Temperature-Arousing Self-Powered Fire Warning E-Textile Based on p–n Segment Coaxial Aerogel Fibers for Active Fire Protection in Firefighting Clothing
Corresponding Author: Zhicai Yu
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 226
Abstract
Firefighting protective clothing is a crucial protective equipment for firefighters to minimize skin burn and ensure safety firefighting operation and rescue mission. A recent increasing concern is to develop self-powered fire warning materials that can be incorporated into the firefighting clothing to achieve active fire protection for firefighters before the protective clothing catches fire on fireground. However, it is still a challenge to facilely design and manufacture thermoelectric (TE) textile (TET)-based fire warning electronics with dynamic surface conformability and breathability. Here, we develop an alternate coaxial wet-spinning strategy to continuously produce alternating p/n-type TE aerogel fibers involving n-type Ti3C2Tx MXene and p-type MXene/SWCNT-COOH as core materials, and tough aramid nanofiber as protective shell, which simultaneously ensure the flexibility and high-efficiency TE power generation. With such alternating p/n-type TE fibers, TET-based self-powered fire warning sensors with high mechanical stability and wearability are successfully fabricated through stitching the alternating p–n segment TE fibers into aramid fabric. The results indicate that TET-based fire warning electronics containing 50 p–n pairs produce the open-circuit voltage of 7.5 mV with a power density of 119.79 nW cm−2 at a temperature difference of 300 °C. The output voltage signal is then calculated as corresponding surface temperature of firefighting clothing based on a linear relationship between TE voltage and temperature. The fire alarm response time and flame-retardant properties are further displayed. Such self-powered fire warning electronics are true textiles that offer breathability and compatibility with body movement, demonstrating their potential application in firefighting clothing.
Highlights:
1 The p–n segment thermoelectric aerogel fiber was fabricated through an alternating coaxial wet-spinning strategy.
2 Resultant alternating p–n segment thermoelectric fiber was electrically connected in series (two p–n pairs with a length of 3 cm) with an outstanding electrical conductivity of 23.76 S m−1.
3 Thermoelectric textile-based self-powered fire warning electronics exhibited sensitivity (trigger time within 1.43 s) and repeatable temperature sensing performance for firefighting clothing.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.-F. Cao, B. Yu, Z.-Y. Chen, Y.-X. Qu, Y.-T. Li et al., Fire Intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14, 92 (2022). https://doi.org/10.1007/s40820-022-00837-1
- H. Chen, J.Y. Zhou, S. Liu, S. Wang, X.L. Gong, Flame-retardant triboelectric generator with stable thermal-mechanical-electrical coupling performance for fire Bluetooth alarm system. Nano Energy 102, 107634 (2022). https://doi.org/10.1016/j.nanoen.2022.107634
- F. Khan, S.C. Wang, Z.W. Ma, A. Ahmed, P.A. Song et al., A durable, flexible, large-area, flame-retardant, early fire warning sensor with built-in patterned electrodes. Small Methods 5, 2001040 (2021). https://doi.org/10.1002/smtd.202001040
