Ideal Bi-Based Hybrid Anode Material for Ultrafast Charging of Sodium-Ion Batteries at Extremely Low Temperatures
Corresponding Author: Qing Jiang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 60
Abstract
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at − 20 °C or lower. However, the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported. Herein, a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue, which is synthesized via a high temperature shock method. Such a hybrid shows an unprecedented rate performance (237.9 mAh g−1 at 2 A g−1) at − 60 °C, outperforming all reported SIB anode materials. Coupled with a Na3V2(PO4)3 cathode, the energy density of the full cell can reach to 181.9 Wh kg−1 at − 40 °C. Based on this work, a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.
Highlights:
1 Metallic nanoparticles with excellent size controllability and high loading rate are obtained via ultrafast high temperature shock method.
2 The Bi/CNRs-15 electrode exhibits an unprecedented rate performance (237.9 mAh g−1 at 2 A g−1) at − 60 °C, while the energy density of the full cell can reach to 181.9 Wh kg−1 at − 40 °C.
3 A novel strategy of high-rate activation is proposed to obtain high capacity and superior stability at low temperature by creating new active sites for interfacial reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Jin, S. Xin, C. Chuang, W. Li, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370, 192–197 (2020). https://doi.org/10.1126/science.aav5842
- R.A. House, U. Maitra, M.A. Pérez-Osorio, J.G. Lozano, L. Jin et al., Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020). https://doi.org/10.1038/s41586-019-1854-3
- D. Lu, R. Li, M.M. Rahman, P. Yu, L. Lv et al., Ligand-channel-enabled ultrafast Li-ion conduction. Nature 627, 101–107 (2024). https://doi.org/10.1038/s41586-024-07045-4
- M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
- A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020). https://doi.org/10.1002/aenm.202001972
- N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 34, e2107899 (2022). https://doi.org/10.1002/adma.202107899
- J.-L. Xia, D. Yan, L.-P. Guo, X.-L. Dong, W.-C. Li et al., Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv. Mater. 32, e2000447 (2020). https://doi.org/10.1002/adma.202000447
- K.H. Shin, S.K. Park, P. Nakhanivej, Y. Wang, P. Liu et al., Biomimetic composite architecture achieves ultrahigh rate capability and cycling life of sodium ion battery cathodes. Appl. Phys. Rev. 7, 041410 (2020). https://doi.org/10.1063/5.0020805
- M. Wu, J. Liao, L. Yu, R. Lv, P. Li et al., 2020 roadmap on carbon materials for energy storage and conversion. Chem 15, 995–1013 (2020). https://doi.org/10.1002/asia.201901802
- Z. Song, G. Zhang, X. Deng, Y. Tian, X. Xiao et al., Strongly coupled interfacial engineering inspired by robotic arms enable high-performance sodium-ion capacitors. Adv. Funct. Mater. 32, 2205453 (2022). https://doi.org/10.1002/adfm.202205453
- T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120, 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
- W. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng et al., Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J. Am. Chem. Soc. 141, 14038–14042 (2019). https://doi.org/10.1021/jacs.9b05531
- X. Deng, K. Zou, R. Momen, P. Cai, J. Chen et al., High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 66, 1858–1868 (2021). https://doi.org/10.1016/j.scib.2021.04.042
- J. Qin, Q. Lan, N. Liu, Y. Zhao, Z. Song et al., A metal-free battery working at −80 °C. Energy Storage Mater. 26, 585–592 (2020). https://doi.org/10.1016/j.ensm.2019.12.002
- X. Gao, X. Du, T.S. Mathis, M. Zhang, X. Wang et al., Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 11, 6160 (2020). https://doi.org/10.1038/s41467-020-19992-3
- S. Yuan, T. Kong, Y. Zhang, P. Dong, Y. Zhang et al., Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew. Chem. Int. Ed. 60, 25624–25638 (2021). https://doi.org/10.1002/anie.202108397
- S. Zhong, Y. Yu, Y. Yang, Y. Yao, L. Wang et al., Molecular engineering on solvation structure of carbonate electrolyte toward durable sodium metal battery at −40 °C. Angew. Chem. Int. Ed. 62, e202301169 (2023). https://doi.org/10.1002/anie.202301169
