/j.snb.2024.136989
- R. Cao, Z. Lu, J. Hu, Y. Zhang, Carbon-based FET-type gas sensor for the detection of ppb-level benzene at room temperature. Chemosensors 12(9), 179 (2024). https://doi.org/10.3390/chemosensors12090179
- S. Abegg, L. Magro, J. van den Broek, S.E. Pratsinis, A.T. Güntner, A pocket-sized device enables detection of methanol adulteration in alcoholic beverages. Nat. Food 1(6), 351–354 (2020). https://doi.org/10.1038/s43016-020-0095-9
- J. van den Broek, S. Abegg, S.E. Pratsinis, A.T. Güntner, Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 10(1), 4220 (2019). https://doi.org/10.1038/s41467-019-12223-4
- Y.G. Kim, B.M. Oh, H. Kim, E.H. Lee, D.H. Lee et al., Trifluoromethyl ketone P3HT-CNT composites for chemiresistive amine sensors with improved sensitivity. Sens. Actuat. B Chem. 367, 132076 (2022). https://doi.org/10.1016/j.snb.2022.132076
- M. Doshi, J. Zhang, E.P. Fahrenthold, Spin polarized chemiresistive CNT sensors for selective detection of explosive molecules. J. Phys. Chem. C 128(35), 14824–14833 (2024). https://doi.org/10.1021/acs.jpcc.4c03732
- S. Homayoonnia, A. Phani, S. Kim, MOF/MWCNT-nanocomposite manipulates high selectivity to gas via different adsorption sites with varying electron affinity: a study in methane detection in parts-per-billion. ACS Sens. 7(12), 3846–3856 (2022). https://doi.org/10.1021/acssensors.2c01796
- M. Khatib, H. Haick, Sensors for volatile organic compounds. ACS Nano 16(5), 7080–7115 (2022). https://doi.org/10.1021/acsnano.1c10827
- M. Kaloumenou, E. Skotadis, N. Lagopati, E. Efstathopoulos, D. Tsoukalas, Breath analysis: a promising tool for disease diagnosis-the role of sensors. Sensors 22(3), 1238 (2022). https://doi.org/10.3390/s22031238
- J. Yang, R. Sun, X. Bao, J. Liu, J.W. Ng et al., Enhancing selectivity of two-dimensional materials-based gas sensors. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202420393
- R.A. Potyrailo, R.K. Bonam, J.G. Hartley, T.A. Starkey, P. Vukusic et al., Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nat. Commun. 6, 7959 (2015). https://doi.org/10.1038/ncomms8959
- T.-C. Wu, J. Dai, G. Hu, W.-B. Yu, O. Ogbeide et al., Machine-intelligent inkjet-printed α-Fe2O3/rGO towards NO2 quantification in ambient humidity. Sens. Actuat. B Chem. 321, 128446 (2020). https://doi.org/10.1016/j.snb.2020.128446
- M. Trawka, J. Smulko, L. Hasse, C.-G. Granqvist, F.E. Annanouch et al., Fluctuation enhanced gas sensing with WO3-based nanop gas sensors modulated by UV light at selected wavelengths. Sens. Actuator B Chem. 234, 453 (2016). https://doi.org/10.1016/j.snb.2016.05.032
- K. Drozdowska, A. Rehman, P. Sai, B. Stonio, A. Krajewska et al., Organic vapor sensing mechanisms by large-area graphene back-gated field-effect transistors under UV irradiation. ACS Sens. 7(10), 3094–3101 (2022). https://doi.org/10.1021/acssensors.2c01511
- I. Cho, K. Lee, Y.C. Sim, J.S. Jeong, M. Cho et al., Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor. Light Sci. Appl. 12(1), 95 (2023). https://doi.org/10.1038/s41377-023-01120-7
- B. Gil, D. Wales, H. Tan, E. Yeatman, Detection of medically relevant volatile organic compounds with graphene field-effect transistors and separated by low-frequency spectral and time signatures. Nanoscale 16(1), 61–71 (2023). https://doi.org/10.1039/d3nr04961b
- O. Ogbeide, G. Bae, W. Yu, E. Morrin, Y. Song et al., Inkjet-printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv. Funct. Mater. 32(25), 2113348 (2022). https://doi.org/10.1002/adfm.202113348
- L. Bian, Z. Wang, D.L. White, A. Star, Machine learning-assisted calibration of Hg2+ sensors based on carbon nanotube field-effect transistors. Biosens. Bioelectron. 180, 113085 (2021). https://doi.org/10.1016/j.bios.2021.113085
- A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42(14), 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145
- Q. Deng, S. Gao, T. Lei, Y. Ling, S. Zhang et al., Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens. Actuat. B Chem. 247, 903–915 (2017). https://doi.org/10.1016/j.snb.2017.03.107
- A. Zulkefli, B. Mukherjee, R. Sahara, R. Hayakawa, T. Iwasaki et al., Enhanced selectivity in volatile organic compound gas sensors based on ReS2-FETs under light-assisted and gate-bias tunable operation. ACS Appl. Mater. Interfaces 13(36), 43030–43038 (2021). https://doi.org/10.1021/acsami.1c10054
- A. Zulkefli, B. Mukherjee, R. Hayakawa, T. Iwasaki, S. Nakaharai et al., Light-assisted and gate-tunable oxygen gas sensor based on rhenium disulfide field-effect transistors. Phys. Status Solidi RRL 14(11), 2000330 (2020). https://doi.org/10.1002/pssr.202000330
- H. Kwon, H. Yoo, M. Nakano, K. Takimiya, J.J. Kim et al., Gate-tunable gas sensing behaviors in air-stable ambipolar organic thin-film transistors. RSC Adv. 10(4), 1910–1916 (2020). https://doi.org/10.1039/c9ra09195e
- A. Maity, S. Rapoport, H. Haick, Gate-controlled chiral recognition and spin assessment with all-electric hybrid quantum wire-based transistors. Small 19(51), 2205038 (2023). https://doi.org/10.1002/smll.202205038
- N. Peng, Q. Zhang, Y.C. Lee, O.K. Tan, N. Marzari, Gate modulation in carbon nanotube field effect transistors-based NH3 gas sensors. Sens. Actuat. B Chem. 132(1), 191–195 (2008). https://doi.org/10.1016/j.snb.2008.01.025
- A. Bilić, J.R. Reimers, N.S. Hush, J. Hafner, Adsorption of ammonia on the gold (111) surface. J. Chem. Phys. 116(20), 8981–8987 (2002). https://doi.org/10.1063/1.1471245
- J.P. Novak, E.S. Snow, E.J. Houser, D. Park, J.L. Stepnowski et al., Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83(19), 4026–4028 (2003). https://doi.org/10.1063/1.1626265
- S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Selective gas sensing with a single pristine graphene transistor. Nano Lett. 12(5), 2294–2298 (2012). https://doi.org/10.1021/nl3001293
- R. Samnakay, C. Jiang, S.L. Rumyantsev, M.S. Shur, A.A. Balandin, Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices. Appl. Phys. Lett. 106(2), 023115 (2015). https://doi.org/10.1063/1.4905694
- S. Huang, A. Croy, L.A. Panes-Ruiz, V. Khavrus, V. Bezugly et al., Machine learning-enabled smart gas sensing platform for identification of industrial gases. Adv. Intell. Syst. 4(4), 2200016 (2022). https://doi.org/10.1002/aisy.202200016
- I. Heller, A.M. Janssens, J. Männik, E.D. Minot, S.G. Lemay et al., Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8(2), 591–595 (2008). https://doi.org/10.1021/nl072996i
- A.B. Artyukhin, M. Stadermann, R.W. Friddle, P. Stroeve, O. Bakajin et al., Controlled electrostatic gating of carbon nanotube FET devices. Nano Lett. 6(9), 2080–2085 (2006). https://doi.org/10.1021/nl061343j
- X. Xu, B.J. Bowen, R.E.A. Gwyther, M. Freeley, B. Grigorenko et al., Tuning electrostatic gating of semiconducting carbon nanotubes by controlling protein orientation in biosensing devices. Angew. Chem. Int. Ed. 60(37), 20184–20189 (2021). https://doi.org/10.1002/anie.202104044
- R.J. Chen, H.C. Choi, S. Bangsaruntip, E. Yenilmez, X. Tang et al., An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J. Am. Chem. Soc. 126(5), 1563–1568 (2004). https://doi.org/10.1021/ja038702m
- R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W. Shi Kam, M. Shim et al., Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100(9), 4984–4989 (2003). https://doi.org/10.1073/pnas.0837064100
- A.M. Dr, K.B. Dr, M.B. Dr, K.K. Prof, Functionalized metallic carbon nanotube devices for pH sensing. Chem. Phys. Chem. 8(2), 220–223 (2007). https://doi.org/10.1002/cphc.200600498
- T. Hao, R. Zhang, S. Ren, Y. Jia, Undecorated GFET for determinations of heavy metal ions aided by machine learning algorithms. Talanta Open 7, 100176 (2023). https://doi.org/10.1016/j.talo.2022.100176
- I. Park, J. Lim, S. You, M.T. Hwang, J. Kwon et al., Detection of SARS-CoV-2 virus amplification using a crumpled graphene field-effect transistor biosensor. ACS Sens. 6(12), 4461–4470 (2021). https://doi.org/10.1021/acssensors.1c01937
- C. Qu, I. Maini, Q. Guo, A. Stacey, D.A.J. Moran, Extreme enhancement-mode operation accumulation channel hydrogen-terminated diamond FETs with Vth < − 6 V and high on-current. Adv. Electron. Mater. 2400770 (2024). https://doi.org/10.1002/aelm.202400770
- R. Abimaheshwari, T. Murugadass, R. Abinaya, M. Navaneethan, S. Harish, Fabrication of SnS2/Si heterostructure for ultra-high selective and rapid room temperature NO2 gas detection with enhanced carrier mobility. Sens. Actuat. B Chem. 428, 137165 (2025). https://doi.org/10.1016/j.snb.2024.137165
- H. Tabata, H. Matsuyama, T. Goto, O. Kubo, M. Katayama, Visible-light-activated response originating from carrier-mobility modulation of NO2 gas sensors based on MoS2 monolayers. ACS Nano 15(2), 2542–2553 (2021). https://doi.org/10.1021/acsnano.0c06996
- G.O. Silva, Z.P. Michael, L. Bian, G.V. Shurin, M. Mulato et al., Nanoelectronic discrimination of nonmalignant and malignant cells using nanotube field-effect transistors. ACS Sens. 2(8), 1128–1132 (2017). https://doi.org/10.1021/acssensors.7b00383
- L. Bian, D.C. Sorescu, L. Chen, D.L. White, S.C. Burkert et al., Machine-learning identification of the sensing descriptors relevant in molecular interactions with metal nanop-decorated nanotube field-effect transistors. ACS Appl. Mater. Interfaces 11(1), 1219–1227 (2019). https://doi.org/10.1021/acsami.8b15785
