Unraveling Passivation Mechanism of Imidazolium-Based Ionic Liquids on Inorganic Perovskite to Achieve Near-Record-Efficiency CsPbI2Br Solar Cells
Corresponding Author: Shengzhong Liu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 7
Abstract
The application of ionic liquids in perovskite has attracted wide-spread attention for its astounding performance improvement of perovskite solar cells (PSCs). However, the detailed mechanisms behind the improvement remain mysterious. Herein, a series of imidazolium-based ionic liquids (IILs) with different cations and anions is systematically investigated to elucidate the passivation mechanism of IILs on inorganic perovskites. It is found that IILs display the following advantages: (1) They form ionic bonds with Cs+ and Pb2+ cations on the surface and at the grain boundaries of perovskite films, which could effectively heal/reduce the Cs+/I− vacancies and Pb-related defects; (2) They serve as a bridge between the perovskite and the hole-transport-layer for effective charge extraction and transfer; and (3) They increase the hydrophobicity of the perovskite surface to further improve the stability of the CsPbI2Br PSCs. The combination of the above effects results in suppressed non-radiative recombination loss in CsPbI2Br PSCs and an impressive power conversion efficiency of 17.02%. Additionally, the CsPbI2Br PSCs with IILs surface modification exhibited improved ambient and light illumination stability. Our results provide guidance for an in-depth understanding of the passivation mechanism of IILs in inorganic perovskites.
Highlights:
1 A series of 10 imidazolium-based ionic liquids (IILs) with different cations and anions have applied to unravel the passivation mechanism of the IILs on CsPbI2Br inorganic perovskites.
2 It is found that anions of IILs play a more important role in passivation of lead- and cesium-related defects in inorganic perovskite compared with imidazole cations because they can form strong ionic interactions (Pb-F, Cs-F).
3 A high-power conversion efficiency of 17.02% is obtained, which is among the highest values of CsPbI2Br-based perovskite solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Ho-Baillie, M. Zhang, C.F.J. Lau, F.J. Ma, S. Huang, Untapped potentials of inorganic metal halide perovskite solar cells. Joule 3(4), 938–955 (2019). https://doi.org/10.1016/j.joule.2019.02.002
- Q. Tai, K.C. Tang, F. Yan, Recent progress of inorganic perovskite solar cells. Energy Environ. Sci. 12(8), 2375–2405 (2019). https://doi.org/10.1039/c9ee01479a
- C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi et al., Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin–lead halide perovskite solar cells. Adv. Energy Mater. 9(3), 1803135 (2018). https://doi.org/10.1002/aenm.201803135
- Y. Wang, Y. Chen, T. Zhang, X. Wang, Y. Zhao, Chemically stable black phase CsPbI3 inorganic perovskites for high-efficiency photovoltaics. Adv. Mater. 32(45), 2001025 (2020). https://doi.org/10.1002/adma.202001025
- Y. Zheng, X. Yang, R. Su, P. Wu, Q. Gong et al., High-performance CsPbIxBr 3–x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation. Adv. Funct. Mater. 30(46), 2000457 (2020). https://doi.org/10.1002/adfm.202000457
- Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
- J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016). https://doi.org/10.1038/nenergy.2016.149
- D.H. Kim, J.B. Whitaker, Z. Li, M.F.A.M. Hest, K. Zhu, Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology. Joule 2(8), 1437–1451 (2018). https://doi.org/10.1016/j.joule.2018.05.011