- C. Yang, X. Liu, Y. Lin, L. Yin, J. Lu et al., Entropy-driven solvation toward low-temperature sodium-ion batteries with temperature-adaptive feature. Adv. Mater. 35, e2301817 (2023). https://doi.org/10.1002/adma.202301817
- H. Yuan, F. Ma, X. Wei, J.-L. Lan, Y. Liu et al., Solid electrolyte interphases: ionic-conducting and robust multilayered solid electrolyte interphases for greatly improved rate and cycling capabilities of sodium ion full cells (adv. energy mater. 37/2020). Adv. Energy Mater. 10, 2070153 (2020). https://doi.org/10.1002/aenm.202070153
- X. Qi, H. Dong, H. Yan, B. Hou, H. Liu et al., Hollow core-shelled Na4Fe2.4Ni0.6(PO4)2P2O7 with tiny-void space capable fast-charge and low-temperature sodium storage. Angew. Chem. Int. 63, e202410590 (2024). https://doi.org/10.1002/anie.202410590
- X. Cheng, Y. Sun, D. Li, H. Yang, F. Chen et al., From 0D to 3D: dimensional control of bismuth for potassium storage with superb kinetics and cycling stability. Adv. Energy Mater. 11, 2102263 (2021). https://doi.org/10.1002/aenm.202102263
- R.C. Cui, H.Y. Zhou, J.C. Li, C.C. Yang, Q. Jiang, Ball-Cactus-like Bi embedded in N-riched carbon nanonetworks enables the best potassium storage performance. Adv. Funct. Mater. 31, 2103067 (2021). https://doi.org/10.1002/adfm.202103067
- S.-L. Wei, Y.-L. Yang, J.-G. Chen, X.-L. Shi, Y. Sun et al., A fast-charging and ultra-stable sodium-ion battery anode enabled by N-doped Bi/BiOCl in a carbon framework. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202401825
- C. Wang, D. Du, M. Song, Y. Wang, F. Li, A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range. Adv. Energy Mater. 9, 1900022 (2019). https://doi.org/10.1002/aenm.201900022
- C. Wang, L. Wang, F. Li, F. Cheng, J. Chen, Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv. Mater. 29, 1702212 (2017). https://doi.org/10.1002/adma.201702212
- Z. Li, Y. Zhang, J. Zhang, Y. Cao, J. Chen et al., Sodium-ion battery with a wide operation-temperature range from-70 to 100 °C. Angew. Chem. Int. Ed. 61, e202116930 (2022). https://doi.org/10.1002/anie.202116930
- L. Liu, S. Li, L. Hu, X. Liang, W. Yang et al., Bi@C nanosphere anode with Na+-ether-solvent cointercalation behavior to achieve fast sodium storage under extreme low temperatures. Carbon Energy 6, e531 (2024). https://doi.org/10.1002/cey2.531
- Y. Wang, X. Xu, Y. Wu, F. Li, W. Fan et al., Facile galvanic replacement construction of Bi@C nanosheets array as binder-free anodes for superior sodium-ion batteries. Adv. Energy Mater. 14, 2401833 (2024). https://doi.org/10.1002/aenm.202401833
- Y. Zhang, W. Zhao, C. Kang, S. Geng, J. Zhu et al., Phase-junction engineering triggered built-in electric field for fast-charging batteries operated at −30 °C. Matter 6, 1928–1944 (2023). https://doi.org/10.1016/j.matt.2023.03.026
- J. Xu, H. Zhang, F. Yu, Y. Cao, M. Liao et al., Realizing all-climate Li-S batteries by using a porous sub-nano aromatic framework. Angew. Chem. Int. Ed. 61, e202211933 (2022). https://doi.org/10.1002/anie.202211933
- S. Xin, Y. You, S. Wang, H.-C. Gao, Y.-X. Yin et al., Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects. ACS Energy Lett. 2, 1385–1394 (2017). https://doi.org/10.1021/acsenergylett.7b00175
- M. Guo, Q. Dong, H. Xie, C. Wang, Y. Zhao et al., Ultrafast high-temperature sintering to avoid metal loss toward high-performance and scalable cermets. Matter 5, 594–604 (2022). https://doi.org/10.1016/j.matt.2021.11.008
- M. Cui, C. Yang, S. Hwang, B. Li, Q. Dong et al., Rapid atomic ordering transformation toward intermetallic nanops. Nano Lett. 22, 255–262 (2022). https://doi.org/10.1021/acs.nanolett.1c03714
- T. Jiang, Z. Liu, Y. Yuan, X. Zheng, S. Park et al., Ultrafast electrical pulse synthesis of highly active electrocatalysts for beyond-industrial-level hydrogen gas batteries. Adv. Mater. 35, e2300502 (2023). https://doi.org/10.1002/adma.202300502
- S. Liu, Y. Shen, Y. Zhang, B. Cui, S. Xi et al., Extreme environmental thermal shock induced dislocation-rich Pt nanops boosting hydrogen evolution reaction. Adv. Mater. 34, e2106973 (2022). https://doi.org/10.1002/adma.202106973
- S. Dou, J. Xu, D. Zhang, W. Liu, C. Zeng et al., Ultrarapid nanomanufacturing of high-quality bimetallic anode library toward stable potassium-ion storage. Angew. Chem. Int. Ed. 62, e202303600 (2023). https://doi.org/10.1002/anie.202303600