- X. He, Y.T. Feng, F.L. Xu, F.-F. Chen, Y. Yu, Smart fire alarm systems for rapid early fire warning: advances and challenges. Chem. Eng. J. 450, 137927 (2022). https://doi.org/10.1016/j.cej.2022.137927
- C.C. Jiang, X.J. Lai, Z.Z. Wu, H.Q. Li, X.R. Zeng et al., A high-thermopower ionic hydrogel for intelligent fire protection. J. Mater. Chem. A 10, 21368–21378 (2022). https://doi.org/10.1039/d2ta05737a
- C.C. Jiang, J.Y. Chen, X.J. Lai, H.Q. Li, X.R. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022). https://doi.org/10.1016/j.cej.2022.134630
- Y.S. Wang, J.R. Liu, Y.H. Zhao, Y. Qin, Z.Y. Zhu et al., Temperature-triggered fire warning PEG@wood powder/carbon nanotube/calcium alginate composite aerogel and the application for firefighting clothing. Compos. B Eng. 247, 110348 (2022). https://doi.org/10.1016/j.compositesb.2022.110348
- S. Mandal, G.W. Song, I.B. Grover, Modeling of hot water and steam protective performance of fabrics used in Firefighters’ clothing. Fire Mater. 46, 463–475 (2022). https://doi.org/10.1002/fam.2982
- Y. Su, J. Yang, R. Li, G.W. Song, J. Li, Effect of compression on thermal protection of firefighting protective clothing under flame exposure. Fire Mater. 43, 802–810 (2019). https://doi.org/10.1002/fam.2739
- H.L. He, Y. Qin, J.R. Liu, Y.S. Wang, J.F. Wang et al., A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 460, 141661 (2023). https://doi.org/10.1016/j.cej.2023.141661
- L. Liu, J.B. Feng, Y.J. Xue, V. Chevali, Y.B. Zhang et al., 2D MXenes for fire retardancy and fire-warning applications: promises and prospects. Adv. Funct. Mater. 33, 2212124 (2023). https://doi.org/10.1002/adfm.202212124
- G.Y. Zhang, L.H. Lu, C.L. Shi, X.D. Qian, The study of coupling effects of humidity-heat on the protection performance of protective clothing for fire fighting. Fire Mater. 44, 923–934 (2022). https://doi.org/10.1002/fam.2895
- H.U. Ohalele, M. Fulton, D.A. Torvi, S.D. Noble, J.C. Batcheller, Effects of high heat flux exposures on tensile strength of firefighters’ protective clothing. Fire Mater. 46(4), 719–731 (2022). https://doi.org/10.1002/fam.3018
- X.M. Zhang, J. Hu, Q.X. Yang, H.M. Yang, H.K. Yang et al., Harvesting multidirectional breeze energy and self-powered intelligent fire detection systems based on triboelectric nanogenerator and fluid-dynamic modeling. Adv. Funct. Mater. 31, 2106527 (2021). https://doi.org/10.1002/adfm.202106527
- Y.Y. Mao, D. Wang, J.L. Hu, S.H. Fu, Mechanically flexible and flame retardant polyphenol-bridged casein/MXene composite for fire proofing repeatable contact/non-contact fire monitoring. Chem. Eng. J. 454, 140161 (2023). https://doi.org/10.1016/j.cej.2022.140161
- T.P. Ding, Y. Zhou, X.-Q. Wang, C. Zhang, T.T. Li et al., All-soft and stretchable thermogalvanic gel fabric for antideformity body heat harvesting wearable. Adv. Energy Mater. 11, 2102219 (2021). https://doi.org/10.1002/aenm.202102219
- H.L. He, J.R. Liu, Y.S. Wang, Y.H. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
- X.L. Li, J.S.D.R. Saez, X. Ao, A. Yusuf, D.-Y. Wang, Highly-sensitive fire alarm system based on cellulose paper with low-temperature response and wireless signal conversion. Chem. Eng. J. 431, 134108 (2022). https://doi.org/10.1016/j.cej.2021.134108