- E. Aydin, M.D. Bastiani, S.D. Wolf, Defect and contact passivation for perovskite solar cells. Adv. Mater. 31(25), 1900428 (2019). https://doi.org/10.1002/adma.201900428
- F. Qian, S. Yuan, Y. Cai, Y. Han, H. Zhao et al., Novel surface passivation for stable FA0.85MA0.15PbI3 perovskite solar cells with 21.6% efficiency. Sol. RRL 3(7), 1900072 (2019). https://doi.org/10.1002/solr.201900072
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- Q. Jiang, Z. Ni, G. Xu, Y. Lin, P.N. Rudd et al., Interfacial molecular doping of metal halide perovskites for highly efficient solar cells. Adv. Mater. 32(31), 2001581 (2020). https://doi.org/10.1002/adma.202001581
- L. Meng, C. Sun, R. Wang, W. Huang, Z. Zhao et al., Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 140(49), 17255–17262 (2018). https://doi.org/10.1021/jacs.8b10520
- L. Zuo, H. Guo, D.W. Quilettes, S. Jariwala, N.D. Marco et al., Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3(8), 1700106 (2017). https://doi.org/10.1126/sciadv.1700106
- S. Wang, Z. Li, Y. Zhang, X. Liu, J. Han et al., Water-soluble triazolium ionic-liquid-induced surface self-assembly to enhance the stability and efficiency of perovskite solar cells. Adv. Funct. Mater. 29(15), 1900417 (2019). https://doi.org/10.1002/adfm.201900417
- H. Choi, X. Liu, H.I. Kim, D. Kim, T. Park et al., A facile surface passivation enables thermally stable and efficient planar perovskite solar cells using a novel IDTT-based small molecule additive. Adv. Energy Mater. 11(16), 2003829 (2021). https://doi.org/10.1002/aenm.202003829
- T. Niu, J. Lu, R. Munir, J. Li, D. Barrit et al., Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30(16), 1706576 (2018). https://doi.org/10.1002/adma.201706576
- M. Qin, J. Cao, T. Zhang, J. Mai, T.K. Lau et al., Fused-ring electron acceptor ITIC-Th: a novel stabilizer for halide perovskite precursor solution. Adv. Energy Mater. 8(18), 1703399 (2018). https://doi.org/10.1002/aenm.201703399
- T. Niu, L. Chao, W. Gao, C. Ran, L. Song et al., Ionic liquids-enabled efficient and stable perovskite photovoltaics: progress and challenges. ACS Energy Lett. 6(4), 1453–1479 (2021). https://doi.org/10.1021/acsenergylett.0c02696
- S. Wang, B. Yang, J. Han, Z. He, T. Li et al., Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy Environ. Sci. 13(12), 5068–5079 (2020). https://doi.org/10.1039/d0ee02043e
- D. Yang, R. Yang, X. Ren, X. Zhu, Z. Yang et al., Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv. Mater. 28(26), 5206–5213 (2016). https://doi.org/10.1002/adma.201600446
- W. Cai, Z. Zang, L. Ding, Ionic liquids in perovskite solar cells. J. Semicond. 42, 080201 (2021). https://doi.org/10.1088/1674-4926/42/8/080201
- P. Caprioglio, D.S. Cruz, S. Caicedo-Dávila, F. Zu, A.A. Sutanto et al., Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy Environ. Sci. 14(8), 4508–4522 (2021). https://doi.org/10.1039/D1EE00869B
- B. Yu, C. Zuo, J. Shi, Q. Meng, L. Ding, Defect engineering on all-inorganic perovskite solar cells for high efficiency. J. Semicond. 42, 050203 (2021). https://doi.org/10.1088/1674-4926/42/5/050203
- S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019). https://doi.org/10.1038/s41586-019-1357-2
- D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu et al., Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9(10), 3071–3078 (2016). https://doi.org/10.1039/c6ee02139e