- X. Wu, Z. Li, W. Feng, W. Luo, L. Liao et al., Insights into electrolyte-induced temporal and spatial evolution of an ultrafast-charging bi-based anode for sodium-ion batteries. Energy Storage Mater. 66, 103219 (2024). https://doi.org/10.1016/j.ensm.2024.103219
- L. Zhang, Y. Hou, The Rise and development of MOF-based materials for metal-chalcogen batteries: current status, challenges, and prospects. Adv. Energy Mater. 13, 2204378 (2023). https://doi.org/10.1002/aenm.202204378
- S.H. Yang, S.K. Park, Y.C. Kang, MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries. Nano-Micro Lett. 13, 9 (2020). https://doi.org/10.1007/s40820-020-00539-6
- Z.-L. Zheng, M.-M. Wu, X. Zeng, X.-W. Zhu, D. Luo et al., Facile fabrication of hollow nanoporous carbon architectures by controlling MOF crystalline inhomogeneity for ultra-stable Na-ion storage. Angew. Chem. Int. Ed. 63, e202400012 (2024). https://doi.org/10.1002/anie.202400012
- D. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao et al., The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem. Int. Ed. 60, 18178–18184 (2021). https://doi.org/10.1002/anie.202104747
- J. Liu, Z. Wang, P. Cheng, M.J. Zaworotko, Y. Chen et al., Post-synthetic modifications of metal–organic cages. Nat. Rev. Chem. 6, 339–356 (2022). https://doi.org/10.1038/s41570-022-00380-y
- Z. Wang, Z. Zeng, H. Wang, G. Zeng, P. Xu et al., Bismuth-based metal–organic frameworks and their derivatives: opportunities and challenges. Coord. Chem. Rev. 439, 213902 (2021). https://doi.org/10.1016/j.ccr.2021.213902
- D. Yao, C. Tang, L. Li, B. Xia, A. Vasileff et al., In situ fragmented bismuth nanops for electrocatalytic nitrogen reduction. Adv. Energy Mater. 10, 2001289 (2020). https://doi.org/10.1002/aenm.202001289
- X. Yue, L. Cheng, F. Li, J. Fan, Q. Xiang, Highly strained Bi-MOF on bismuth oxyhalide support with tailored intermediate adsorption/desorption capability for robust CO2 photoreduction. Angew. Chem. Int. Ed. 61, e202208414 (2022). https://doi.org/10.1002/anie.202208414
- H. Xie, M. Hong, E.M. Hitz, X.Z. Wang, M.J. Cui et al., High-temperature pulse method for nanop redispersion. J. Am. Chem. Soc. 142, 17364–17371 (2020). https://doi.org/10.1021/jacs.0c04887
- T. Li, A.J. Senesi, B. Lee, Small angle X-ray scattering for nanop research. Chem. Rev. 116, 11128–11180 (2016). https://doi.org/10.1021/acs.chemrev.5b00690
- M.M. Modena, B. Rühle, T.P. Burg, S. Wuttke, Nanop characterization: what to measure? Adv. Mater. 31, 1901556 (2019). https://doi.org/10.1002/adma.201901556
- C. Li, Y.R. Pei, M. Zhao, C.C. Yang, Q. Jiang, Sodium storage performance of ultrasmall SnSb nanops. Chem. Eng. J. 420, 129617 (2021). https://doi.org/10.1016/j.cej.2021.129617
- R. Serra-Maia, P. Kumar, A.C. Meng, A.C. Foucher, Y. Kang et al., Nanoscale chemical and structural analysis during in situ scanning/transmission electron microscopy in liquids. ACS Nano 15, 10228–10240 (2021). https://doi.org/10.1021/acsnano.1c02340
- W.T. Jing, Y. Zhang, Y. Gu, Y.F. Zhu, C.C. Yang et al., N-doped carbon nanonecklaces with encapsulated Sb as a sodium-ion battery anode. Matter 1, 720–733 (2019). https://doi.org/10.1016/j.matt.2019.03.010
- Q. Lai, J. Zheng, Z. Tang, D. Bi, J. Zhao et al., Optimal configuration of N-doped carbon defects in 2D turbostratic carbon nanomesh for advanced oxygen reduction electrocatalysis. Angew. Chem. Int. Ed. 59, 11999–12006 (2020). https://doi.org/10.1002/anie.202000936
- J. Wang, Y. Yao, C. Zhang, Q. Sun, D. Cheng et al., Superstructured macroporous carbon rods composed of defective graphitic nanosheets for efficient oxygen reduction reaction. Adv. Sci. 8, e2100120 (2021). https://doi.org/10.1002/advs.202100120
- Y. Chen, B. Xi, M. Huang, L. Shi, S. Huang et al., Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage. Adv. Mater. 34, e2108621 (2022). https://doi.org/10.1002/adma.202108621
- Y.R. Pei, H.Y. Zhou, M. Zhao, J.C. Li, X. Ge et al., High-efficiency sodium storage of Co0.85Se/WSe2 encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering. Carbon Energy 6, 374 (2024). https://doi.org/10.1002/cey2.374
- X. Yin, Z. Lu, J. Wang, X. Feng, S. Roy et al., Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 34, e2109282 (2022). https://doi.org/10.1002/adma.202109282