- B.L. Wang, X.J. Lai, H.Q. Li, C.C. Jiang, J.F. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 13, 23020–23029 (2021). https://doi.org/10.1021/acsami.1c05222
- M. Mao, H. Xu, K.-Y. Guo, J.-W. Zhang, Q.-Q. Xia et al., Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Compos. A Appl. Sci. Manuf. 140, 106191 (2021). https://doi.org/10.1016/j.compositesa.2020.106191
- L.-Y. Lv, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao et al., Smart fire-warning materials and sensors: design principle, performances, and applications. Mater. Sci. Eng. R Rep. 150, 100690 (2022). https://doi.org/10.1016/j.mser.2022.100690
- M.J. Zhang, M.L. Wang, M.X. Zhang, C.G. Yang, Y.N. Li et al., Flexible and thermally induced switchable fire alarm fabric based on layer-by-layer self-assembled silver sheet/Fe3O4 nanowire composite. ACS Appl. Mater. Interfaces 11, 47456–47467 (2019). https://doi.org/10.1021/acsami.9b18858
- J.C. Dong, Y.D. Peng, Y.T. Zhang, Y.J. Chai, J.Y. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 (2022). https://doi.org/10.1007/s40820-023-01156-9
- J.C. Dong, Y.D. Peng, X.L. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32, 2209762 (2022). https://doi.org/10.1002/adfm.202209762
- X.L. Li, S.Z. Lyu, J.C. Jia, N.W. Gao, X. Wu et al., A Bio-inspired temperature-arousing battery with giant power for fire alarming. Adv. Funct. Mater (2023). https://doi.org/10.1002/adfm.202300403
- Y.D. Peng, J.C. Dong, J.H. Sun, Y.H. Mao, Y.X. Zhang et al., Multimodal health monitoring via a hierarchical and ultrastretchable all-in-one electronic textile. Nano Energy 110, 108374 (2023). https://doi.org/10.1016/j.nanoen.2023.108374
- J.C. Dong, X.W. Tang, Y.D. Peng, C.H. Fan, L. Li et al., Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 108, 108194 (2023). https://doi.org/10.1016/j.nanoen.2023.108194
- Y.Y. Zheng, X. Han, J.W. Yang, Y.Y. Jing, X.Y. Chen et al., Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy Environ. Sci. 15, 2374–2385 (2022). https://doi.org/10.1039/D1EE03633E
- T.T. Sun, B.Y. Zhou, Q. Zheng, L.J. Wang, W. Jiang et al., Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 11, 572 (2020). https://doi.org/10.1038/s41467-020-14399-6
- X. Wu, N.W. Gao, X.T. Zheng, X.L. Tao, Y.L. He et al., Self-powered and green ionic-type thermoelectric paper chips for early fire alarming. ACS Appl. Mater. Interfaces 12, 27691–27699 (2020). https://doi.org/10.1021/acsami.0c04798
- H.L. Xie, X.J. Lai, H.Q. Li, J.F. Gao, X.R. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interface Sci. 602, 756–766 (2021). https://doi.org/10.1016/j.jcis.2021.06.054
- B. Wu, W. Wei, Y. Guo, W.H. Yip, B.K. Tay et al., Stretchable thermoelectric generators with enhanced output by infrared reflection for wearable application. Chem. Eng. J. 453, 139749 (2023). https://doi.org/10.1016/j.cej.2022.139749
- M. Zhou, S.J. Tan, J.W. Wang, Y. Wu, L.L. Liang et al., “Three-in-One” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
- B. Wu, Y. Guo, C.Y. Hou, Q.H. Zhang, Y.G. Li et al., High-performance flexible thermoelectric devices based on all-inorganic hybrid films for harvesting low-grade heat. Adv. Funct. Mater. 29, 1900304 (2019). https://doi.org/10.1002/adfm.201900304