- W. Shao, D.C. Sorescu, Z. Liu, A. Star, Machine learning discrimination and ultrasensitive detection of fentanyl using gold nanop-decorated carbon nanotube-based field-effect transistor sensors. Small 20(35), e2311835 (2024). https://doi.org/10.1002/smll.202311835
- E. Fu, K. Khederlou, N. Lefevre, S.A. Ramsey, M.L. Johnston et al., Progress on electrochemical sensing of pharmaceutical drugs in complex biofluids. Chemosensors 11(8), 467 (2023). https://doi.org/10.3390/chemosensors11080467
- Z. Liu, G.V. Shurin, L. Bian, D.L. White, M.R. Shurin et al., A carbon nanotube sensor array for the label-free discrimination of live and dead cells with machine learning. Anal. Chem. 94(8), 3565–3573 (2022). https://doi.org/10.1021/acs.analchem.1c04661
- Z. Liu, L. Bian, C.J. Yeoman, G. Dennis Clifton, J.E. Ellington et al., Bacterial vaginosis monitoring with carbon nanotube field-effect transistors. Anal. Chem. 94(9), 3849–3857 (2022). https://doi.org/10.1021/acs.analchem.1c04755
- R. Mitobe, Y. Sasaki, W. Tang, Q. Zhou, X. Lyu et al., Multi-oxyanion detection by an organic field-effect transistor with pattern recognition techniques and its application to quantitative phosphate sensing in human blood serum. ACS Appl. Mater. Interfaces 14(20), 22903–22911 (2022). https://doi.org/10.1021/acsami.1c21092
- M. Sensi, R.F. de Oliveira, M. Berto, M. Palmieri, E. Ruini et al., Reduced graphene oxide electrolyte-gated transistor immunosensor with highly selective multiparametric detection of anti-drug antibodies. Adv. Mater. 35(36), e2211352 (2023). https://doi.org/10.1002/adma.202211352
- D. Tsui, F. Downey, S. Navaneethan, A. Paul, T. Bodily et al., A machine learning approach to COVID-19 detection via graphene field-effect-transistor (GFET). 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). July 24-27, 2023, Sydney, Australia. IEEE, (2023)., pp. 1–4
- S.-Z. Liang, G. Chen, A.R. Harutyunyan, J.O. Sofo, Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing. Phys. Rev. B 90(11), 115410 (2014). https://doi.org/10.1103/physrevb.90.115410
- S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, A self-consistent theory for graphene transport. Proc. Natl. Acad. Sci. USA 104(47), 18392–18397 (2007). https://doi.org/10.1073/pnas.0704772104
- J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams et al., Charged-impurity scattering in graphene. Nat. Phys. 4(5), 377–381 (2008). https://doi.org/10.1038/nphys935
- S. Mehdi Aghaei, M.M. Monshi, I. Torres, S.M.J. Zeidi, I. Calizo, DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: a search for highly sensitive molecular sensor. Appl. Surf. Sci. 427, 326–333 (2018). https://doi.org/10.1016/j.apsusc.2017.08.048
- X.-Y. Liang, N. Ding, S.-P. Ng, C.L. Wu, Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field: a DFT study. Appl. Surf. Sci. 411, 11–17 (2017). https://doi.org/10.1016/j.apsusc.2017.03.178
- Z. Zhou, J. Song, Y. Xie, Y. Ma, H. Hu et al., DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials. Chin. Chem. Lett. (2025). https://doi.org/10.1016/j.cclet.2025.110906
- M. Tripathi, G. Deokar, J. Casanova-Chafer, J. Jin, A. Sierra-Castillo et al., Vertical heterostructure of graphite-MoS2 for gas sensing. Nanoscale Horiz. 9, 1330 (2024). https://doi.org/10.1039/d4nh00049h
- S. Yuan, S. Zeng, Y. Hu, W. Kong, H. Yang et al., Epitaxial metal-organic framework-mediated electron relay for H2 detection on demand. ACS Nano 18(30), 19723–19731 (2024). https://doi.org/10.1021/acsnano.4c05206
- Y. Huang, X. Yan, Q. He, J. Qiu, Y. Zhang et al., Ceria and gold co-decorated porous MoS2@graphene nanocomposite electrochemical electrode integrated with smartphone-controlled microstation for simultaneous dual metal ions detection. Electrochim. Acta 437, 141509 (2023). https://doi.org/10.1016/j.electacta.2022.141509
- H.-L. Hou, C. Anichini, P. Samori, A. Criado, M. Prato, 2D van der waals heterostructures for chemical sensing. Adv. Funct. Mater. 32, 2207065 (2022). https://doi.org/10.1002/adfm.202207065
- O. Sisman, O. Smirnova, Y. Xia, N. Greiner-Mai, A. Reupert et al., Overcoming the selectivity-sensitivity trade-off in electroactive gas sensing using hybrid glass composites. Adv. Funct. Mater. 35(10), 2416535 (2025). https://doi.org/10.1002/adfm.202416535
- S.M. Lee, Y.J. Kim, S.J. Park, W.S. Cheon, J. Kim et al., In-situ growth of 2D MOFs as a molecular sieving layer on SnS2 nanoflakes for realizing ultraselective H2S detection. Adv. Funct. Mater. 35(12), 2417019 (2025). https://doi.org/10.1002/adfm.202417019
- X. Wu, S. Shi, J. Jiang, D. Lin, J. Song et al., Bionic olfactory neuron with in-sensor reservoir computing for intelligent gas recognition. Adv. Mater. (2025). https://doi.org/10.1002/adma.202419159
- X. Zhang, C. Liu, Z. Liu, Y. Liu, H. Chen et al., Bioengineered two-dimensional nanomaterials (Bio-2DNMs) for cancer diagnosis and therapy: a comprehensive review. Chem. Eng. J. 507, 160430 (2025). https://doi.org/10.1016/j.cej.2025.160430
- V.V. Tran, V.K.H. Bui, D.L.T. Nguyen, H.H. Do, Challenges and development strategies of conjugated polymers composites-based biosensors for detection of virus biomarkers. Chem. Eng. J. 503, 158532 (2025). https://doi.org/10.1016/j.cej.2024.158532
- L.R. Jaishi, W. Ding, R.A. Kittelson, F. Tsow, X. Xian, Metal-organic frameworks (MOFs)-based piezoelectric-colorimetric hybrid sensor for monitoring green leaf volatiles. ACS Sens. 9(12), 6553–6562 (2024). https://doi.org/10.1021/acssensors.4c02016
- K.K. Zamansky, F.S. Fedorov, S.D. Shandakov, M. Chetyrkina, A.G. Nasibulin, A gas sensor based on free-standing SWCNT film for selective recognition of toxic and flammable gases under thermal cycling protocols. Sens. Actuat. B Chem. 417, 136116 (2024). https://doi.org/10.1016/j.snb.2024.136116
- Z.W. Wong, S.Y. New, Recent advances in biosensors based on hybridization chain reaction and silver nanoclusters. Small Meth. 9, 2401436 (2025). https://doi.org/10.1002/smtd.202401436
- A.-M. Andringa, J.R. Meijboom, E.C.P. Smits, S.G.J. Mathijssen, P.W.M. Blom et al., Gate-bias controlled charge trapping as a mechanism for NO2 detection with field-effect transistors. Adv. Funct. Mater. 21(1), 100–107 (2011). https://doi.org/10.1002/adfm.201001560
- M. Mattmann, C. Roman, T. Helbling, D. Bechstein, L. Durrer et al., Pulsed gate sweep strategies for hysteresis reduction in carbon nanotube transistors for low concentration NO2 gas detection. Nanotechnology 21(18), 185501 (2010). https://doi.org/10.1088/0957-4484/21/18/185501
- D. Kwon, J.H. Lee, S. Kim, R. Lee, H. Mo et al., Drift-free pH detection with silicon nanowire field-effect transistors. IEEE Electron Device Lett. 37(5), 652–655 (2016). https://doi.org/10.1109/LED.2016.2542846
- J. Han, X. Xie, S. Sun, An improved analytic dictionary learning method for sparse representation in gas recognition and classification. IEEE Sens. J. 24(9), 15665–15675 (2024). https://doi.org/10.1109/JSEN.2024.3381149
- D. Guo, D. Zhang, L. Zhang, Sparse representation-based classification for breath sample identification. Sens. Actuat. B Chem. 158(1), 43–53 (2011). https://doi.org/10.1016/j.snb.2011.05.010
- D.R. Wijaya, F. Afianti, Stability assessment of feature selection algorithms on homogeneous datasets: A study for sensor array optimization problem. IEEE Access 8, 33944 (2020). https://doi.org/10.1109/ACCESS.2020.2974982
- J. Fonollosa, L. Fernández, R. Huerta, A. Gutiérrez-Gálvez, S. Marco, Temperature optimization of metal oxide sensor arrays using mutual information. Sens. Actuat. B Chem. 187, 331–339 (2013). https://doi.org/10.1016/j.snb.2012.12.026
- J. Zhou, C.M. Welling, S. Kawadiya, M.A. Deshusses, S. Grego et al., Sensor-array optimization based on mutual information for sanitation-related malodor alerts. in 2019 IEEE Biomedical Circuits and Systems Conference (Biocas 2019) (IEEE, New York, 2019). https://doi.org/10.1109/biocas.2019.8919132
References
F.J. Zhang, G. Qu, E. Mohammadi, J.G. Mei, Y. Diao, Solution-processed nanoporous organic semiconductor thin films: toward health and environmental monitoring of volatile markers. Adv. Funct. Mater. 27(23), 1701117 (2017). https://doi.org/10.1002/adfm.201701117
H. Yuan, S.A.A.A. Aljneibi, J. Yuan, Y. Wang, H. Liu et al., ZnO nanosheets abundant in oxygen vacancies derived from metal-organic frameworks for ppb-level gas sensing. Adv. Mater. 31(11), e1807161 (2019). https://doi.org/10.1002/adma.201807161
K. Lee, I. Cho, M. Kang, J. Jeong, M. Choi et al., Ultra-low-power E-nose system based on multi-micro-LED-integrated, nanostructured gas sensors and deep learning. ACS Nano 17(1), 539–551 (2023). https://doi.org/10.1021/acsnano.2c09314
N.S.S. Capman, X.V. Zhen, J.T. Nelson, V.R.S. Kumar Chaganti, R.C. Finc et al., Machine learning-based rapid detection of volatile organic compounds in a graphene electronic nose. ACS Nano 16(11), 19567–19583 (2022). https://doi.org/10.1021/acsnano.2c10240
Z. Wu, Q. Ding, H. Wang, J. Ye, Y. Luo et al., A humidity-resistant, sensitive, and stretchable hydrogel-based oxygen sensor for wireless health and environmental monitoring. Adv. Funct. Mater. 34(6), 2308280 (2024). https://doi.org/10.1002/adfm.202308280