- W. Zhang, Z. Ren, Y. Guo, X. He, X. Li, Improved the long-term air stability of ZnO-based perovskite solar cells prepared under ambient conditions via surface modification of the electron transport layer using an ionic liquid. Electrochim. Acta 268, 539–545 (2018). https://doi.org/10.1016/j.electacta.2018.02.103
- X. Zhou, M. Hu, C. Liu, L. Zhang, X. Zhong et al., Synergistic effects of multiple functional ionic liquid-treated PEDOT:PSS and less-ion-defects S-acetylthiocholine chloride-passivated perovskite surface enabling stable and hysteresis-free inverted perovskite solar cells with conversion efficiency over 20%. Nano Energy 63, 103866 (2019). https://doi.org/10.1016/j.nanoen.2019.103866
- N.K. Noel, S.N. Habisreutinger, B. Wenger, Y.H. Lin, F. Zhang et al., Elucidating the role of a tetrafluoroborate-based ionic liquid at the n-type oxide/perovskite interface. Adv. Energy Mater. 10(4), 1903231 (2019). https://doi.org/10.1002/aenm.201903231
- W. Zhang, X. Liu, B. He, Z. Gong, J. Zhu et al., Interface engineering of imidazolium ionic liquids toward efficient and stable CsPbBr 3 perovskite solar cells. ACS Appl. Mater. Interfaces 12(4), 4540–4548 (2020). https://doi.org/10.1021/acsami.9b20831
- X. Zhu, M. Du, J. Feng, H. Wang, Z. Xu et al., High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem. Int. Ed. 60(8), 4238–4244 (2021). https://doi.org/10.1002/anie.202010987
- C. Duan, J. Cui, M. Zhang, Y. Han, S. Yang et al., Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv. Energy Mater. 10(22), 2000691 (2020). https://doi.org/10.1002/aenm.202000691
- H. Zhao, Y. Han, Z. Xu, C. Duan, S. Yang et al., A novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V. Adv. Energy Mater. 9(40), 1902279 (2019). https://doi.org/10.1002/aenm.201902279
- Y.H. Lin, N. Sakai, P. Da, J. Wu, H.C. Sansom et al., A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369(6499), 96–102 (2020). https://doi.org/10.1126/science.aba1628
- S. Fu, X. Li, L. Wan, W. Zhang, W. Song et al., Effective surface treatment for high-performance inverted CsPbI2Br perovskite solar cells with efficiency of 15.92%. Nano-Micro Lett. 12, 170 (2020). https://doi.org/10.1007/s40820-020-00509-y
- W.Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang et al., Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat. Commun. 9, 1625 (2018). https://doi.org/10.1038/s41467-018-04028-8
- N.K. Noel, S.N. Habisreutinger, A. Pellaroque, F. Pulvirenti et al., Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. Energy Environ. Sci. 12(10), 3063–3073 (2019). https://doi.org/10.1039/c9ee01773a
- X. Guo, J. Su, Z. Lin, X. Wang, Q. Wang et al., Synergetic surface charge transfer doping and passivation toward high efficient and stable perovskite solar cells. iScience 24(4), 102276 (2021). https://doi.org/10.1016/j.isci.2021.102276
- J. Lu, X. Lin, X. Jiao, T. Gengenbach, A.D. Scully et al., Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy Environ. Sci. 11(7), 1880–1889 (2018). https://doi.org/10.1039/c8ee00754c
- D.G. Lee, D.H. Kim, J.M. Lee, B.J. Kim, J.Y. Kim et al., High efficiency perovskite solar cells exceeding 22% via a photo-assisted two-step sequential deposition. Adv. Funct. Mater. 31(9), 2006718 (2020). https://doi.org/10.1002/adfm.202006718
- F. Cai, J. Cai, L. Yang, W. Li, R.S. Gurney et al., Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells. Nano Energy 45, 28–36 (2018). https://doi.org/10.1016/j.nanoen.2017.12.028
- S. Yuan, Y. Cai, S. Yang, H. Zhao, F. Qian et al., Simultaneous cesium and acetate coalloying improves efficiency and stability of FA0.85MA0.15PbI3 perovskite solar cell with an efficiency of 21.95%. Sol. RRL 3(9), 1900220 (2019). https://doi.org/10.1002/solr.201900220