- X.Y. He, J.T. Gu, Y.N. Hao, M.R. Zheng, L.M. Wang et al., Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 450, 137937 (2022). https://doi.org/10.1016/j.cej.2022.137937
- Y.J. He, S.W. Li, R. Chen, X. Liu, G.O. Odunmbaku et al., Ion-electron coupling enables ionic thermoelectric material with new operation mode and high energy density. Nano-Micro Lett. 15, 101 (2023). https://doi.org/10.1007/s40820-023-01077-7
- H.Q. Liu, F. Zhou, X.Y. Shi, K.Y. Sun, Y. Kou et al., Flexible, Highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
- Y.F. Liu, P.P. Liu, Q.L. Jiang, F.X. Jiang, J. Liu et al., Organic/inorganic hybrid for flexible thermoelectric fibers. Chem. Eng. J. 405, 126510 (2021). https://doi.org/10.1016/j.cej.2020.126510
- D.W. Qu, X. Li, H.F. Wang, G.M. Chen, Assembly strategy and performance evaluation of flexible thermoelectric devices. Adv. Sci. 6, 1900584 (2019). https://doi.org/10.1002/advs.201900584
- D. Jang, K.T. Park, S.-S. Lee, H. Kim, Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity. Nano Energy 97, 107143 (2022). https://doi.org/10.1016/j.nanoen.2022.107143
- T.P. Ding, K.H. Chan, Y. Zhou, X.-Q. Wang, Y. Cheng et al., Scalable thermoelectric fibers for multifunctional textile-electronics. Nat. Commun. 11, 6006 (2020). https://doi.org/10.1038/s41467-020-19867-7
- Y.N. Shen, X. Han, P.Y. Zhang, X.Y. Chen, X. Yang et al., Review on fiber-based thermoelectrics: materials, devices, and textiles. Adv. Fiber Mater. (2023). https://doi.org/10.1007/s42765-023-00267-7
- X.N. Yang, K. Zhang, Direct wet-spun single-walled carbon nanotubes-based p−n segmented filaments toward wearable thermoelectric textiles. ACS Appl. Mater. Interfaces 14, 44704–44712 (2022). https://doi.org/10.1021/acsami.2c12798
- L.X. Liu, W. Chen, H.-B. Zhang, L.X. Ye, Z.G. Wang et al., Super-tough and environmentally stable aramid nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
- X.Y. Yue, Y.Y. Jia, X.Z. Wang, K.K. Zhou, W. Zhai et al., Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Compos. Sci. Technol. 189, 108038 (2020). https://doi.org/10.1016/j.compscitech.2020.108038
- J.Z. Huang, J.Y. Li, X.X. Xu, L. Hua, Z.Q. Lu, In situ loading of polypyrrole onto aramid nanofiber and carbon nanotube aerogel fibers as physiology and motion sensors. ACS Nano 16(5), 8161–8171 (2022). https://doi.org/10.1021/acsnano.2c01540
- Y.H. Hu, G. Yang, J.T. Zhou, H.Y. Li, L. Shi et al., Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano 16(4), 5984–5993 (2022). https://doi.org/10.1021/acsnano.1c11301
- Y.Z. Li, X.T. Zhang, Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202107767
- G. Yin, Y. Wang, W. Wang, Z.J. Qu, D. Yu, A flexible electromagnetic interference shielding fabric prepared by construction of PANI/MXene conductive network via layer-by-layer assembly. Adv. Mater. Interfaces 8, 2001893 (2021). https://doi.org/10.1002/admi.202001893
- B.C. Cheng, P.Y. Wu, Scalable fabrication of Kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15(5), 8676–8685 (2021). https://doi.org/10.1021/acsnano.1c00749
- X.P. Liang, H.F. Li, J.X. Dou, Q. Wang, W.Y. He et al., Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 32, 2000165 (2020). https://doi.org/10.1002/adma.202000165