W. Huang, Q. Ding, H. Wang, Z. Wu, Y. Luo et al., Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 14(1), 5221 (2023). https://doi.org/10.1038/s41467-023-40953-z
Z.-Y. Gu, X.-P. Yan, Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew. Chem. Int. Ed. 49(8), 1477–1480 (2010). https://doi.org/10.1002/anie.200906560
R.A. Potyrailo, Multivariable sensors for ubiquitous monitoring of gases in the era of Internet of Things and industrial Internet. Chem. Rev. 116(19), 11877–11923 (2016). https://doi.org/10.1021/acs.chemrev.6b00187
A. Hakeem Anwer, M. Saadaoui, A.T. Mohamed, N. Ahmad, A. Benamor, State-of-the-Art advances and challenges in wearable gas sensors for emerging applications: innovations and future prospects. Chem. Eng. J. 502, 157899 (2024). https://doi.org/10.1016/j.cej.2024.157899
A.K. Yetisen, J.L. Martinez-Hurtado, B. Ünal, A. Khademhosseini, H. Butt, Wearables in medicine. Adv. Mater. 30(33), 1706910 (2018). https://doi.org/10.1002/adma.201706910
B. Zong, S. Wu, Y. Yang, Q. Li, T. Tao et al., Smart gas sensors: recent developments and future prospective. Nano-Micro Lett. 17(1), 54 (2024). https://doi.org/10.1007/s40820-024-01543-w
S. Wang, M. Sun, Y. Zhang, H. Ji, J. Gao et al., Ultrasensitive antibiotic perceiving based on aptamer-functionalized ultraclean graphene field-effect transistor biosensor. Anal. Chem. 94(42), 14785–14793 (2022). https://doi.org/10.1021/acs.analchem.2c03732
Y. Sun, X. Fan, Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 399(1), 205–211 (2011). https://doi.org/10.1007/s00216-010-4237-z
J. Shi, Y. Jiang, Z. Duan, J. Li, Z. Yuan et al., Designing an optical gas chamber with stepped structure for non-dispersive infrared methane gas sensor. Sens. Actuat. A Phys. 367, 115052 (2024). https://doi.org/10.1016/j.sna.2024.115052
A. Mashhadian, R. Jian, S. Tian, S. Wu, G. Xiong, An overview of electrochemical sensors based on transition metal carbides and oxides: synthesis and applications. Micromachines 15(1), 42 (2023). https://doi.org/10.3390/mi15010042
J. Lee, N.-J. Choi, H.-K. Lee, J. Kim, S.Y. Lim et al., Low power consumption solid electrochemical-type micro CO2 gas sensor. Sens. Actuat. B Chem. 248, 957–960 (2017). https://doi.org/10.1016/j.snb.2017.02.040
W. Zhang, J. Zou, J. Sun, W. Wang, L. Shan et al., Fabrication and sensing performance of carrier-free catalytic combustion hydrogen sensors based on electrodeposition method. Int. J. Hydrogen Energy 61, 1356 (2024). https://doi.org/10.1016/j.ijhydene.2024.03.005
B. Shen, T. Zhou, X. Liu, X. Qin, W. Li, Numerical simulation of catalytic methane combustion in Al2O3 directional nanotubes modified by Pt and Pd catalyst. Appl. Sci. 13(11), 6547 (2023). https://doi.org/10.3390/app13116547
X. Chen, J. Hu, P. Chen, M. Yin, F. Meng et al., UV-light-assisted NO2 gas sensor based on WS2/PbS heterostructures with full recoverability and reliable anti-humidity ability. Sens. Actuat. B Chem. 339, 129902 (2021). https://doi.org/10.1016/j.snb.2021.129902
Y. Zhang, Y. Li, Y. Jiang, Z. Duan, Z. Yuan et al., Synergistic effect of charge transfer and interlayer swelling in V2CTx/SnS2 driving ultrafast and highly sensitive NO2 detection at room temperature. Sens. Actuat. B Chem. 411, 135788 (2024). https://doi.org/10.1016/j.snb.2024.135788
M. Kang, I. Cho, J. Park, J. Jeong, K. Lee et al., High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm. ACS Sens. 7(2), 430–440 (2022). https://doi.org/10.1021/acssensors.1c01204
J. Xu, X. Fan, K. Xu, K. Wu, H. Liao et al., Ultrasensitive chemiresistive gas sensors based on dual-mesoporous zinc stannate composites for room temperature rice quality monitoring. Nano-Micro Lett. 17(1), 115 (2025). https://doi.org/10.1007/s40820-024-01645-5
X. Yao, Y. Zhang, W. Jin, Y. Hu, Y. Cui, Carbon nanotube field-effect transistor-based chemical and biological sensors. Sensors 21(3), 995 (2021). https://doi.org/10.3390/s21030995
S. Lim, K.V. Nguyen, W.H. Lee, Enhancing sensitivity in gas detection: porous structures in organic field-effect transistor-based sensors. Sensors 24(9), 2862 (2024). https://doi.org/10.3390/s24092862
X. Sun, Y. Shan, M. Jian, Z. Wang, A multichannel fluorescence isothermal amplification device with integrated Internet of medical things for rapid sensing of pathogens through deep learning. Anal. Chem. 95(41), 15146–15152 (2023). https://doi.org/10.1021/acs.analchem.3c02973
H.Y. Chae, J. Cho, R. Purbia, C.S. Park, H. Kim et al., Environment-adaptable edge-computing gas-sensor device with analog-assisted continual learning scheme. IEEE Trans. Ind. Electron. 70(10), 10720–10729 (2023). https://doi.org/10.1109/TIE.2022.3220871
Y. Zhuang, X. Wang, P. Lai, J. Li, L. Chen et al., Wireless flexible system for highly sensitive ammonia detection based on polyaniline/carbon nanotubes. Biosensors 14(4), 191 (2024). https://doi.org/10.3390/bios14040191
G. Kaur, M. Tintelott, M. Suranglikar, A. Masurier, X.-T. Vu et al., Time-encoded electrical detection of trace RNA biomarker by integrating programmable molecular amplifier on chip. Biosens. Bioelectron. 257, 116311 (2024). https://doi.org/10.1016/j.bios.2024.116311
W. Liu, X. Wang, B. Dong, Y. Liu, D. Wei, Enzymatic cascade reactors on carbon nanotube transistor detecting trace prostate cancer biomarker. Biosens. Bioelectron. 263, 116603 (2024). https://doi.org/10.1016/j.bios.2024.116603
H.-Y. Liu, Z. Zhu, J. He, Y. Yang, Y. Liang et al., Mass production of carbon nanotube transistor biosensors for point-of-care tests. Nano Lett. 24(34), 10510–10518 (2024). https://doi.org/10.1021/acs.nanolett.4c02518
H. Peng, J. Guo, G. Chen, W. Qin, Self-powered perovskite CH3NH3PbBr3 field effect transistor with fast response and high sensitivity in sensing. Mater. Today Adv. 12, 100185 (2021). https://doi.org/10.1016/j.mtadv.2021.100185
R. Omar, M. Yuan, J. Wang, M. Sublaban, W. Saliba et al., Self-powered freestanding multifunctional microneedle-based extended gate device for personalized health monitoring. Sens. Actuators B Chem. 398, 134788 (2024). https://doi.org/10.1016/j.snb.2023.134788
J. Li, Y. Jiang, A. Xu, F. Luo, C. Lin et al., ZnO/Au/GaN heterojunction-based self-powered photoelectrochemical Sensor for alpha-fetoprotein detection. Talanta 268(Pt 2), 125381 (2024). https://doi.org/10.1016/j.talanta.2023.125381
Y. Geng, Y. Ren, X. Wang, J. Li, L. Portilla et al., Highly sensitive and selective H2S sensors with ultra-low power consumption based on flexible printed carbon-nanotube-thin-film-transistors. Sens. Actuat. B Chem. 360, 131633 (2022). https://doi.org/10.1016/j.snb.2022.131633
W. Yue, Y. Guo, J.C. Lee, E. Ganbold, J.K. Wu et al., Advancements in passive wireless sensing systems in monitoring harsh environment and healthcare applications. Nano-Micro Lett. 17(1), 106 (2025). https://doi.org/10.1007/s40820-024-01599-8
J. Xu, X. Luo, H. Chen, B. Guo, L. Jia et al., A self-powered biosensor with cascade amplification capability facilitates ultra-sensitive detection of microRNA biomarkers. Biosens. Bioelectron. 275, 117233 (2025). https://doi.org/10.1016/j.bios.2025.117233
M. Sun, S. Wang, Y. Zhang, Z. Zhang, S. Wang et al., An ultrasensitive flexible biosensor enabled by high-performance graphene field-effect transistors with defect-free van der Waals contacts for breast cancer miRNA fast detection. Talanta 287, 127637 (2025). https://doi.org/10.1016/j.talanta.2025.127637
J. Gao, C. Wang, C. Wang, Y. Chu, S. Wang et al., Poly-l-lysine-modified graphene field-effect transistor biosensors for ultrasensitive breast cancer miRNAs and SARS-CoV-2 RNA detection. Anal. Chem. 94(3), 1626–1636 (2022). https://doi.org/10.1021/acs.analchem.1c03786
G. Maduraiveeran, M. Sasidharan, V. Ganesan, Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron. 103, 113–129 (2018). https://doi.org/10.1016/j.bios.2017.12.031
M. Huang, X. Ma, Z. Wu, J. Li, Y. Shi et al., Ammonium sensing patch with ultrawide linear range and eliminated interference for universal body fluids analysis. Nano-Micro Lett. 17(1), 92 (2024). https://doi.org/10.1007/s40820-024-01602-2
R. Paolesse, S. Nardis, D. Monti, M. Stefanelli, C. Di Natale, Porphyrinoids for chemical sensor applications. Chem. Rev. 117(4), 2517–2583 (2017). https://doi.org/10.1021/acs.chemrev.6b00361
J.W. Gardner, P.N. Bartlett, Electronic Noses: Principles and Applications (Oxford University Press, Oxford, 1999). https://doi.org/10.1093/oso/9780198559559.001.0001
A. Rivadeneyra, J. Fernández-Salmerón, M. Agudo-Acemel, J.A. López-Villanueva, A.J. Palma et al., A printed capacitive–resistive double sensor for toluene and moisture sensing. Sens. Actuat. B Chem. 210, 542–549 (2015). https://doi.org/10.1016/j.snb.2015.01.036
R.A. Potyrailo, W.G. Morris, Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. Anal. Chem. 79, 45 (2007). https://doi.org/10.1021/ac061748o
R. Paul Wali, P.R. Wilkinson, S.P. Eaimkhong, J. Hernando-Garcia, J.L. Sánchez-Rojas et al., Fourier transform mechanical spectroscopy of micro-fabricated electromechanical resonators: a novel, information-rich pulse method for sensor applications. Sens. Actuat. B Chem. 147(2), 508–516 (2010). https://doi.org/10.1016/j.snb.2010.03.086
N.C. Speller, N. Siraj, B.P. Regmi, H. Marzoughi, C. Neal et al., Rational design of QCM-D virtual sensor arrays based on film thickness, viscoelasticity, and harmonics for vapor discrimination. Anal. Chem. 87(10), 5156–5166 (2015). https://doi.org/10.1021/ac5046824