- H. Long, J. Wang, S. Zhao, B. Zou, L. Yan et al., Enable the domino-like structural recovering in bismuth anode to achieve fast and durable Na/K storages. Angew. Chem. Int. Ed. 63, e202406513 (2024). https://doi.org/10.1002/anie.202406513
- Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu et al., Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 20, 76–83 (2021). https://doi.org/10.1038/s41563-020-0756-y
- Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li et al., Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012). https://doi.org/10.1016/j.nanoen.2011.11.001
- L. Jing, K. Zhuo, L. Sun, N. Zhang, X. Su et al., The mass-balancing between positive and negative electrodes for optimizing energy density of supercapacitors. J. Am. Chem. Soc. 146, 14369–14385 (2024). https://doi.org/10.1021/jacs.4c00486
- H. Zhang, S. Zhang, B. Guo, L.-J. Yu, L. Ma et al., MoS2 hollow multishelled nanospheres doped Fe single atoms capable of fast phase transformation for fast-charging Na-ion batteries. Angew. Chem. Int. Ed. 63, e202400285 (2024). https://doi.org/10.1002/anie.202400285
- H. Zhang, L. Wang, L. Ma, Y. Liu, B. Hou et al., Surface crystal modification of Na3V2(PO4)3 to cast intermediate Na2V2(PO4)3 phase toward high-rate sodium storage. Adv. Sci. 11, e2306168 (2024). https://doi.org/10.1002/advs.202306168
- X. Yi, X. Li, J. Zhong, S. Wang, Z. Wang et al., Unraveling the mechanism of different kinetics performance between ether and carbonate ester electrolytes in hard carbon electrode. Adv. Funct. Mater. 32, 2209523 (2022). https://doi.org/10.1002/adfm.202209523
- M. Yousaf, Y. Wang, Y. Chen, Z. Wang, A. Firdous et al., A 3D trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage. Adv. Energy Mater. 9, 1900567 (2022). https://doi.org/10.1002/aenm.201900567
- J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2022). https://doi.org/10.1038/s41560-021-00783-z
- Y.-S. Hu, Y. Lu, The mystery of electrolyte concentration: from superhigh to ultralow. ACS Energy Lett. 5, 3633–3636 (2020). https://doi.org/10.1021/acsenergylett.0c02234
- W. Bai, H. Wang, D.H. Min, J. Miao, B. Li et al., 3D-printed hierarchically microgrid frameworks of sodiophilic Co3O4@C/rGO nanosheets for ultralong cyclic sodium metal batteries. Adv. Sci. 11, e2404419 (2024). https://doi.org/10.1002/advs.202404419
- S. Weng, X. Zhang, G. Yang, S. Zhang, B. Ma et al., Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 14, 4474 (2023). https://doi.org/10.1038/s41467-023-40221-0
- M. Liu, F. Wu, Y. Gong, Y. Li, Y. Li et al., Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries. Adv. Mater. 35, e2300002 (2023). https://doi.org/10.1002/adma.202300002
- G. Yan, K. Reeves, D. Foix, Z. Li, C. Cometto et al., A new electrolyte formulation for securing high temperature cycling and storage performances of Na-ion batteries. Adv. Energy Mater. 9, 1901431 (2019). https://doi.org/10.1002/aenm.201901431
- P.M.L. Le, T.D. Vo, H. Pan, Y. Jin, Y. He et al., Excellent cycling stability of sodium anode enabled by a stable solid electrolyte interphase formed in ether-based electrolytes. Adv. Funct. Mater. 30, 2001151 (2020). https://doi.org/10.1002/adfm.202001151
- H.S. Hirsh, B. Sayahpour, A. Shen, W. Li, B. Lu et al., Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life. Energy Storage Mater. 42, 78–87 (2021). https://doi.org/10.1016/j.ensm.2021.07.021
- L. Zhou, Z. Cao, J. Zhang, Q. Sun, Y. Wu et al., Engineering sodium-ion solvation structure to stabilize sodium anodes: universal strategy for fast-charging and safer sodium-ion batteries. Nano Lett. 20, 3247–3254 (2020). https://doi.org/10.1021/acs.nanolett.9b05355
- J. Zhang, D.-W. Wang, W. Lv, S. Zhang, Q. Liang et al., Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 10, 370–376 (2017). https://doi.org/10.1039/C6EE03367A
- E. Wang, J. Wan, Y.-J. Guo, Q. Zhang, W.-H. He et al., Mitigating electron leakage of solid electrolyte interface for stable sodium-ion batteries. Angew. Chem. Int. Ed. 62, e202216354 (2023). https://doi.org/10.1002/anie.202216354
- Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5, 1119–1142 (2021). https://doi.org/10.1016/j.joule.2021.03.024
- H. Sun, G. Xin, T. Hu, M. Yu, D. Shao et al., High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5, 4526 (2014). https://doi.org/10.1038/ncomms5526
- H. Kim, W. Choi, J. Yoon, J.H. Um, W. Lee et al., Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem. Rev. 120, 6934–6976 (2020). https://doi.org/10.1021/acs.chemrev.9b00618