- Y. Du, X.H. Zhang, J. Wang, Z.W. Liu, K. Zhang et al., Reaction-spun transparent silica aerogel fibers. ACS Nano 14, 11919–11928 (2020). https://doi.org/10.1021/acsnano.0c05016
- Z.Q. Wang, H.W. Yang, Y. Li, X.H. Zheng, Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles. ACS Appl. Mater. Interfaces 12, 15726–15736 (2020). https://doi.org/10.1021/acsami.0c01330
- W.Y. Wei, Y.P.Q. Yi, J. Song, X.G. Chen, J.H. Li et al., Tunable graphene/nitrocellulose temperature alarm sensors. ACS Appl. Mater. Interfaces 14, 13790–13800 (2022). https://doi.org/10.1021/acsami.2c02340
- L. Zhang, Y.B. Huang, H.R. Dong, R.Z. Xu, S.H. Jiang, Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor. Compos. B Eng. 223, 109149 (2021). https://doi.org/10.1016/j.compositesb.2021.109149
- L. Chen, H.-B. Zhao, Y.-P. Ni, T. Fu, W.-S. Wu et al., 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking. J. Mater. Chem. A 7, 17037–17045 (2019). https://doi.org/10.1039/C9TA04187G
References
C.-F. Cao, B. Yu, Z.-Y. Chen, Y.-X. Qu, Y.-T. Li et al., Fire Intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning. Nano-Micro Lett. 14, 92 (2022). https://doi.org/10.1007/s40820-022-00837-1
H. Chen, J.Y. Zhou, S. Liu, S. Wang, X.L. Gong, Flame-retardant triboelectric generator with stable thermal-mechanical-electrical coupling performance for fire Bluetooth alarm system. Nano Energy 102, 107634 (2022). https://doi.org/10.1016/j.nanoen.2022.107634
F. Khan, S.C. Wang, Z.W. Ma, A. Ahmed, P.A. Song et al., A durable, flexible, large-area, flame-retardant, early fire warning sensor with built-in patterned electrodes. Small Methods 5, 2001040 (2021). https://doi.org/10.1002/smtd.202001040
X. He, Y.T. Feng, F.L. Xu, F.-F. Chen, Y. Yu, Smart fire alarm systems for rapid early fire warning: advances and challenges. Chem. Eng. J. 450, 137927 (2022). https://doi.org/10.1016/j.cej.2022.137927
C.C. Jiang, X.J. Lai, Z.Z. Wu, H.Q. Li, X.R. Zeng et al., A high-thermopower ionic hydrogel for intelligent fire protection. J. Mater. Chem. A 10, 21368–21378 (2022). https://doi.org/10.1039/d2ta05737a
C.C. Jiang, J.Y. Chen, X.J. Lai, H.Q. Li, X.R. Zeng et al., Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem. Eng. J. 434, 134630 (2022). https://doi.org/10.1016/j.cej.2022.134630
Y.S. Wang, J.R. Liu, Y.H. Zhao, Y. Qin, Z.Y. Zhu et al., Temperature-triggered fire warning PEG@wood powder/carbon nanotube/calcium alginate composite aerogel and the application for firefighting clothing. Compos. B Eng. 247, 110348 (2022). https://doi.org/10.1016/j.compositesb.2022.110348
S. Mandal, G.W. Song, I.B. Grover, Modeling of hot water and steam protective performance of fabrics used in Firefighters’ clothing. Fire Mater. 46, 463–475 (2022). https://doi.org/10.1002/fam.2982
Y. Su, J. Yang, R. Li, G.W. Song, J. Li, Effect of compression on thermal protection of firefighting protective clothing under flame exposure. Fire Mater. 43, 802–810 (2019). https://doi.org/10.1002/fam.2739
H.L. He, Y. Qin, J.R. Liu, Y.S. Wang, J.F. Wang et al., A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 460, 141661 (2023). https://doi.org/10.1016/j.cej.2023.141661
L. Liu, J.B. Feng, Y.J. Xue, V. Chevali, Y.B. Zhang et al., 2D MXenes for fire retardancy and fire-warning applications: promises and prospects. Adv. Funct. Mater. 33, 2212124 (2023). https://doi.org/10.1002/adfm.202212124