N.A. Joy, M.I. Nandasiri, P.H. Rogers, W. Jiang, T. Varga et al., Selective plasmonic gas sensing: H2, NO2, and CO spectral discrimination by a single Au-CeO2 nanocomposite film. Anal. Chem. 84(11), 5025–5034 (2012). https://doi.org/10.1021/ac3006846
R.A. Potyrailo, M. Larsen, O. Riccobono, Detection of individual vapors and their mixtures using a selectivity-tunable three-dimensional network of plasmonic nanops. Angew. Chem. Int. Ed. 52(39), 10360–10364 (2013). https://doi.org/10.1002/anie.201305303
H.J. Jang, H.A. Joung, A. Goncharov, A.G. Kanegusuku, C.W. Chan et al., Deep learning-based kinetic analysis in paper-based analytical cartridges integrated with field-effect transistors. ACS Nano 18(36), 24792–24802 (2024). https://doi.org/10.1021/acsnano.4c02897
B. Wang, T.P. Huynh, W. Wu, N. Hayek, T.T. Do et al., A highly sensitive diketopyrrolopyrrole-based ambipolar transistor for selective detection and discrimination of xylene isomers. Adv. Mater. 28(21), 4012–4018 (2016). https://doi.org/10.1002/adma.201505641
U.N. Thakur, R. Bhardwaj, A. Hazra, A multivariate computational approach with hybrid graphene oxide sensor array for partial fulfillment of breath acetone sensing. IEEE Sens. J. 22(21), 20207–20215 (2022). https://doi.org/10.1109/JSEN.2022.3208712
K. Drozdowska, S. Rumyantsev, J. Smulko, A. Kwiatkowski, P. Sai et al., The effects of gas exposure on the graphene/AlGaN/GaN heterostructure under UV irradiation. Sens. Actuat. B Chem. 381, 133430 (2023). https://doi.org/10.1016/j.snb.2023.133430
Y. Tong, Y. Liu, Y. Zhao, J. Thong, D.S.H. Chan et al., Selectivity of MoS2 gas sensors based on a time constant spectrum method. Sens. Actuat. A Phys. 255, 28–33 (2017). https://doi.org/10.1016/j.sna.2016.12.024
J. Park, R. Rautela, N. Alzate-Carvajal, S. Scarfe, L. Scarfe et al., UV illumination as a method to improve the performance of gas sensors based on graphene field-effect transistors. ACS Sens. 6(12), 4417–4424 (2021). https://doi.org/10.1021/acssensors.1c01783
M. Sun, Y. Zhang, S. Wang, S. Wang, L. Gao et al., Laser-induced graphene van der Waals contact-enabled high-performance 2D-materials-based field-effect transistor. Carbon 225, 119151 (2024). https://doi.org/10.1016/j.carbon.2024.119151
S. Zhou, M. Xiao, F. Liu, J. He, Y. Lin et al., Sub-10 parts per billion detection of hydrogen with floating gate transistors built on semiconducting carbon nanotube film. Carbon 180, 41 (2021). https://doi.org/10.1016/j.carbon.2021.04.076
R. Kour, S. Arya, S.-J. Young, V. Gupta, P. Bandhoria et al., Review: recent advances in carbon nanomaterials as electrochemical biosensors. J. Electrochem. Soc. 167(3), 037555 (2020). https://doi.org/10.1149/1945-7111/ab6bc4
R. Eivazzadeh-Keihan, E. Bahojb Noruzi, E. Chidar, M. Jafari, F. Davoodi et al., Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 442, 136183 (2022). https://doi.org/10.1016/j.cej.2022.136183
C. Wang, K. Xia, H. Wang, X. Liang, Z. Yin et al., Advanced carbon for flexible and wearable electronics. Adv. Mater. 31, 1801072 (2019). https://doi.org/10.1002/adma.201801072
V. Pavlenko, S.H. Khosravi, S. Żółtowska, A.B. Haruna, M. Zahid et al., A comprehensive review of template-assisted porous carbons: Modern preparation methods and advanced applications. Mater. Sci. Eng. R Rep. 149, 100682 (2022). https://doi.org/10.1016/j.mser.2022.100682
C. Gutiérrez-Sánchez, E. Lorenzo, Review: advances on oxidase enzymes modified nanoporous carbon and gold surfaces for bioelectrochemical applications. J. Electrochem. Soc. 169(2), 027513 (2022). https://doi.org/10.1149/1945-7111/ac527b
A. Salvi, S. Kharbanda, P. Thakur, M. Shandilya, A. Thakur, Biomedical application of carbon quantum dots: a review. Carbon Trends 17, 100407 (2024). https://doi.org/10.1016/j.cartre.2024.100407
C. Ding, A. Zhu, Y. Tian, Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47, 20 (2014). https://doi.org/10.1021/ar400023s
J. Liu, J. Liu, Z. Li, L. Zhao, T. Wang et al., Carbon dots-modified hollow mesoporous photonic crystal materials for sensitivity- and selectivity-enhanced sensing of chloroform vapor. Nano-Micro Lett. 17(1), 96 (2024). https://doi.org/10.1007/s40820-024-01598-9
S. Afreen, K. Muthoosamy, S. Manickam, U. Hashim, Functionalized fullerene (C60) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens. Bioelectron. 63, 354–364 (2015). https://doi.org/10.1016/j.bios.2014.07.044
X. Shen, J. Song, K. Kawakami, K. Ariga, Molecule-to-material-to-bio nanoarchitectonics with biomedical fullerene nanops. Materials 15(15), 5404 (2022). https://doi.org/10.3390/ma15155404
M. Sun, S. Wang, Y. Liang, C. Wang, Y. Zhang et al., Flexible graphene field-effect transistors and their application in flexible biomedical sensing. Nano-Micro Lett. 17(1), 34 (2024). https://doi.org/10.1007/s40820-024-01534-x
J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48(31), 3686–3699 (2012). https://doi.org/10.1039/c2cc00110a
Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay et al., Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10), 1027–1036 (2010). https://doi.org/10.1002/elan.200900571
K. Luo, H. Peng, B. Zhang, L. Chen, P. Zhang et al., Advances in carbon nanotube-based gas sensors: Exploring the path to the future. Coord. Chem. Rev. 518, 216049 (2024). https://doi.org/10.1016/j.ccr.2024.216049
Z. Cohen, R.M. Williams, Single-walled carbon nanotubes as optical transducers for nanobiosensors in vivo. ACS Nano 18(52), 35164–35181 (2024). https://doi.org/10.1021/acsnano.4c13076
V. Schroeder, S. Savagatrup, M. He, S. Lin, T.M. Swager, Carbon nanotube chemical sensors. Chem. Rev. 119(1), 599–663 (2019). https://doi.org/10.1021/acs.chemrev.8b00340
A.K. Katiyar, J. Choi, J.H. Ahn, Recent advances in CMOS-compatible synthesis and integration of 2D materials. Nano Converg. 12(1), 11 (2025). https://doi.org/10.1186/s40580-025-00478-1
X. Zang, Q. Zhou, J. Chang, Y. Liu, L. Lin, Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron. Eng. 132, 192–206 (2015). https://doi.org/10.1016/j.mee.2014.10.023
H.S.P. Wong, Beyond the conventional transistor. IBM J. Res. Dev. 46(2.3), 133–168 (2002). https://doi.org/10.1147/rd.462.0133
L. Lin, B. Deng, J. Sun, H. Peng, Z. Liu, Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118(18), 9281–9343 (2018). https://doi.org/10.1021/acs.chemrev.8b00325
L. Zhang, J. Dong, F. Ding, Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev. 121(11), 6321–6372 (2021). https://doi.org/10.1021/acs.chemrev.0c01191
B. Sun, J. Pang, Q. Cheng, S. Zhang, Y. Li et al., Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications. Adv. Mater. Technol. 6(7), 2000744 (2021). https://doi.org/10.1002/admt.202000744
W. Gao, J. Kono, Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration. R. Soc. Open Sci. 6(3), 181605 (2019). https://doi.org/10.1098/rsos.181605
S. Kim, G. Singh, Y. Kim, J. Park, I. Jeon et al., Gate-tunable graphene/ZnO-based dual- channel field-effect transistor gas sensor for simultaneous detection of CO2 and NO2 gases. IEEE Sens. J. 23(20), 24214–24223 (2023). https://doi.org/10.1109/JSEN.2023.3309413
S. Tripathy, A. Sett, S. Majumder, T.K. Bhattacharyya, Study of gate induced sensitivity amplification in carbon nanotube thin film transistor based ammonia sensor. Sens. Actuat. B Chem. 382, 133511 (2023). https://doi.org/10.1016/j.snb.2023.133511
M. Zhao, Y. Tian, L. Yan, R. Liu, P. Chen et al., Unique modulation effects on the performance of graphene-based ammonia sensors via ultrathin bimetallic Au/Pt layers and gate voltages. Phys. Chem. Chem. Phys. 25(29), 19764–19772 (2023). https://doi.org/10.1039/D3CP01813J
U. Weimar, W. Göpel, Chemical imaging: II. Trends in practical multiparameter sensor systems. Sens. Actuat. B Chem. 52(1–2), 143–161 (1998). https://doi.org/10.1016/S0925-4005(98)00268-8
W. Göpel, Chemical imaging: I. Concepts and visions for electronic and bioelectronic noses1. Sens. Actuator B Chem. 52, 125 (1998). https://doi.org/10.1016/S0925-4005(98)00267-6
A. Hierlemann, R. Gutierrez-Osuna, Higher-order chemical sensing. Chem. Rev. 108(2), 563–613 (2008). https://doi.org/10.1021/cr068116m
R.A. Potyrailo, C. Surman, N. Nagraj, A. Burns, Materials and transducers toward selective wireless gas sensing. Chem. Rev. 111(11), 7315–7354 (2011). https://doi.org/10.1021/cr2000477
R. Potyrailo, R.R. Naik, Bionanomaterials and bioinspired nanostructures for selective vapor sensing. Annu. Rev. Mater. Res. 43, 307–334 (2013). https://doi.org/10.1146/annurev-matsci-071312-121710
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
S. Park, Y. Suh, H. Floresca, M. Kim, HRTEM observation of mechanically exfoliated graphene from natural graphite and HOPG. ECS Trans. 19(5), 81–85 (2009). https://doi.org/10.1149/1.3119530
S.H. Dave, C. Gong, A.W. Robertson, J.H. Warner, J.C. Grossman, Chemistry and structure of graphene oxide via direct imaging. ACS Nano 10(8), 7515–7522 (2016). https://doi.org/10.1021/acsnano.6b02391
C. Gómez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch et al., Atomic structure of reduced graphene oxide. Nano Lett. 10(4), 1144–1148 (2010). https://doi.org/10.1021/nl9031617
S.Z.N. Demon, A.I. Kamisan, N. Abdullah, S.A.M. Noor, O.K. Khim et al., Graphene-based materials in gas sensor applications: a review. Sens. Mater. 32(2), 759 (2020). https://doi.org/10.18494/sam.2020.2492