- C. Xu, Z. Zhang, S. Zhang, H. Si, S. Ma et al., Manipulation of perovskite crystallization kinetics via Lewis base additives. Adv. Funct. Mater. 31(13), 2009425 (2021). https://doi.org/10.1002/adfm.202009425
- H. Si, Z. Zhang, Q. Liao, G. Zhang, Y. Ou et al., A-site management for highly crystalline perovskites. Adv. Mater. 32(4), 1904702 (2020). https://doi.org/10.1002/adma.201904702
- M. Du, X. Zhu, L. Wang, H. Wang, J. Feng et al., High-pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efficiency. Adv. Mater. 32(47), 2004979 (2020). https://doi.org/10.1002/adma.202004979
- J. Tian, Q. Xue, X. Tang, Y. Chen, N. Li et al., Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv. Mater. 31(23), 1901152 (2019). https://doi.org/10.1002/adma.201901152
- D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
- Y. Han, H. Zhao, C. Duan, S. Yang, Z. Yang et al., Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv. Funct. Mater. 30(12), 1909972 (2020). https://doi.org/10.1002/adfm.201909972
- S. Yang, W. Liu, Y. Han, Z. Liu, W. Zhao et al., 2D Cs2PbI2Cl2 nanosheets for holistic passivation of inorganic CsPbI2Br perovskite solar cells for improved efficiency and stability. Adv. Energy Mater. 10(46), 2002882 (2020). https://doi.org/10.1002/aenm.202002882
- J. Cao, G. Tang, P. You, T. Wang, F. Zheng et al., Enhanced performance of planar perovskite solar cells induced by van der Waals epitaxial growth of mixed perovskite films on WS2 flakes. Adv. Funct. Mater. 30(38), 2002358 (2020). https://doi.org/10.1002/adfm.202002358
- S.M. Sze, (2008) Semiconductor Devices: Physics and Technology. John wiley & sons
- S. Xiong, Y. Dai, J. Yang, W. Xiao, D. Li et al., Surface charge-transfer doping for highly efficient perovskite solar cells. Nano Energy 79, 105505 (2021). https://doi.org/10.1016/j.nanoen.2020.105505
- X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
- G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- A. Tkatchenko, M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102(7), 073005 (2009). https://doi.org/10.1103/PhysRevLett.102.073005
- J. Chen, Y. Rong, A. Mei, Y. Xiong, T. Liu et al., Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3–x)(BF4)x. Adv. Energy Mater. 6(5), 1502009 (2009). https://doi.org/10.1002/aenm.201502009
- J. Chen, S.G. Kim, N.G. Park, FA0.88Cs0.12PbI3−x(PF6)x interlayer formed by ion exchange reaction between perovskite and hole transporting layer for improving photovoltaic performance and stability. Adv. Mater. 30(40), 1801948 (2018). https://doi.org/10.1002/adma.201801948
- S. Nagane, U. Bansode, O. Game, S. Chhatre, S. Ogale, CH3NH3PbI(3–x)(BF4)x: molecular ion substituted hybrid perovskite. Chem. Commun. 50(68), 9741–9744 (2014). https://doi.org/10.1039/c4cc04537h
References
A. Ho-Baillie, M. Zhang, C.F.J. Lau, F.J. Ma, S. Huang, Untapped potentials of inorganic metal halide perovskite solar cells. Joule 3(4), 938–955 (2019). https://doi.org/10.1016/j.joule.2019.02.002
Q. Tai, K.C. Tang, F. Yan, Recent progress of inorganic perovskite solar cells. Energy Environ. Sci. 12(8), 2375–2405 (2019). https://doi.org/10.1039/c9ee01479a
C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi et al., Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin–lead halide perovskite solar cells. Adv. Energy Mater. 9(3), 1803135 (2018). https://doi.org/10.1002/aenm.201803135
Y. Wang, Y. Chen, T. Zhang, X. Wang, Y. Zhao, Chemically stable black phase CsPbI3 inorganic perovskites for high-efficiency photovoltaics. Adv. Mater. 32(45), 2001025 (2020). https://doi.org/10.1002/adma.202001025