G.Y. Zhang, L.H. Lu, C.L. Shi, X.D. Qian, The study of coupling effects of humidity-heat on the protection performance of protective clothing for fire fighting. Fire Mater. 44, 923–934 (2022). https://doi.org/10.1002/fam.2895
H.U. Ohalele, M. Fulton, D.A. Torvi, S.D. Noble, J.C. Batcheller, Effects of high heat flux exposures on tensile strength of firefighters’ protective clothing. Fire Mater. 46(4), 719–731 (2022). https://doi.org/10.1002/fam.3018
X.M. Zhang, J. Hu, Q.X. Yang, H.M. Yang, H.K. Yang et al., Harvesting multidirectional breeze energy and self-powered intelligent fire detection systems based on triboelectric nanogenerator and fluid-dynamic modeling. Adv. Funct. Mater. 31, 2106527 (2021). https://doi.org/10.1002/adfm.202106527
Y.Y. Mao, D. Wang, J.L. Hu, S.H. Fu, Mechanically flexible and flame retardant polyphenol-bridged casein/MXene composite for fire proofing repeatable contact/non-contact fire monitoring. Chem. Eng. J. 454, 140161 (2023). https://doi.org/10.1016/j.cej.2022.140161
T.P. Ding, Y. Zhou, X.-Q. Wang, C. Zhang, T.T. Li et al., All-soft and stretchable thermogalvanic gel fabric for antideformity body heat harvesting wearable. Adv. Energy Mater. 11, 2102219 (2021). https://doi.org/10.1002/aenm.202102219
H.L. He, J.R. Liu, Y.S. Wang, Y.H. Zhao, Y. Qin et al., An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing. ACS Nano 16(2), 2953–2967 (2022). https://doi.org/10.1021/acsnano.1c10144
X.L. Li, J.S.D.R. Saez, X. Ao, A. Yusuf, D.-Y. Wang, Highly-sensitive fire alarm system based on cellulose paper with low-temperature response and wireless signal conversion. Chem. Eng. J. 431, 134108 (2022). https://doi.org/10.1016/j.cej.2021.134108
B.L. Wang, X.J. Lai, H.Q. Li, C.C. Jiang, J.F. Gao et al., Multifunctional MXene/chitosan-coated cotton fabric for intelligent fire protection. ACS Appl. Mater. Interfaces 13, 23020–23029 (2021). https://doi.org/10.1021/acsami.1c05222
M. Mao, H. Xu, K.-Y. Guo, J.-W. Zhang, Q.-Q. Xia et al., Mechanically flexible, super-hydrophobic and flame-retardant hybrid nano-silica/graphene oxide wide ribbon decorated sponges for efficient oil/water separation and fire warning response. Compos. A Appl. Sci. Manuf. 140, 106191 (2021). https://doi.org/10.1016/j.compositesa.2020.106191
L.-Y. Lv, C.-F. Cao, Y.-X. Qu, G.-D. Zhang, L. Zhao et al., Smart fire-warning materials and sensors: design principle, performances, and applications. Mater. Sci. Eng. R Rep. 150, 100690 (2022). https://doi.org/10.1016/j.mser.2022.100690
M.J. Zhang, M.L. Wang, M.X. Zhang, C.G. Yang, Y.N. Li et al., Flexible and thermally induced switchable fire alarm fabric based on layer-by-layer self-assembled silver sheet/Fe3O4 nanowire composite. ACS Appl. Mater. Interfaces 11, 47456–47467 (2019). https://doi.org/10.1021/acsami.9b18858
J.C. Dong, Y.D. Peng, Y.T. Zhang, Y.J. Chai, J.Y. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 (2022). https://doi.org/10.1007/s40820-023-01156-9
J.C. Dong, Y.D. Peng, X.L. Nie, L. Li, C. Zhang et al., Hierarchically designed super-elastic metafabric for thermal-wet comfortable and antibacterial epidermal electrode. Adv. Funct. Mater. 32, 2209762 (2022). https://doi.org/10.1002/adfm.202209762