I.H. Kim, T. Yun, J.E. Kim, H. Yu, S.P. Sasikala et al., Mussel-inspired defect engineering of graphene liquid crystalline fibers for synergistic enhancement of mechanical strength and electrical conductivity. Adv. Mater. (2018). https://doi.org/10.1002/adma.201803267
A. Xavier Mendes, S. Moraes Silva, C.D. O’Connell, S. Duchi, A.F. Quigley et al., Enhanced electroactivity, mechanical properties, and printability through the addition of graphene oxide to photo-cross-linkable gelatin methacryloyl hydrogel. ACS Biomater. Sci. Eng. 7(6), 2279–2295 (2021). https://doi.org/10.1021/acsbiomaterials.0c01734
J. Siddiqui, M. Jamal Deen, Biodegradable asparagine-graphene oxide free chlorine sensors fabricated using solution-based processing. Analyst 147(16), 3643–3651 (2022). https://doi.org/10.1039/d2an00533f
Y. Ravi Kumar, K. Deshmukh, T. Kovářík, S.K. Khadheer Pasha, A systematic review on 2D materials for volatile organic compound sensing. Coord. Chem. Rev. 461, 214502 (2022). https://doi.org/10.1016/j.ccr.2022.214502
M. Nami, M. Taheri, I.A. Deen, M. Packirisamy, M.J. Deen, Nanomaterials in chemiresistive and potentiometric gas sensors for intelligent food packaging. TrAC Trends. Anal. Chem. 174, 117664 (2024). https://doi.org/10.1016/j.trac.2024.117664
N.R. Tanguy, M. Arjmand, N. Yan, Nanocomposite of nitrogen-doped graphene/polyaniline for enhanced ammonia gas detection. Adv. Mater. Interfaces 6(16), 1900552 (2019). https://doi.org/10.1002/admi.201900552
X. Tang, M. Debliquy, D. Lahem, Y. Yan, J.-P. Raskin, A review on functionalized graphene sensors for detection of ammonia. Sensors 21(4), 1443 (2021). https://doi.org/10.3390/s21041443
M. Sun, C. Zhang, S. Lu, S. Mahmood, J. Wang et al., Recent advances in graphene field-effect transistor toward biological detection. Adv. Funct. Mater. 34(44), 2405471 (2024). https://doi.org/10.1002/adfm.202405471
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007). https://doi.org/10.1038/nmat1967
N. Srikanth, A.C. Kumar, History of carbon nanotubes, in Handbook of Carbon Nanotubes. ed. by J. Abraham, S. Thomas, N. Kalarikkal (Springer International Publishing, Cham, 2020), pp.1–22. https://doi.org/10.1007/978-3-319-70614-6_51-1
J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek et al., Methods for carbon nanotubes synthesis: review. J. Mater. Chem. 21(40), 15872 (2011). https://doi.org/10.1039/c1jm12254a
M. Asaftei, M. Lucidi, C. Cirtoaje, A.-M. Holban, C.A. Charitidis et al., Fighting bacterial pathogens with carbon nanotubes: focused review of recent progress. RSC Adv. 13(29), 19682–19694 (2023). https://doi.org/10.1039/d3ra01745a
V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115(11), 4744–4822 (2015). https://doi.org/10.1021/cr500304f
M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly et al., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287(5453), 637–640 (2000). https://doi.org/10.1126/science.287.5453.637
E. Muchuweni, E.T. Mombeshora, Enhanced thermoelectric performance by single-walled carbon nanotube composites for thermoelectric generators: a review. Appl. Surf. Sci. Adv. 13, 100379 (2023). https://doi.org/10.1016/j.apsadv.2023.100379
T. Dürkop, S.A. Getty, E. Cobas, M.S. Fuhrer, Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4(1), 35–39 (2004). https://doi.org/10.1021/nl034841q
J.M. Herrera-Ramirez, R. Perez-Bustamante, A. Aguilar-Elguezabal, Chapter two - an overview of the synthesis, characterization, and applications of carbon nanotubes. in Carbon-Based Nanofillers and Their Rubber Nanocomposites, edited by S. Yaragalla, R. Mishra, S. Thomas, N. Kalarikkal, and H. J. Maria. Elsevier, (2019), pp. 47–75. https://doi.org/10.1016/B978-0-12-813248-7.00002-X
J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662), 59–62 (1998). https://doi.org/10.1038/34139
J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng et al., Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625 (2000). https://doi.org/10.1126/science.287.5453.622
Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282(5391), 1105–1107 (1998). https://doi.org/10.1126/science.282.5391.1105
W. Zhou, Z. Han, J. Wang, Y. Zhang, Z. Jin et al., Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 6(12), 2987–2990 (2006). https://doi.org/10.1021/nl061871v
L. Shi, L. Gong, Y. Wang, Y. Li, Y. Zhang, Extended-gate structure for carbon-based field effect transistor type formaldehyde gas sensor. Sens. Actuat. B Chem. 400, 134944 (2024). https://doi.org/10.1016/j.snb.2023.134944
L.S. Liyanage, H. Lee, N. Patil, S. Park, S. Mitra et al., Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks. ACS Nano 6(1), 451–458 (2012). https://doi.org/10.1021/nn203771u
D. Kiriya, K. Chen, H. Ota, Y. Lin, P. Zhao et al., Design of surfactant-substrate interactions for roll-to-roll assembly of carbon nanotubes for thin-film transistors. J. Am. Chem. Soc. 136(31), 11188–11194 (2014). https://doi.org/10.1021/ja506315j
G. Yuan, W. Liu, X. Huang, Z. Wan, C. Wang et al., Stacking transfer of wafer-scale graphene-based van der Waals superlattices. Nat. Commun. 14(1), 5457 (2023). https://doi.org/10.1038/s41467-023-41296-5
B. Jiang, S.W. Wang, J.Y. Sun, Z.F. Liu, Controllable synthesis of wafer-scale graphene films: challenges, status, and perspectives. Small 17(37), 2008017 (2021). https://doi.org/10.1002/smll.202008017
M.D. Bishop, G. Hills, T. Srimani, C. Lau, D. Murphy et al., Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities. Nat. Electron. 3(8), 492–501 (2020). https://doi.org/10.1038/s41928-020-0419-7
F. Liu, M. Xiao, Y. Ning, S. Zhou, J. He et al., Toward practical gas sensing with rapid recovery semiconducting carbon nanotube film sensors. Sci. China Inf. Sci. 65(6), 162402 (2022). https://doi.org/10.1007/s11432-021-3286-3
M. Xiao, S. Liang, J. Han, D. Zhong, J. Liu et al., Batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS Sens. 3(4), 749–756 (2018). https://doi.org/10.1021/acssensors.8b00006
Y. Liang, M. Xiao, D. Wu, Y. Lin, L. Liu et al., Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. ACS Nano 14(7), 8866–8874 (2020). https://doi.org/10.1021/acsnano.0c03523
S. Zhan, H. Zuo, B. Liu, W. Xu, J. Cao et al., Wafer-scale field-effect transistor-type sensor using a carbon nanotube film as a channel for ppb-level hydrogen sulfide detection. ACS Sens. 8(8), 3060–3067 (2023). https://doi.org/10.1021/acssensors.3c00653
Y. Sun, Y. Zhang, Wafer-scale floating-gate field effect transistor sensor built on carbon nanotubes film for Ppb-level NO2 detection. Chem. Eng. J. 473, 145480 (2023). https://doi.org/10.1016/j.cej.2023.145480
M. Soikkeli, A. Murros, A. Rantala, O. Txoperena, O.P. Kilpi et al., Wafer-scale graphene field-effect transistor biosensor arrays with monolithic CMOS readout. ACS Appl. Electron. Mater. 5(9), 4925–4932 (2023). https://doi.org/10.1021/acsaelm.3c00706
C. Wang, J. Zhang, C. Zhou, Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 4(12), 7123–7132 (2010). https://doi.org/10.1021/nn1021378
L. Liu, J. Han, L. Xu, J. Zhou, C. Zhao et al., Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 368(6493), 850–856 (2020). https://doi.org/10.1126/science.aba5980
U. Weimar, K.D. Schierbaum, W. Göpel, R. Kowalkowski, Pattern recognition methods for gas mixture analysis: application to sensor arrays based upon SnO2. Sens. Actuat. B Chem. 1(1–6), 93–96 (1990). https://doi.org/10.1016/0925-4005(90)80179-4
W. Huang, R.C. Hayward, Orthogonal ambipolar semiconductors with inherently multi-dimensional responses for the discriminative sensing of chemical vapors. ACS Appl. Mater. Interfaces 10, 33353 (2018). https://doi.org/10.1021/acsami.8b10789
L. Shi, P. Tang, J. Hu, Y. Zhang, A strategy for multigas identification using multielectrical parameters extracted from a single carbon-based field-effect transistor sensor. ACS Sens. 9(6), 3126–3136 (2024). https://doi.org/10.1021/acssensors.4c00357
T. Hayasaka, A. Lin, V.C. Copa, L.P. Lopez Jr., R.A. Loberternos et al., An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol. Microsyst. Nanoeng. 6, 50 (2020). https://doi.org/10.1038/s41378-020-0161-3
O.G. Agbonlahor, M. Muruganathan, A. Banerjee, H. Mizuta, Machine learning identification of atmospheric gases by mapping the graphene-molecule van der waals complex bonding evolution. Sens. Actuat. B Chem. 380, 133383 (2023). https://doi.org/10.1016/j.snb.2023.133383
B. Liu, Y. Huang, K.W. Kam, W.-F. Cheung, N. Zhao et al., Functionalized graphene-based chemiresistive electronic nose for discrimination of disease-related volatile organic compounds. Biosens. Bioelectron. X 1, 100016 (2019). https://doi.org/10.1016/j.biosx.2019.100016
J. Sun, M. Muruganathan, H. Mizuta, Room temperature detection of individual molecular physisorption using suspended bilayer graphene. Sci. Adv. 2(4), e1501518 (2016). https://doi.org/10.1126/sciadv.1501518
W. Fu, L. Feng, G. Panaitov, D. Kireev, D. Mayer et al., Biosensing near the neutrality point of graphene. Sci. Adv. 3(10), e1701247 (2017). https://doi.org/10.1126/sciadv.1701247
O.G. Agbonlahor, M. Muruganathan, T. Imamura, H. Mizuta, Adsorbed molecules as interchangeable dopants and scatterers with a van der waals bonding memory in graphene sensors. ACS Sens. 5(7), 2003–2009 (2020). https://doi.org/10.1021/acssensors.0c00403