- J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15, 499–528 (2022). https://doi.org/10.1039/D1EE03377H
- R. Dong, L. Zheng, Y. Bai, Q. Ni, Y. Li et al., Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 33, e2008810 (2021). https://doi.org/10.1002/adma.202008810
- Y. Wan, K. Song, W. Chen, C. Qin, X. Zhang et al., Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage. Angew. Chem. Int. Ed. 60, 11481–11486 (2021). https://doi.org/10.1002/anie.202102368
References
H. Jin, S. Xin, C. Chuang, W. Li, H. Wang et al., Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 370, 192–197 (2020). https://doi.org/10.1126/science.aav5842
R.A. House, U. Maitra, M.A. Pérez-Osorio, J.G. Lozano, L. Jin et al., Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020). https://doi.org/10.1038/s41586-019-1854-3
D. Lu, R. Li, M.M. Rahman, P. Yu, L. Lv et al., Ligand-channel-enabled ultrafast Li-ion conduction. Nature 627, 101–107 (2024). https://doi.org/10.1038/s41586-024-07045-4
M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a
A. Gupta, A. Manthiram, Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 10, 2001972 (2020). https://doi.org/10.1002/aenm.202001972
N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 34, e2107899 (2022). https://doi.org/10.1002/adma.202107899
J.-L. Xia, D. Yan, L.-P. Guo, X.-L. Dong, W.-C. Li et al., Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage. Adv. Mater. 32, e2000447 (2020). https://doi.org/10.1002/adma.202000447
K.H. Shin, S.K. Park, P. Nakhanivej, Y. Wang, P. Liu et al., Biomimetic composite architecture achieves ultrahigh rate capability and cycling life of sodium ion battery cathodes. Appl. Phys. Rev. 7, 041410 (2020). https://doi.org/10.1063/5.0020805
M. Wu, J. Liao, L. Yu, R. Lv, P. Li et al., 2020 roadmap on carbon materials for energy storage and conversion. Chem 15, 995–1013 (2020). https://doi.org/10.1002/asia.201901802
Z. Song, G. Zhang, X. Deng, Y. Tian, X. Xiao et al., Strongly coupled interfacial engineering inspired by robotic arms enable high-performance sodium-ion capacitors. Adv. Funct. Mater. 32, 2205453 (2022). https://doi.org/10.1002/adfm.202205453
T. Hosaka, K. Kubota, A.S. Hameed, S. Komaba, Research development on K-ion batteries. Chem. Rev. 120, 6358–6466 (2020). https://doi.org/10.1021/acs.chemrev.9b00463
W. Zhang, X. Sun, Y. Tang, H. Xia, Y. Zeng et al., Lowering charge transfer barrier of LiMn2O4 via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures. J. Am. Chem. Soc. 141, 14038–14042 (2019). https://doi.org/10.1021/jacs.9b05531
X. Deng, K. Zou, R. Momen, P. Cai, J. Chen et al., High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 66, 1858–1868 (2021). https://doi.org/10.1016/j.scib.2021.04.042
J. Qin, Q. Lan, N. Liu, Y. Zhao, Z. Song et al., A metal-free battery working at −80 °C. Energy Storage Mater. 26, 585–592 (2020). https://doi.org/10.1016/j.ensm.2019.12.002
X. Gao, X. Du, T.S. Mathis, M. Zhang, X. Wang et al., Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 11, 6160 (2020). https://doi.org/10.1038/s41467-020-19992-3
S. Yuan, T. Kong, Y. Zhang, P. Dong, Y. Zhang et al., Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew. Chem. Int. Ed. 60, 25624–25638 (2021). https://doi.org/10.1002/anie.202108397
S. Zhong, Y. Yu, Y. Yang, Y. Yao, L. Wang et al., Molecular engineering on solvation structure of carbonate electrolyte toward durable sodium metal battery at −40 °C. Angew. Chem. Int. Ed. 62, e202301169 (2023). https://doi.org/10.1002/anie.202301169
C. Yang, X. Liu, Y. Lin, L. Yin, J. Lu et al., Entropy-driven solvation toward low-temperature sodium-ion batteries with temperature-adaptive feature. Adv. Mater. 35, e2301817 (2023). https://doi.org/10.1002/adma.202301817
H. Yuan, F. Ma, X. Wei, J.-L. Lan, Y. Liu et al., Solid electrolyte interphases: ionic-conducting and robust multilayered solid electrolyte interphases for greatly improved rate and cycling capabilities of sodium ion full cells (adv. energy mater. 37/2020). Adv. Energy Mater. 10, 2070153 (2020). https://doi.org/10.1002/aenm.202070153
X. Qi, H. Dong, H. Yan, B. Hou, H. Liu et al., Hollow core-shelled Na4Fe2.4Ni0.6(PO4)2P2O7 with tiny-void space capable fast-charge and low-temperature sodium storage. Angew. Chem. Int. 63, e202410590 (2024). https://doi.org/10.1002/anie.202410590