X.L. Li, S.Z. Lyu, J.C. Jia, N.W. Gao, X. Wu et al., A Bio-inspired temperature-arousing battery with giant power for fire alarming. Adv. Funct. Mater (2023). https://doi.org/10.1002/adfm.202300403
Y.D. Peng, J.C. Dong, J.H. Sun, Y.H. Mao, Y.X. Zhang et al., Multimodal health monitoring via a hierarchical and ultrastretchable all-in-one electronic textile. Nano Energy 110, 108374 (2023). https://doi.org/10.1016/j.nanoen.2023.108374
J.C. Dong, X.W. Tang, Y.D. Peng, C.H. Fan, L. Li et al., Highly permeable and ultrastretchable E-textiles with EGaIn-superlyophilicity for on-skin health monitoring, joule heating, and electromagnetic shielding. Nano Energy 108, 108194 (2023). https://doi.org/10.1016/j.nanoen.2023.108194
Y.Y. Zheng, X. Han, J.W. Yang, Y.Y. Jing, X.Y. Chen et al., Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy Environ. Sci. 15, 2374–2385 (2022). https://doi.org/10.1039/D1EE03633E
T.T. Sun, B.Y. Zhou, Q. Zheng, L.J. Wang, W. Jiang et al., Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 11, 572 (2020). https://doi.org/10.1038/s41467-020-14399-6
X. Wu, N.W. Gao, X.T. Zheng, X.L. Tao, Y.L. He et al., Self-powered and green ionic-type thermoelectric paper chips for early fire alarming. ACS Appl. Mater. Interfaces 12, 27691–27699 (2020). https://doi.org/10.1021/acsami.0c04798
H.L. Xie, X.J. Lai, H.Q. Li, J.F. Gao, X.R. Zeng, Skin-inspired thermoelectric nanocoating for temperature sensing and fire safety. J. Colloid Interface Sci. 602, 756–766 (2021). https://doi.org/10.1016/j.jcis.2021.06.054
B. Wu, W. Wei, Y. Guo, W.H. Yip, B.K. Tay et al., Stretchable thermoelectric generators with enhanced output by infrared reflection for wearable application. Chem. Eng. J. 453, 139749 (2023). https://doi.org/10.1016/j.cej.2022.139749
M. Zhou, S.J. Tan, J.W. Wang, Y. Wu, L.L. Liang et al., “Three-in-One” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
B. Wu, Y. Guo, C.Y. Hou, Q.H. Zhang, Y.G. Li et al., High-performance flexible thermoelectric devices based on all-inorganic hybrid films for harvesting low-grade heat. Adv. Funct. Mater. 29, 1900304 (2019). https://doi.org/10.1002/adfm.201900304
X.Y. He, J.T. Gu, Y.N. Hao, M.R. Zheng, L.M. Wang et al., Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chem. Eng. J. 450, 137937 (2022). https://doi.org/10.1016/j.cej.2022.137937
Y.J. He, S.W. Li, R. Chen, X. Liu, G.O. Odunmbaku et al., Ion-electron coupling enables ionic thermoelectric material with new operation mode and high energy density. Nano-Micro Lett. 15, 101 (2023). https://doi.org/10.1007/s40820-023-01077-7
H.Q. Liu, F. Zhou, X.Y. Shi, K.Y. Sun, Y. Kou et al., Flexible, Highly thermally conductive and electrically insulating phase change materials for advanced thermal management of 5G base stations and thermoelectric generators. Nano-Micro Lett. 15, 31 (2023). https://doi.org/10.1007/s40820-022-01003-3
Y.F. Liu, P.P. Liu, Q.L. Jiang, F.X. Jiang, J. Liu et al., Organic/inorganic hybrid for flexible thermoelectric fibers. Chem. Eng. J. 405, 126510 (2021). https://doi.org/10.1016/j.cej.2020.126510
D.W. Qu, X. Li, H.F. Wang, G.M. Chen, Assembly strategy and performance evaluation of flexible thermoelectric devices. Adv. Sci. 6, 1900584 (2019). https://doi.org/10.1002/advs.201900584