Y. Zheng, X. Yang, R. Su, P. Wu, Q. Gong et al., High-performance CsPbIxBr 3–x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation. Adv. Funct. Mater. 30(46), 2000457 (2020). https://doi.org/10.1002/adfm.202000457
Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016). https://doi.org/10.1038/nenergy.2016.149
D.H. Kim, J.B. Whitaker, Z. Li, M.F.A.M. Hest, K. Zhu, Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology. Joule 2(8), 1437–1451 (2018). https://doi.org/10.1016/j.joule.2018.05.011
E. Aydin, M.D. Bastiani, S.D. Wolf, Defect and contact passivation for perovskite solar cells. Adv. Mater. 31(25), 1900428 (2019). https://doi.org/10.1002/adma.201900428
F. Qian, S. Yuan, Y. Cai, Y. Han, H. Zhao et al., Novel surface passivation for stable FA0.85MA0.15PbI3 perovskite solar cells with 21.6% efficiency. Sol. RRL 3(7), 1900072 (2019). https://doi.org/10.1002/solr.201900072
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
Q. Jiang, Z. Ni, G. Xu, Y. Lin, P.N. Rudd et al., Interfacial molecular doping of metal halide perovskites for highly efficient solar cells. Adv. Mater. 32(31), 2001581 (2020). https://doi.org/10.1002/adma.202001581
L. Meng, C. Sun, R. Wang, W. Huang, Z. Zhao et al., Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%. J. Am. Chem. Soc. 140(49), 17255–17262 (2018). https://doi.org/10.1021/jacs.8b10520
L. Zuo, H. Guo, D.W. Quilettes, S. Jariwala, N.D. Marco et al., Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3(8), 1700106 (2017). https://doi.org/10.1126/sciadv.1700106
S. Wang, Z. Li, Y. Zhang, X. Liu, J. Han et al., Water-soluble triazolium ionic-liquid-induced surface self-assembly to enhance the stability and efficiency of perovskite solar cells. Adv. Funct. Mater. 29(15), 1900417 (2019). https://doi.org/10.1002/adfm.201900417
H. Choi, X. Liu, H.I. Kim, D. Kim, T. Park et al., A facile surface passivation enables thermally stable and efficient planar perovskite solar cells using a novel IDTT-based small molecule additive. Adv. Energy Mater. 11(16), 2003829 (2021). https://doi.org/10.1002/aenm.202003829
T. Niu, J. Lu, R. Munir, J. Li, D. Barrit et al., Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 30(16), 1706576 (2018). https://doi.org/10.1002/adma.201706576
M. Qin, J. Cao, T. Zhang, J. Mai, T.K. Lau et al., Fused-ring electron acceptor ITIC-Th: a novel stabilizer for halide perovskite precursor solution. Adv. Energy Mater. 8(18), 1703399 (2018). https://doi.org/10.1002/aenm.201703399
T. Niu, L. Chao, W. Gao, C. Ran, L. Song et al., Ionic liquids-enabled efficient and stable perovskite photovoltaics: progress and challenges. ACS Energy Lett. 6(4), 1453–1479 (2021). https://doi.org/10.1021/acsenergylett.0c02696
S. Wang, B. Yang, J. Han, Z. He, T. Li et al., Polymeric room-temperature molten salt as a multifunctional additive toward highly efficient and stable inverted planar perovskite solar cells. Energy Environ. Sci. 13(12), 5068–5079 (2020). https://doi.org/10.1039/d0ee02043e
D. Yang, R. Yang, X. Ren, X. Zhu, Z. Yang et al., Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv. Mater. 28(26), 5206–5213 (2016). https://doi.org/10.1002/adma.201600446
W. Cai, Z. Zang, L. Ding, Ionic liquids in perovskite solar cells. J. Semicond. 42, 080201 (2021). https://doi.org/10.1088/1674-4926/42/8/080201
P. Caprioglio, D.S. Cruz, S. Caicedo-Dávila, F. Zu, A.A. Sutanto et al., Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy Environ. Sci. 14(8), 4508–4522 (2021). https://doi.org/10.1039/D1EE00869B