X. Cheng, Y. Sun, D. Li, H. Yang, F. Chen et al., From 0D to 3D: dimensional control of bismuth for potassium storage with superb kinetics and cycling stability. Adv. Energy Mater. 11, 2102263 (2021). https://doi.org/10.1002/aenm.202102263
R.C. Cui, H.Y. Zhou, J.C. Li, C.C. Yang, Q. Jiang, Ball-Cactus-like Bi embedded in N-riched carbon nanonetworks enables the best potassium storage performance. Adv. Funct. Mater. 31, 2103067 (2021). https://doi.org/10.1002/adfm.202103067
S.-L. Wei, Y.-L. Yang, J.-G. Chen, X.-L. Shi, Y. Sun et al., A fast-charging and ultra-stable sodium-ion battery anode enabled by N-doped Bi/BiOCl in a carbon framework. Adv. Energy Mater. (2024). https://doi.org/10.1002/aenm.202401825
C. Wang, D. Du, M. Song, Y. Wang, F. Li, A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range. Adv. Energy Mater. 9, 1900022 (2019). https://doi.org/10.1002/aenm.201900022
C. Wang, L. Wang, F. Li, F. Cheng, J. Chen, Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv. Mater. 29, 1702212 (2017). https://doi.org/10.1002/adma.201702212
Z. Li, Y. Zhang, J. Zhang, Y. Cao, J. Chen et al., Sodium-ion battery with a wide operation-temperature range from-70 to 100 °C. Angew. Chem. Int. Ed. 61, e202116930 (2022). https://doi.org/10.1002/anie.202116930
L. Liu, S. Li, L. Hu, X. Liang, W. Yang et al., Bi@C nanosphere anode with Na+-ether-solvent cointercalation behavior to achieve fast sodium storage under extreme low temperatures. Carbon Energy 6, e531 (2024). https://doi.org/10.1002/cey2.531
Y. Wang, X. Xu, Y. Wu, F. Li, W. Fan et al., Facile galvanic replacement construction of Bi@C nanosheets array as binder-free anodes for superior sodium-ion batteries. Adv. Energy Mater. 14, 2401833 (2024). https://doi.org/10.1002/aenm.202401833
Y. Zhang, W. Zhao, C. Kang, S. Geng, J. Zhu et al., Phase-junction engineering triggered built-in electric field for fast-charging batteries operated at −30 °C. Matter 6, 1928–1944 (2023). https://doi.org/10.1016/j.matt.2023.03.026
J. Xu, H. Zhang, F. Yu, Y. Cao, M. Liao et al., Realizing all-climate Li-S batteries by using a porous sub-nano aromatic framework. Angew. Chem. Int. Ed. 61, e202211933 (2022). https://doi.org/10.1002/anie.202211933
S. Xin, Y. You, S. Wang, H.-C. Gao, Y.-X. Yin et al., Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects. ACS Energy Lett. 2, 1385–1394 (2017). https://doi.org/10.1021/acsenergylett.7b00175
M. Guo, Q. Dong, H. Xie, C. Wang, Y. Zhao et al., Ultrafast high-temperature sintering to avoid metal loss toward high-performance and scalable cermets. Matter 5, 594–604 (2022). https://doi.org/10.1016/j.matt.2021.11.008
M. Cui, C. Yang, S. Hwang, B. Li, Q. Dong et al., Rapid atomic ordering transformation toward intermetallic nanops. Nano Lett. 22, 255–262 (2022). https://doi.org/10.1021/acs.nanolett.1c03714
T. Jiang, Z. Liu, Y. Yuan, X. Zheng, S. Park et al., Ultrafast electrical pulse synthesis of highly active electrocatalysts for beyond-industrial-level hydrogen gas batteries. Adv. Mater. 35, e2300502 (2023). https://doi.org/10.1002/adma.202300502
S. Liu, Y. Shen, Y. Zhang, B. Cui, S. Xi et al., Extreme environmental thermal shock induced dislocation-rich Pt nanops boosting hydrogen evolution reaction. Adv. Mater. 34, e2106973 (2022). https://doi.org/10.1002/adma.202106973
S. Dou, J. Xu, D. Zhang, W. Liu, C. Zeng et al., Ultrarapid nanomanufacturing of high-quality bimetallic anode library toward stable potassium-ion storage. Angew. Chem. Int. Ed. 62, e202303600 (2023). https://doi.org/10.1002/anie.202303600
X. Wu, Z. Li, W. Feng, W. Luo, L. Liao et al., Insights into electrolyte-induced temporal and spatial evolution of an ultrafast-charging bi-based anode for sodium-ion batteries. Energy Storage Mater. 66, 103219 (2024). https://doi.org/10.1016/j.ensm.2024.103219
L. Zhang, Y. Hou, The Rise and development of MOF-based materials for metal-chalcogen batteries: current status, challenges, and prospects. Adv. Energy Mater. 13, 2204378 (2023). https://doi.org/10.1002/aenm.202204378
S.H. Yang, S.K. Park, Y.C. Kang, MOF-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries. Nano-Micro Lett. 13, 9 (2020). https://doi.org/10.1007/s40820-020-00539-6
Z.-L. Zheng, M.-M. Wu, X. Zeng, X.-W. Zhu, D. Luo et al., Facile fabrication of hollow nanoporous carbon architectures by controlling MOF crystalline inhomogeneity for ultra-stable Na-ion storage. Angew. Chem. Int. Ed. 63, e202400012 (2024). https://doi.org/10.1002/anie.202400012
D. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao et al., The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem. Int. Ed. 60, 18178–18184 (2021). https://doi.org/10.1002/anie.202104747
J. Liu, Z. Wang, P. Cheng, M.J. Zaworotko, Y. Chen et al., Post-synthetic modifications of metal–organic cages. Nat. Rev. Chem. 6, 339–356 (2022). https://doi.org/10.1038/s41570-022-00380-y
Z. Wang, Z. Zeng, H. Wang, G. Zeng, P. Xu et al., Bismuth-based metal–organic frameworks and their derivatives: opportunities and challenges. Coord. Chem. Rev. 439, 213902 (2021). https://doi.org/10.1016/j.ccr.2021.213902
D. Yao, C. Tang, L. Li, B. Xia, A. Vasileff et al., In situ fragmented bismuth nanops for electrocatalytic nitrogen reduction. Adv. Energy Mater. 10, 2001289 (2020). https://doi.org/10.1002/aenm.202001289
X. Yue, L. Cheng, F. Li, J. Fan, Q. Xiang, Highly strained Bi-MOF on bismuth oxyhalide support with tailored intermediate adsorption/desorption capability for robust CO2 photoreduction. Angew. Chem. Int. Ed. 61, e202208414 (2022). https://doi.org/10.1002/anie.202208414
H. Xie, M. Hong, E.M. Hitz, X.Z. Wang, M.J. Cui et al., High-temperature pulse method for nanop redispersion. J. Am. Chem. Soc. 142, 17364–17371 (2020). https://doi.org/10.1021/jacs.0c04887
T. Li, A.J. Senesi, B. Lee, Small angle X-ray scattering for nanop research. Chem. Rev. 116, 11128–11180 (2016). https://doi.org/10.1021/acs.chemrev.5b00690
M.M. Modena, B. Rühle, T.P. Burg, S. Wuttke, Nanop characterization: what to measure? Adv. Mater. 31, 1901556 (2019). https://doi.org/10.1002/adma.201901556
C. Li, Y.R. Pei, M. Zhao, C.C. Yang, Q. Jiang, Sodium storage performance of ultrasmall SnSb nanops. Chem. Eng. J. 420, 129617 (2021). https://doi.org/10.1016/j.cej.2021.129617
R. Serra-Maia, P. Kumar, A.C. Meng, A.C. Foucher, Y. Kang et al., Nanoscale chemical and structural analysis during in situ scanning/transmission electron microscopy in liquids. ACS Nano 15, 10228–10240 (2021). https://doi.org/10.1021/acsnano.1c02340
W.T. Jing, Y. Zhang, Y. Gu, Y.F. Zhu, C.C. Yang et al., N-doped carbon nanonecklaces with encapsulated Sb as a sodium-ion battery anode. Matter 1, 720–733 (2019). https://doi.org/10.1016/j.matt.2019.03.010
Q. Lai, J. Zheng, Z. Tang, D. Bi, J. Zhao et al., Optimal configuration of N-doped carbon defects in 2D turbostratic carbon nanomesh for advanced oxygen reduction electrocatalysis. Angew. Chem. Int. Ed. 59, 11999–12006 (2020). https://doi.org/10.1002/anie.202000936
J. Wang, Y. Yao, C. Zhang, Q. Sun, D. Cheng et al., Superstructured macroporous carbon rods composed of defective graphitic nanosheets for efficient oxygen reduction reaction. Adv. Sci. 8, e2100120 (2021). https://doi.org/10.1002/advs.202100120
Y. Chen, B. Xi, M. Huang, L. Shi, S. Huang et al., Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage. Adv. Mater. 34, e2108621 (2022). https://doi.org/10.1002/adma.202108621
Y.R. Pei, H.Y. Zhou, M. Zhao, J.C. Li, X. Ge et al., High-efficiency sodium storage of Co0.85Se/WSe2 encapsulated in N-doped carbon polyhedron via vacancy and heterojunction engineering. Carbon Energy 6, 374 (2024). https://doi.org/10.1002/cey2.374
X. Yin, Z. Lu, J. Wang, X. Feng, S. Roy et al., Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 34, e2109282 (2022). https://doi.org/10.1002/adma.202109282
H. Long, J. Wang, S. Zhao, B. Zou, L. Yan et al., Enable the domino-like structural recovering in bismuth anode to achieve fast and durable Na/K storages. Angew. Chem. Int. Ed. 63, e202406513 (2024). https://doi.org/10.1002/anie.202406513
Q. Li, H. Li, Q. Xia, Z. Hu, Y. Zhu et al., Extra storage capacity in transition metal oxide lithium-ion batteries revealed by in situ magnetometry. Nat. Mater. 20, 76–83 (2021). https://doi.org/10.1038/s41563-020-0756-y
Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li et al., Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1, 107–131 (2012). https://doi.org/10.1016/j.nanoen.2011.11.001
L. Jing, K. Zhuo, L. Sun, N. Zhang, X. Su et al., The mass-balancing between positive and negative electrodes for optimizing energy density of supercapacitors. J. Am. Chem. Soc. 146, 14369–14385 (2024). https://doi.org/10.1021/jacs.4c00486