D. Jang, K.T. Park, S.-S. Lee, H. Kim, Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity. Nano Energy 97, 107143 (2022). https://doi.org/10.1016/j.nanoen.2022.107143
T.P. Ding, K.H. Chan, Y. Zhou, X.-Q. Wang, Y. Cheng et al., Scalable thermoelectric fibers for multifunctional textile-electronics. Nat. Commun. 11, 6006 (2020). https://doi.org/10.1038/s41467-020-19867-7
Y.N. Shen, X. Han, P.Y. Zhang, X.Y. Chen, X. Yang et al., Review on fiber-based thermoelectrics: materials, devices, and textiles. Adv. Fiber Mater. (2023). https://doi.org/10.1007/s42765-023-00267-7
X.N. Yang, K. Zhang, Direct wet-spun single-walled carbon nanotubes-based p−n segmented filaments toward wearable thermoelectric textiles. ACS Appl. Mater. Interfaces 14, 44704–44712 (2022). https://doi.org/10.1021/acsami.2c12798
L.X. Liu, W. Chen, H.-B. Zhang, L.X. Ye, Z.G. Wang et al., Super-tough and environmentally stable aramid nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
X.Y. Yue, Y.Y. Jia, X.Z. Wang, K.K. Zhou, W. Zhai et al., Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Compos. Sci. Technol. 189, 108038 (2020). https://doi.org/10.1016/j.compscitech.2020.108038
J.Z. Huang, J.Y. Li, X.X. Xu, L. Hua, Z.Q. Lu, In situ loading of polypyrrole onto aramid nanofiber and carbon nanotube aerogel fibers as physiology and motion sensors. ACS Nano 16(5), 8161–8171 (2022). https://doi.org/10.1021/acsnano.2c01540
Y.H. Hu, G. Yang, J.T. Zhou, H.Y. Li, L. Shi et al., Proton donor-regulated mechanically robust aramid nanofiber aerogel membranes for high-temperature thermal insulation. ACS Nano 16(4), 5984–5993 (2022). https://doi.org/10.1021/acsnano.1c11301
Y.Z. Li, X.T. Zhang, Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202107767
G. Yin, Y. Wang, W. Wang, Z.J. Qu, D. Yu, A flexible electromagnetic interference shielding fabric prepared by construction of PANI/MXene conductive network via layer-by-layer assembly. Adv. Mater. Interfaces 8, 2001893 (2021). https://doi.org/10.1002/admi.202001893
B.C. Cheng, P.Y. Wu, Scalable fabrication of Kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15(5), 8676–8685 (2021). https://doi.org/10.1021/acsnano.1c00749
X.P. Liang, H.F. Li, J.X. Dou, Q. Wang, W.Y. He et al., Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 32, 2000165 (2020). https://doi.org/10.1002/adma.202000165
Y. Du, X.H. Zhang, J. Wang, Z.W. Liu, K. Zhang et al., Reaction-spun transparent silica aerogel fibers. ACS Nano 14, 11919–11928 (2020). https://doi.org/10.1021/acsnano.0c05016
Z.Q. Wang, H.W. Yang, Y. Li, X.H. Zheng, Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles. ACS Appl. Mater. Interfaces 12, 15726–15736 (2020). https://doi.org/10.1021/acsami.0c01330
W.Y. Wei, Y.P.Q. Yi, J. Song, X.G. Chen, J.H. Li et al., Tunable graphene/nitrocellulose temperature alarm sensors. ACS Appl. Mater. Interfaces 14, 13790–13800 (2022). https://doi.org/10.1021/acsami.2c02340
L. Zhang, Y.B. Huang, H.R. Dong, R.Z. Xu, S.H. Jiang, Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor. Compos. B Eng. 223, 109149 (2021). https://doi.org/10.1016/j.compositesb.2021.109149
L. Chen, H.-B. Zhao, Y.-P. Ni, T. Fu, W.-S. Wu et al., 3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking. J. Mater. Chem. A 7, 17037–17045 (2019). https://doi.org/10.1039/C9TA04187G