B. Yu, C. Zuo, J. Shi, Q. Meng, L. Ding, Defect engineering on all-inorganic perovskite solar cells for high efficiency. J. Semicond. 42, 050203 (2021). https://doi.org/10.1088/1674-4926/42/5/050203
S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571, 245–250 (2019). https://doi.org/10.1038/s41586-019-1357-2
D. Yang, X. Zhou, R. Yang, Z. Yang, W. Yu et al., Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells. Energy Environ. Sci. 9(10), 3071–3078 (2016). https://doi.org/10.1039/c6ee02139e
W. Zhang, Z. Ren, Y. Guo, X. He, X. Li, Improved the long-term air stability of ZnO-based perovskite solar cells prepared under ambient conditions via surface modification of the electron transport layer using an ionic liquid. Electrochim. Acta 268, 539–545 (2018). https://doi.org/10.1016/j.electacta.2018.02.103
X. Zhou, M. Hu, C. Liu, L. Zhang, X. Zhong et al., Synergistic effects of multiple functional ionic liquid-treated PEDOT:PSS and less-ion-defects S-acetylthiocholine chloride-passivated perovskite surface enabling stable and hysteresis-free inverted perovskite solar cells with conversion efficiency over 20%. Nano Energy 63, 103866 (2019). https://doi.org/10.1016/j.nanoen.2019.103866
N.K. Noel, S.N. Habisreutinger, B. Wenger, Y.H. Lin, F. Zhang et al., Elucidating the role of a tetrafluoroborate-based ionic liquid at the n-type oxide/perovskite interface. Adv. Energy Mater. 10(4), 1903231 (2019). https://doi.org/10.1002/aenm.201903231
W. Zhang, X. Liu, B. He, Z. Gong, J. Zhu et al., Interface engineering of imidazolium ionic liquids toward efficient and stable CsPbBr 3 perovskite solar cells. ACS Appl. Mater. Interfaces 12(4), 4540–4548 (2020). https://doi.org/10.1021/acsami.9b20831
X. Zhu, M. Du, J. Feng, H. Wang, Z. Xu et al., High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem. Int. Ed. 60(8), 4238–4244 (2021). https://doi.org/10.1002/anie.202010987
C. Duan, J. Cui, M. Zhang, Y. Han, S. Yang et al., Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv. Energy Mater. 10(22), 2000691 (2020). https://doi.org/10.1002/aenm.202000691
H. Zhao, Y. Han, Z. Xu, C. Duan, S. Yang et al., A novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V. Adv. Energy Mater. 9(40), 1902279 (2019). https://doi.org/10.1002/aenm.201902279
Y.H. Lin, N. Sakai, P. Da, J. Wu, H.C. Sansom et al., A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369(6499), 96–102 (2020). https://doi.org/10.1126/science.aba1628
S. Fu, X. Li, L. Wan, W. Zhang, W. Song et al., Effective surface treatment for high-performance inverted CsPbI2Br perovskite solar cells with efficiency of 15.92%. Nano-Micro Lett. 12, 170 (2020). https://doi.org/10.1007/s40820-020-00509-y
W.Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang et al., Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat. Commun. 9, 1625 (2018). https://doi.org/10.1038/s41467-018-04028-8
N.K. Noel, S.N. Habisreutinger, A. Pellaroque, F. Pulvirenti et al., Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. Energy Environ. Sci. 12(10), 3063–3073 (2019). https://doi.org/10.1039/c9ee01773a
X. Guo, J. Su, Z. Lin, X. Wang, Q. Wang et al., Synergetic surface charge transfer doping and passivation toward high efficient and stable perovskite solar cells. iScience 24(4), 102276 (2021). https://doi.org/10.1016/j.isci.2021.102276
J. Lu, X. Lin, X. Jiao, T. Gengenbach, A.D. Scully et al., Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy Environ. Sci. 11(7), 1880–1889 (2018). https://doi.org/10.1039/c8ee00754c