I. Lundström, S. Shivaraman, C. Svensson, L. Lundkvist, A hydrogen−sensitive MOS field−effect transistor. Appl. Phys. Lett. 26(2), 55–57 (1975). https://doi.org/10.1063/1.88053
F. Liao, C. Chen, V. Subramanian, Organic TFTs as gas sensors for electronic nose applications. Sens. Actuat. B Chem. 107(2), 849–855 (2005). https://doi.org/10.1016/j.snb.2004.12.026
L. Torsi, A. Dodabalapur, L. Sabbatini, P.G. Zambonin, Multi-parameter gas sensors based on organic thin-film-transistors. Sens. Actuator B Chem. 67, 312 (2000). https://doi.org/10.1016/S0925-4005(00)00541-4
M. Josowicz, J. Janata, Suspended gate field effect transistors modified with polypyrrole as alcohol sensor. Anal. Chem. 58(3), 514–517 (1986). https://doi.org/10.1021/ac00294a003
C.-H. Kim, I.-T. Cho, J.-M. Shin, K.-B. Choi, J.-K. Lee et al., A new gas sensor based on MOSFET having a horizontal floating-gate. IEEE Electron Device Lett. 35(2), 265–267 (2014). https://doi.org/10.1109/LED.2013.2294722
I. Lundström, H. Sundgren, F. Winquist, M. Eriksson, C. Krantz-Rülcker et al., Twenty-five years of field effect gas sensor research in Linköping. Sens. Actuat. B Chem. 121(1), 247–262 (2007). https://doi.org/10.1016/j.snb.2006.09.046
Z. Shen, W. Huang, L. Li, H. Li, J. Huang et al., Research progress of organic field-effect transistor based chemical sensors. Small 19, 2302406 (2023). https://doi.org/10.1002/smll.202302406
S.A. Dr, M.F. Dr, B. Souharce, H.T. Dr, U.S.P. Dr, Organic semiconductors for solution-processable field-effect transistors (OFETs). Angew. Chem. Int. Ed. 47(22), 4070–4098 (2008). https://doi.org/10.1002/anie.200701920
S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49–52 (1998). https://doi.org/10.1038/29954
A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Ballistic carbon nanotube field-effect transistors. Nature 424(6949), 654–657 (2003). https://doi.org/10.1038/nature01797
Z. Zhang, X. Liang, S. Wang, K. Yao, Y. Hu et al., Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 7(12), 3603–3607 (2007). https://doi.org/10.1021/nl0717107
Y. Zhang, N.W. Franklin, R.J. Chen, H. Dai, Metal coating on suspended carbon nanotubes and its implication to metal–tube interaction. Chem. Phys. Lett. 331(1), 35–41 (2000). https://doi.org/10.1016/S0009-2614(00)01162-3
D.R. Kauffman, A. Star, Chemically induced potential barriers at the carbon nanotube-metal nanop interface. Nano Lett. 7(7), 1863–1868 (2007). https://doi.org/10.1021/nl070330i
O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, Hydrogen sensing using titania nanotubes. Sens. Actuat. B Chem. 93(1–3), 338–344 (2003). https://doi.org/10.1016/S0925-4005(03)00222-3
S.-Y. Guo, P.-X. Hou, F. Zhang, C. Liu, H.-M. Cheng, Gas sensors based on single-wall carbon nanotubes. Molecules 27(17), 5381 (2022). https://doi.org/10.3390/molecules27175381
A.C. Romain, J. Nicolas, Long term stability of metal oxide-based gas sensors for e-nose environmental applications: an overview. Sens. Actuat. B Chem. 146(2), 502–506 (2010). https://doi.org/10.1016/j.snb.2009.12.027
J.F. Fennell Jr., S.F. Liu, J.M. Azzarelli, J.G. Weis, S. Rochat et al., Nanowire chemical/biological sensors: status and a roadmap for the future. Angew. Chem. Int. Ed. 55(4), 1266–1281 (2016). https://doi.org/10.1002/anie.201505308
F.M. Albarghouthi, D. Semeniak, I. Khanani, J.L. Doherty, B.N. Smith et al., Addressing signal drift and screening for detection of biomarkers with carbon nanotube transistors. ACS Nano 18, 5698 (2024). https://doi.org/10.1021/acsnano.3c11679
IUPAC, Nomenclature, symbols, units and their usage in spectrochemical analysis - II. Data interpretation. Pure Appl. Chem. 45, 99 (1976). https://doi.org/10.1351/pac197645020099
J.A.C. Broekaert, Daniel C. Harris: quantitative chemical analysis, 9th ed. Anal. Bioanal. Chem. 407(30), 8943–8944 (2015). https://doi.org/10.1007/s00216-015-9059-6
C. Mackin, A. Fasoli, M. Xue, Y. Lin, A. Adebiyi, L. Bozano, T. Palacios, Chemical sensor systems based on 2D and thin film materials. 2D Mater. 7(2), 022002 (2020). https://doi.org/10.1088/2053-1583/ab6e88
H.-P. Loock, P.D. Wentzell, Detection limits of chemical sensors: applications and misapplications. Sens. Actuat. B Chem. 173, 157–163 (2012). https://doi.org/10.1016/j.snb.2012.06.071
L. Torsi, M. Magliulo, K. Manoli, G. Palazzo, Organic field-effect transistor sensors: a tutorial review. Chem. Soc. Rev. 42, 8612 (2013). https://doi.org/10.1039/C3CS60127G
M. Püntener, T. Vigassy, E. Baier, A. Ceresa, E. Pretsch, Improving the lower detection limit of potentiometric sensors by covalently binding the ionophore to a polymer backbone. Anal. Chim. Acta 503(2), 187–194 (2004). https://doi.org/10.1016/j.aca.2003.10.030
W. Shin, R.-H. Koo, S. Hong, G. Jung, Y. Jeong et al., Effects of sensor platform scaling on signal-to-noise ratio in the resistor- and horizontal floating-gate FET-type gas sensors. IEEE Trans. Electron Devices 70(11), 5845–5850 (2023). https://doi.org/10.1109/TED.2023.3312060
J.R. Vig, F.L. Walls, A review of sensor sensitivity and stability. Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition. June 9–9, 2000, Kansas City, MO, USA. IEEE, (2000)., pp. 30–33.
X. Zhao, L. Lu, Y. Zou, C. Xiang, F. Xu et al., Morphology tuning of NiMo layered double hydroxide-modified MXene for highly sensitive detection of NH3 with long-term stability. ACS Appl. Nano Mater. 7(18), 21860–21870 (2024). https://doi.org/10.1021/acsanm.4c03794
S.M. Scott, D. James, Z. Ali, Data analysis for electronic nose systems. Microchim. Acta 156(3), 183–207 (2006). https://doi.org/10.1007/s00604-006-0623-9
P.C. Jurs, G.A. Bakken, H.E. McClelland, Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 100(7), 2649–2678 (2000). https://doi.org/10.1021/cr9800964
M. Ranbir, G. Kumar, J. Singh, N.K. Singh et al., Machine learning-based analytical systems: food forensics. ACS Omega 7(51), 47518–47535 (2022). https://doi.org/10.1021/acsomega.2c05632
F. Cui, Y. Yue, Y. Zhang, Z. Zhang, H.S. Zhou, Advancing biosensors with machine learning. ACS Sens. 5(11), 3346–3364 (2020). https://doi.org/10.1021/acssensors.0c01424
D. Karakaya, O. Ulucan, M. Turkan, Electronic nose and its applications: a survey. Int. J. Autom. Comput. 17(2), 179–209 (2020). https://doi.org/10.1007/s11633-019-1212-9
J. Tan, J. Xu, Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: a review. Artif. Intell. Agric. 4, 104–115 (2020). https://doi.org/10.1016/j.aiia.2020.06.003
S. Feng, F. Farha, Q. Li, Y. Wan, Y. Xu et al., Review on smart gas sensing technology. Sens. 19, 3760 (2019). https://doi.org/10.3390/s19173760
H. Mei, J. Peng, T. Wang, T. Zhou, H. Zhao et al., Overcoming the limits of cross-sensitivity: pattern recognition methods for chemiresistive gas sensor array. Nano-Micro Lett. 16(1), 269 (2024). https://doi.org/10.1007/s40820-024-01489-z
S. Satter, F. Bender, N. Post, A.J. Ricco, F. Josse, Analysis of multivariable sensor responses to multi-analyte gas samples in the presence of interferents and humidity. ACS Sens. 9(11), 6247–6256 (2024). https://doi.org/10.1021/acssensors.4c02200
Q. Teng, K. Zhou, K. Yu, X. Zhang, Z. Li et al., Principal component analysis-assisted zirconium-based metal-organic frameworks/DNA biosensor for the analysis of various phosphates. Talanta 271, 125733 (2024). https://doi.org/10.1016/j.talanta.2024.125733
A. Boujnah, A. Boubaker, S. Pecqueur, K. Lmimouni, A. Kalboussi, An electronic nose using conductometric gas sensors based on P3HT doped with triflates for gas detection using computational techniques (PCA, LDA, and kNN). J. Mater. Sci. Mater. Electron. 33(36), 27132–27146 (2022). https://doi.org/10.1007/s10854-022-09376-2
T. Itoh, Y. Koyama, Y. Sakumura, T. Akamatsu, A. Tsuruta et al., Discrimination of volatile organic compounds using a sensor array via a rapid method based on linear discriminant analysis. Sens. Actuat. B Chem. 387, 133803 (2023). https://doi.org/10.1016/j.snb.2023.133803
A. Zhang, Y. Zhang, W. Cheng, X. Li, K. Chen et al., Dual-gas sensing via SnO2-TiO2 heterojunction on MXene: machine learning-enhanced selectivity and sensitivity for hydrogen and ammonia detection. Sens. Actuat. B Chem. 429, 137340 (2025). https://doi.org/10.1016/j.snb.2025.137340
J. Shan, K. Liu, J. Jiang, T. Liu, H. Yin, Application of support vector machine in quantitative analysis of mixed gas. Acta Opt. Sin. 43, 1206001 (2023). https://doi.org/10.3788/AOS221681
Q. Zhang, T. Ren, K. Cao, Z. Xu, Advances of machine learning-assisted small extracellular vesicles detection strategy. Biosens. Bioelectron. 251, 116076 (2024). https://doi.org/10.1016/j.bios.2024.116076
Y. Yang, D. Xie, D. Chen, L. Geng, Y. Zhang et al., A quadrilateral gas sensor cell by complete MEMS process for gas identification. IEEE Sens. J. 25(2), 2267–2275 (2025). https://doi.org/10.1109/JSEN.2024.3502637
V.K. Ojha, A. Abraham, V. Snášel, Metaheuristic design of feedforward neural networks: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97–116 (2017). https://doi.org/10.1016/j.engappai.2017.01.013
L. Höfler, Good results from sensor data: performance of machine learning algorithms for regression problems in chemical sensors. Sens. Actuat. B Chem. 421, 136528 (2024). https://doi.org/10.1016/j.snb.2024.136528