H. Zhang, S. Zhang, B. Guo, L.-J. Yu, L. Ma et al., MoS2 hollow multishelled nanospheres doped Fe single atoms capable of fast phase transformation for fast-charging Na-ion batteries. Angew. Chem. Int. Ed. 63, e202400285 (2024). https://doi.org/10.1002/anie.202400285
H. Zhang, L. Wang, L. Ma, Y. Liu, B. Hou et al., Surface crystal modification of Na3V2(PO4)3 to cast intermediate Na2V2(PO4)3 phase toward high-rate sodium storage. Adv. Sci. 11, e2306168 (2024). https://doi.org/10.1002/advs.202306168
X. Yi, X. Li, J. Zhong, S. Wang, Z. Wang et al., Unraveling the mechanism of different kinetics performance between ether and carbonate ester electrolytes in hard carbon electrode. Adv. Funct. Mater. 32, 2209523 (2022). https://doi.org/10.1002/adfm.202209523
M. Yousaf, Y. Wang, Y. Chen, Z. Wang, A. Firdous et al., A 3D trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage. Adv. Energy Mater. 9, 1900567 (2022). https://doi.org/10.1002/aenm.201900567
J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6, 303–313 (2022). https://doi.org/10.1038/s41560-021-00783-z
Y.-S. Hu, Y. Lu, The mystery of electrolyte concentration: from superhigh to ultralow. ACS Energy Lett. 5, 3633–3636 (2020). https://doi.org/10.1021/acsenergylett.0c02234
W. Bai, H. Wang, D.H. Min, J. Miao, B. Li et al., 3D-printed hierarchically microgrid frameworks of sodiophilic Co3O4@C/rGO nanosheets for ultralong cyclic sodium metal batteries. Adv. Sci. 11, e2404419 (2024). https://doi.org/10.1002/advs.202404419
S. Weng, X. Zhang, G. Yang, S. Zhang, B. Ma et al., Temperature-dependent interphase formation and Li+ transport in lithium metal batteries. Nat. Commun. 14, 4474 (2023). https://doi.org/10.1038/s41467-023-40221-0
M. Liu, F. Wu, Y. Gong, Y. Li, Y. Li et al., Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries. Adv. Mater. 35, e2300002 (2023). https://doi.org/10.1002/adma.202300002
G. Yan, K. Reeves, D. Foix, Z. Li, C. Cometto et al., A new electrolyte formulation for securing high temperature cycling and storage performances of Na-ion batteries. Adv. Energy Mater. 9, 1901431 (2019). https://doi.org/10.1002/aenm.201901431
P.M.L. Le, T.D. Vo, H. Pan, Y. Jin, Y. He et al., Excellent cycling stability of sodium anode enabled by a stable solid electrolyte interphase formed in ether-based electrolytes. Adv. Funct. Mater. 30, 2001151 (2020). https://doi.org/10.1002/adfm.202001151
H.S. Hirsh, B. Sayahpour, A. Shen, W. Li, B. Lu et al., Role of electrolyte in stabilizing hard carbon as an anode for rechargeable sodium-ion batteries with long cycle life. Energy Storage Mater. 42, 78–87 (2021). https://doi.org/10.1016/j.ensm.2021.07.021
L. Zhou, Z. Cao, J. Zhang, Q. Sun, Y. Wu et al., Engineering sodium-ion solvation structure to stabilize sodium anodes: universal strategy for fast-charging and safer sodium-ion batteries. Nano Lett. 20, 3247–3254 (2020). https://doi.org/10.1021/acs.nanolett.9b05355
J. Zhang, D.-W. Wang, W. Lv, S. Zhang, Q. Liang et al., Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ. Sci. 10, 370–376 (2017). https://doi.org/10.1039/C6EE03367A
E. Wang, J. Wan, Y.-J. Guo, Q. Zhang, W.-H. He et al., Mitigating electron leakage of solid electrolyte interface for stable sodium-ion batteries. Angew. Chem. Int. Ed. 62, e202216354 (2023). https://doi.org/10.1002/anie.202216354
Q. Zhao, S. Stalin, L.A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 5, 1119–1142 (2021). https://doi.org/10.1016/j.joule.2021.03.024
H. Sun, G. Xin, T. Hu, M. Yu, D. Shao et al., High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 5, 4526 (2014). https://doi.org/10.1038/ncomms5526
H. Kim, W. Choi, J. Yoon, J.H. Um, W. Lee et al., Exploring anomalous charge storage in anode materials for next-generation Li rechargeable batteries. Chem. Rev. 120, 6934–6976 (2020). https://doi.org/10.1021/acs.chemrev.9b00618
J. Cao, D. Zhang, X. Zhang, Z. Zeng, J. Qin et al., Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy Environ. Sci. 15, 499–528 (2022). https://doi.org/10.1039/D1EE03377H
R. Dong, L. Zheng, Y. Bai, Q. Ni, Y. Li et al., Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 33, e2008810 (2021). https://doi.org/10.1002/adma.202008810
Y. Wan, K. Song, W. Chen, C. Qin, X. Zhang et al., Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage. Angew. Chem. Int. Ed. 60, 11481–11486 (2021). https://doi.org/10.1002/anie.202102368