D.G. Lee, D.H. Kim, J.M. Lee, B.J. Kim, J.Y. Kim et al., High efficiency perovskite solar cells exceeding 22% via a photo-assisted two-step sequential deposition. Adv. Funct. Mater. 31(9), 2006718 (2020). https://doi.org/10.1002/adfm.202006718
F. Cai, J. Cai, L. Yang, W. Li, R.S. Gurney et al., Molecular engineering of conjugated polymers for efficient hole transport and defect passivation in perovskite solar cells. Nano Energy 45, 28–36 (2018). https://doi.org/10.1016/j.nanoen.2017.12.028
S. Yuan, Y. Cai, S. Yang, H. Zhao, F. Qian et al., Simultaneous cesium and acetate coalloying improves efficiency and stability of FA0.85MA0.15PbI3 perovskite solar cell with an efficiency of 21.95%. Sol. RRL 3(9), 1900220 (2019). https://doi.org/10.1002/solr.201900220
C. Xu, Z. Zhang, S. Zhang, H. Si, S. Ma et al., Manipulation of perovskite crystallization kinetics via Lewis base additives. Adv. Funct. Mater. 31(13), 2009425 (2021). https://doi.org/10.1002/adfm.202009425
H. Si, Z. Zhang, Q. Liao, G. Zhang, Y. Ou et al., A-site management for highly crystalline perovskites. Adv. Mater. 32(4), 1904702 (2020). https://doi.org/10.1002/adma.201904702
M. Du, X. Zhu, L. Wang, H. Wang, J. Feng et al., High-pressure nitrogen-extraction and effective passivation to attain highest large-area perovskite solar module efficiency. Adv. Mater. 32(47), 2004979 (2020). https://doi.org/10.1002/adma.202004979
J. Tian, Q. Xue, X. Tang, Y. Chen, N. Li et al., Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv. Mater. 31(23), 1901152 (2019). https://doi.org/10.1002/adma.201901152
D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
Y. Han, H. Zhao, C. Duan, S. Yang, Z. Yang et al., Controlled n-doping in air-stable CsPbI2Br perovskite solar cells with a record efficiency of 16.79%. Adv. Funct. Mater. 30(12), 1909972 (2020). https://doi.org/10.1002/adfm.201909972
S. Yang, W. Liu, Y. Han, Z. Liu, W. Zhao et al., 2D Cs2PbI2Cl2 nanosheets for holistic passivation of inorganic CsPbI2Br perovskite solar cells for improved efficiency and stability. Adv. Energy Mater. 10(46), 2002882 (2020). https://doi.org/10.1002/aenm.202002882
J. Cao, G. Tang, P. You, T. Wang, F. Zheng et al., Enhanced performance of planar perovskite solar cells induced by van der Waals epitaxial growth of mixed perovskite films on WS2 flakes. Adv. Funct. Mater. 30(38), 2002358 (2020). https://doi.org/10.1002/adfm.202002358
S.M. Sze, (2008) Semiconductor Devices: Physics and Technology. John wiley & sons
S. Xiong, Y. Dai, J. Yang, W. Xiao, D. Li et al., Surface charge-transfer doping for highly efficient perovskite solar cells. Nano Energy 79, 105505 (2021). https://doi.org/10.1016/j.nanoen.2020.105505
X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). https://doi.org/10.1103/physrevb.47.558
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
A. Tkatchenko, M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102(7), 073005 (2009). https://doi.org/10.1103/PhysRevLett.102.073005
J. Chen, Y. Rong, A. Mei, Y. Xiong, T. Liu et al., Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3–x)(BF4)x. Adv. Energy Mater. 6(5), 1502009 (2009). https://doi.org/10.1002/aenm.201502009
J. Chen, S.G. Kim, N.G. Park, FA0.88Cs0.12PbI3−x(PF6)x interlayer formed by ion exchange reaction between perovskite and hole transporting layer for improving photovoltaic performance and stability. Adv. Mater. 30(40), 1801948 (2018). https://doi.org/10.1002/adma.201801948
S. Nagane, U. Bansode, O. Game, S. Chhatre, S. Ogale, CH3NH3PbI(3–x)(BF4)x: molecular ion substituted hybrid perovskite. Chem. Commun. 50(68), 9741–9744 (2014). https://doi.org/10.1039/c4cc04537h