D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323, 533 (1986). https://doi.org/10.1038/323533a0
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539
D. Kwon, G. Jung, W. Shin, Y. Jeong, S. Hong et al., Low-power and reliable gas sensing system based on recurrent neural networks. Sens. Actuat. B Chem. 340, 129258 (2021). https://doi.org/10.1016/j.snb.2020.129258
N. Lim, S. Hong, J. Jung, G.Y. Jung, D.H. Woo et al., Enhancing mixed gas discrimination in e-nose system: Sparse recurrent neural networks using transient current fluctuation of SMO array sensor. J. Ind. Inf. Integr. 42, 100715 (2024). https://doi.org/10.1016/j.jii.2024.100715
G. Wei, G. Li, J. Zhao, A. He, Development of a LeNet-5 gas identification CNN structure for electronic noses. Sensors 19(1), 217 (2019). https://doi.org/10.3390/s19010217
L. Guo, T. Wang, Z. Wu, J. Wang, M. Wang et al., Portable food-freshness prediction platform based on colorimetric barcode combinatorics and deep convolutional neural networks. Adv. Mater. 32(45), e2004805 (2020). https://doi.org/10.1002/adma.202004805
Y. Jiang, Z. Wang, Y. Hu, W. Lin, L. Yao et al., Intelligent sniffer: a chip-based portable e-nose for accurate and fast essence evaluation. Sens. Actuat. B Chem. 426, 136989 (2025). https://doi.org/10.1016/j.snb.2024.136989
R. Cao, Z. Lu, J. Hu, Y. Zhang, Carbon-based FET-type gas sensor for the detection of ppb-level benzene at room temperature. Chemosensors 12(9), 179 (2024). https://doi.org/10.3390/chemosensors12090179
S. Abegg, L. Magro, J. van den Broek, S.E. Pratsinis, A.T. Güntner, A pocket-sized device enables detection of methanol adulteration in alcoholic beverages. Nat. Food 1(6), 351–354 (2020). https://doi.org/10.1038/s43016-020-0095-9
J. van den Broek, S. Abegg, S.E. Pratsinis, A.T. Güntner, Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 10(1), 4220 (2019). https://doi.org/10.1038/s41467-019-12223-4
Y.G. Kim, B.M. Oh, H. Kim, E.H. Lee, D.H. Lee et al., Trifluoromethyl ketone P3HT-CNT composites for chemiresistive amine sensors with improved sensitivity. Sens. Actuat. B Chem. 367, 132076 (2022). https://doi.org/10.1016/j.snb.2022.132076
M. Doshi, J. Zhang, E.P. Fahrenthold, Spin polarized chemiresistive CNT sensors for selective detection of explosive molecules. J. Phys. Chem. C 128(35), 14824–14833 (2024). https://doi.org/10.1021/acs.jpcc.4c03732
S. Homayoonnia, A. Phani, S. Kim, MOF/MWCNT-nanocomposite manipulates high selectivity to gas via different adsorption sites with varying electron affinity: a study in methane detection in parts-per-billion. ACS Sens. 7(12), 3846–3856 (2022). https://doi.org/10.1021/acssensors.2c01796
M. Khatib, H. Haick, Sensors for volatile organic compounds. ACS Nano 16(5), 7080–7115 (2022). https://doi.org/10.1021/acsnano.1c10827
M. Kaloumenou, E. Skotadis, N. Lagopati, E. Efstathopoulos, D. Tsoukalas, Breath analysis: a promising tool for disease diagnosis-the role of sensors. Sensors 22(3), 1238 (2022). https://doi.org/10.3390/s22031238
J. Yang, R. Sun, X. Bao, J. Liu, J.W. Ng et al., Enhancing selectivity of two-dimensional materials-based gas sensors. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202420393
R.A. Potyrailo, R.K. Bonam, J.G. Hartley, T.A. Starkey, P. Vukusic et al., Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nat. Commun. 6, 7959 (2015). https://doi.org/10.1038/ncomms8959
T.-C. Wu, J. Dai, G. Hu, W.-B. Yu, O. Ogbeide et al., Machine-intelligent inkjet-printed α-Fe2O3/rGO towards NO2 quantification in ambient humidity. Sens. Actuat. B Chem. 321, 128446 (2020). https://doi.org/10.1016/j.snb.2020.128446
M. Trawka, J. Smulko, L. Hasse, C.-G. Granqvist, F.E. Annanouch et al., Fluctuation enhanced gas sensing with WO3-based nanop gas sensors modulated by UV light at selected wavelengths. Sens. Actuator B Chem. 234, 453 (2016). https://doi.org/10.1016/j.snb.2016.05.032
K. Drozdowska, A. Rehman, P. Sai, B. Stonio, A. Krajewska et al., Organic vapor sensing mechanisms by large-area graphene back-gated field-effect transistors under UV irradiation. ACS Sens. 7(10), 3094–3101 (2022). https://doi.org/10.1021/acssensors.2c01511
I. Cho, K. Lee, Y.C. Sim, J.S. Jeong, M. Cho et al., Deep-learning-based gas identification by time-variant illumination of a single micro-LED-embedded gas sensor. Light Sci. Appl. 12(1), 95 (2023). https://doi.org/10.1038/s41377-023-01120-7
B. Gil, D. Wales, H. Tan, E. Yeatman, Detection of medically relevant volatile organic compounds with graphene field-effect transistors and separated by low-frequency spectral and time signatures. Nanoscale 16(1), 61–71 (2023). https://doi.org/10.1039/d3nr04961b
O. Ogbeide, G. Bae, W. Yu, E. Morrin, Y. Song et al., Inkjet-printed rGO/binary metal oxide sensor for predictive gas sensing in a mixed environment. Adv. Funct. Mater. 32(25), 2113348 (2022). https://doi.org/10.1002/adfm.202113348
L. Bian, Z. Wang, D.L. White, A. Star, Machine learning-assisted calibration of Hg2+ sensors based on carbon nanotube field-effect transistors. Biosens. Bioelectron. 180, 113085 (2021). https://doi.org/10.1016/j.bios.2021.113085
A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42(14), 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145
Q. Deng, S. Gao, T. Lei, Y. Ling, S. Zhang et al., Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens. Actuat. B Chem. 247, 903–915 (2017). https://doi.org/10.1016/j.snb.2017.03.107
A. Zulkefli, B. Mukherjee, R. Sahara, R. Hayakawa, T. Iwasaki et al., Enhanced selectivity in volatile organic compound gas sensors based on ReS2-FETs under light-assisted and gate-bias tunable operation. ACS Appl. Mater. Interfaces 13(36), 43030–43038 (2021). https://doi.org/10.1021/acsami.1c10054
A. Zulkefli, B. Mukherjee, R. Hayakawa, T. Iwasaki, S. Nakaharai et al., Light-assisted and gate-tunable oxygen gas sensor based on rhenium disulfide field-effect transistors. Phys. Status Solidi RRL 14(11), 2000330 (2020). https://doi.org/10.1002/pssr.202000330
H. Kwon, H. Yoo, M. Nakano, K. Takimiya, J.J. Kim et al., Gate-tunable gas sensing behaviors in air-stable ambipolar organic thin-film transistors. RSC Adv. 10(4), 1910–1916 (2020). https://doi.org/10.1039/c9ra09195e
A. Maity, S. Rapoport, H. Haick, Gate-controlled chiral recognition and spin assessment with all-electric hybrid quantum wire-based transistors. Small 19(51), 2205038 (2023). https://doi.org/10.1002/smll.202205038
N. Peng, Q. Zhang, Y.C. Lee, O.K. Tan, N. Marzari, Gate modulation in carbon nanotube field effect transistors-based NH3 gas sensors. Sens. Actuat. B Chem. 132(1), 191–195 (2008). https://doi.org/10.1016/j.snb.2008.01.025
A. Bilić, J.R. Reimers, N.S. Hush, J. Hafner, Adsorption of ammonia on the gold (111) surface. J. Chem. Phys. 116(20), 8981–8987 (2002). https://doi.org/10.1063/1.1471245
J.P. Novak, E.S. Snow, E.J. Houser, D. Park, J.L. Stepnowski et al., Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83(19), 4026–4028 (2003). https://doi.org/10.1063/1.1626265
S. Rumyantsev, G. Liu, M.S. Shur, R.A. Potyrailo, A.A. Balandin, Selective gas sensing with a single pristine graphene transistor. Nano Lett. 12(5), 2294–2298 (2012). https://doi.org/10.1021/nl3001293
R. Samnakay, C. Jiang, S.L. Rumyantsev, M.S. Shur, A.A. Balandin, Selective chemical vapor sensing with few-layer MoS2 thin-film transistors: Comparison with graphene devices. Appl. Phys. Lett. 106(2), 023115 (2015). https://doi.org/10.1063/1.4905694
S. Huang, A. Croy, L.A. Panes-Ruiz, V. Khavrus, V. Bezugly et al., Machine learning-enabled smart gas sensing platform for identification of industrial gases. Adv. Intell. Syst. 4(4), 2200016 (2022). https://doi.org/10.1002/aisy.202200016
I. Heller, A.M. Janssens, J. Männik, E.D. Minot, S.G. Lemay et al., Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8(2), 591–595 (2008). https://doi.org/10.1021/nl072996i
A.B. Artyukhin, M. Stadermann, R.W. Friddle, P. Stroeve, O. Bakajin et al., Controlled electrostatic gating of carbon nanotube FET devices. Nano Lett. 6(9), 2080–2085 (2006). https://doi.org/10.1021/nl061343j
X. Xu, B.J. Bowen, R.E.A. Gwyther, M. Freeley, B. Grigorenko et al., Tuning electrostatic gating of semiconducting carbon nanotubes by controlling protein orientation in biosensing devices. Angew. Chem. Int. Ed. 60(37), 20184–20189 (2021). https://doi.org/10.1002/anie.202104044
R.J. Chen, H.C. Choi, S. Bangsaruntip, E. Yenilmez, X. Tang et al., An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. J. Am. Chem. Soc. 126(5), 1563–1568 (2004). https://doi.org/10.1021/ja038702m
R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W. Shi Kam, M. Shim et al., Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100(9), 4984–4989 (2003). https://doi.org/10.1073/pnas.0837064100
A.M. Dr, K.B. Dr, M.B. Dr, K.K. Prof, Functionalized metallic carbon nanotube devices for pH sensing. Chem. Phys. Chem. 8(2), 220–223 (2007). https://doi.org/10.1002/cphc.200600498
T. Hao, R. Zhang, S. Ren, Y. Jia, Undecorated GFET for determinations of heavy metal ions aided by machine learning algorithms. Talanta Open 7, 100176 (2023). https://doi.org/10.1016/j.talo.2022.100176
I. Park, J. Lim, S. You, M.T. Hwang, J. Kwon et al., Detection of SARS-CoV-2 virus amplification using a crumpled graphene field-effect transistor biosensor. ACS Sens. 6(12), 4461–4470 (2021). https://doi.org/10.1021/acssensors.1c01937
C. Qu, I. Maini, Q. Guo, A. Stacey, D.A.J. Moran, Extreme enhancement-mode operation accumulation channel hydrogen-terminated diamond FETs with Vth < − 6 V and high on-current. Adv. Electron. Mater. 2400770 (2024). https://doi.org/10.1002/aelm.202400770
R. Abimaheshwari, T. Murugadass, R. Abinaya, M. Navaneethan, S. Harish, Fabrication of SnS2/Si heterostructure for ultra-high selective and rapid room temperature NO2 gas detection with enhanced carrier mobility. Sens. Actuat. B Chem. 428, 137165 (2025). https://doi.org/10.1016/j.snb.2024.137165
H. Tabata, H. Matsuyama, T. Goto, O. Kubo, M. Katayama, Visible-light-activated response originating from carrier-mobility modulation of NO2 gas sensors based on MoS2 monolayers. ACS Nano 15(2), 2542–2553 (2021). https://doi.org/10.1021/acsnano.0c06996
G.O. Silva, Z.P. Michael, L. Bian, G.V. Shurin, M. Mulato et al., Nanoelectronic discrimination of nonmalignant and malignant cells using nanotube field-effect transistors. ACS Sens. 2(8), 1128–1132 (2017). https://doi.org/10.1021/acssensors.7b00383
L. Bian, D.C. Sorescu, L. Chen, D.L. White, S.C. Burkert et al., Machine-learning identification of the sensing descriptors relevant in molecular interactions with metal nanop-decorated nanotube field-effect transistors. ACS Appl. Mater. Interfaces 11(1), 1219–1227 (2019). https://doi.org/10.1021/acsami.8b15785
W. Shao, D.C. Sorescu, Z. Liu, A. Star, Machine learning discrimination and ultrasensitive detection of fentanyl using gold nanop-decorated carbon nanotube-based field-effect transistor sensors. Small 20(35), e2311835 (2024). https://doi.org/10.1002/smll.202311835
E. Fu, K. Khederlou, N. Lefevre, S.A. Ramsey, M.L. Johnston et al., Progress on electrochemical sensing of pharmaceutical drugs in complex biofluids. Chemosensors 11(8), 467 (2023). https://doi.org/10.3390/chemosensors11080467
Z. Liu, G.V. Shurin, L. Bian, D.L. White, M.R. Shurin et al., A carbon nanotube sensor array for the label-free discrimination of live and dead cells with machine learning. Anal. Chem. 94(8), 3565–3573 (2022). https://doi.org/10.1021/acs.analchem.1c04661
Z. Liu, L. Bian, C.J. Yeoman, G. Dennis Clifton, J.E. Ellington et al., Bacterial vaginosis monitoring with carbon nanotube field-effect transistors. Anal. Chem. 94(9), 3849–3857 (2022). https://doi.org/10.1021/acs.analchem.1c04755
R. Mitobe, Y. Sasaki, W. Tang, Q. Zhou, X. Lyu et al., Multi-oxyanion detection by an organic field-effect transistor with pattern recognition techniques and its application to quantitative phosphate sensing in human blood serum. ACS Appl. Mater. Interfaces 14(20), 22903–22911 (2022). https://doi.org/10.1021/acsami.1c21092
M. Sensi, R.F. de Oliveira, M. Berto, M. Palmieri, E. Ruini et al., Reduced graphene oxide electrolyte-gated transistor immunosensor with highly selective multiparametric detection of anti-drug antibodies. Adv. Mater. 35(36), e2211352 (2023). https://doi.org/10.1002/adma.202211352
D. Tsui, F. Downey, S. Navaneethan, A. Paul, T. Bodily et al., A machine learning approach to COVID-19 detection via graphene field-effect-transistor (GFET). 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). July 24-27, 2023, Sydney, Australia. IEEE, (2023)., pp. 1–4
S.-Z. Liang, G. Chen, A.R. Harutyunyan, J.O. Sofo, Screening of charged impurities as a possible mechanism for conductance change in graphene gas sensing. Phys. Rev. B 90(11), 115410 (2014). https://doi.org/10.1103/physrevb.90.115410
S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, A self-consistent theory for graphene transport. Proc. Natl. Acad. Sci. USA 104(47), 18392–18397 (2007). https://doi.org/10.1073/pnas.0704772104
J.-H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams et al., Charged-impurity scattering in graphene. Nat. Phys. 4(5), 377–381 (2008). https://doi.org/10.1038/nphys935
S. Mehdi Aghaei, M.M. Monshi, I. Torres, S.M.J. Zeidi, I. Calizo, DFT study of adsorption behavior of NO, CO, NO2, and NH3 molecules on graphene-like BC3: a search for highly sensitive molecular sensor. Appl. Surf. Sci. 427, 326–333 (2018). https://doi.org/10.1016/j.apsusc.2017.08.048
X.-Y. Liang, N. Ding, S.-P. Ng, C.L. Wu, Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field: a DFT study. Appl. Surf. Sci. 411, 11–17 (2017). https://doi.org/10.1016/j.apsusc.2017.03.178
Z. Zhou, J. Song, Y. Xie, Y. Ma, H. Hu et al., DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials. Chin. Chem. Lett. (2025). https://doi.org/10.1016/j.cclet.2025.110906
M. Tripathi, G. Deokar, J. Casanova-Chafer, J. Jin, A. Sierra-Castillo et al., Vertical heterostructure of graphite-MoS2 for gas sensing. Nanoscale Horiz. 9, 1330 (2024). https://doi.org/10.1039/d4nh00049h
S. Yuan, S. Zeng, Y. Hu, W. Kong, H. Yang et al., Epitaxial metal-organic framework-mediated electron relay for H2 detection on demand. ACS Nano 18(30), 19723–19731 (2024). https://doi.org/10.1021/acsnano.4c05206
Y. Huang, X. Yan, Q. He, J. Qiu, Y. Zhang et al., Ceria and gold co-decorated porous MoS2@graphene nanocomposite electrochemical electrode integrated with smartphone-controlled microstation for simultaneous dual metal ions detection. Electrochim. Acta 437, 141509 (2023). https://doi.org/10.1016/j.electacta.2022.141509
H.-L. Hou, C. Anichini, P. Samori, A. Criado, M. Prato, 2D van der waals heterostructures for chemical sensing. Adv. Funct. Mater. 32, 2207065 (2022). https://doi.org/10.1002/adfm.202207065
O. Sisman, O. Smirnova, Y. Xia, N. Greiner-Mai, A. Reupert et al., Overcoming the selectivity-sensitivity trade-off in electroactive gas sensing using hybrid glass composites. Adv. Funct. Mater. 35(10), 2416535 (2025). https://doi.org/10.1002/adfm.202416535
S.M. Lee, Y.J. Kim, S.J. Park, W.S. Cheon, J. Kim et al., In-situ growth of 2D MOFs as a molecular sieving layer on SnS2 nanoflakes for realizing ultraselective H2S detection. Adv. Funct. Mater. 35(12), 2417019 (2025). https://doi.org/10.1002/adfm.202417019
X. Wu, S. Shi, J. Jiang, D. Lin, J. Song et al., Bionic olfactory neuron with in-sensor reservoir computing for intelligent gas recognition. Adv. Mater. (2025). https://doi.org/10.1002/adma.202419159
X. Zhang, C. Liu, Z. Liu, Y. Liu, H. Chen et al., Bioengineered two-dimensional nanomaterials (Bio-2DNMs) for cancer diagnosis and therapy: a comprehensive review. Chem. Eng. J. 507, 160430 (2025). https://doi.org/10.1016/j.cej.2025.160430
V.V. Tran, V.K.H. Bui, D.L.T. Nguyen, H.H. Do, Challenges and development strategies of conjugated polymers composites-based biosensors for detection of virus biomarkers. Chem. Eng. J. 503, 158532 (2025). https://doi.org/10.1016/j.cej.2024.158532
L.R. Jaishi, W. Ding, R.A. Kittelson, F. Tsow, X. Xian, Metal-organic frameworks (MOFs)-based piezoelectric-colorimetric hybrid sensor for monitoring green leaf volatiles. ACS Sens. 9(12), 6553–6562 (2024). https://doi.org/10.1021/acssensors.4c02016
K.K. Zamansky, F.S. Fedorov, S.D. Shandakov, M. Chetyrkina, A.G. Nasibulin, A gas sensor based on free-standing SWCNT film for selective recognition of toxic and flammable gases under thermal cycling protocols. Sens. Actuat. B Chem. 417, 136116 (2024). https://doi.org/10.1016/j.snb.2024.136116
Z.W. Wong, S.Y. New, Recent advances in biosensors based on hybridization chain reaction and silver nanoclusters. Small Meth. 9, 2401436 (2025). https://doi.org/10.1002/smtd.202401436
A.-M. Andringa, J.R. Meijboom, E.C.P. Smits, S.G.J. Mathijssen, P.W.M. Blom et al., Gate-bias controlled charge trapping as a mechanism for NO2 detection with field-effect transistors. Adv. Funct. Mater. 21(1), 100–107 (2011). https://doi.org/10.1002/adfm.201001560
M. Mattmann, C. Roman, T. Helbling, D. Bechstein, L. Durrer et al., Pulsed gate sweep strategies for hysteresis reduction in carbon nanotube transistors for low concentration NO2 gas detection. Nanotechnology 21(18), 185501 (2010). https://doi.org/10.1088/0957-4484/21/18/185501
D. Kwon, J.H. Lee, S. Kim, R. Lee, H. Mo et al., Drift-free pH detection with silicon nanowire field-effect transistors. IEEE Electron Device Lett. 37(5), 652–655 (2016). https://doi.org/10.1109/LED.2016.2542846
J. Han, X. Xie, S. Sun, An improved analytic dictionary learning method for sparse representation in gas recognition and classification. IEEE Sens. J. 24(9), 15665–15675 (2024). https://doi.org/10.1109/JSEN.2024.3381149
D. Guo, D. Zhang, L. Zhang, Sparse representation-based classification for breath sample identification. Sens. Actuat. B Chem. 158(1), 43–53 (2011). https://doi.org/10.1016/j.snb.2011.05.010
D.R. Wijaya, F. Afianti, Stability assessment of feature selection algorithms on homogeneous datasets: A study for sensor array optimization problem. IEEE Access 8, 33944 (2020). https://doi.org/10.1109/ACCESS.2020.2974982
J. Fonollosa, L. Fernández, R. Huerta, A. Gutiérrez-Gálvez, S. Marco, Temperature optimization of metal oxide sensor arrays using mutual information. Sens. Actuat. B Chem. 187, 331–339 (2013). https://doi.org/10.1016/j.snb.2012.12.026
J. Zhou, C.M. Welling, S. Kawadiya, M.A. Deshusses, S. Grego et al., Sensor-array optimization based on mutual information for sanitation-related malodor alerts. in 2019 IEEE Biomedical Circuits and Systems Conference (Biocas 2019) (IEEE, New York, 2019). https://doi.org/10.1109/biocas.2019.8919132