In Situ Iodide Passivation Toward Efficient CsPbI3 Perovskite Quantum Dot Solar Cells
Corresponding Author: Jianyu Yuan
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 163
Abstract
All-inorganic CsPbI3 quantum dots (QDs) have demonstrated promising potential in photovoltaic (PV) applications. However, these colloidal perovskites are vulnerable to the deterioration of surface trap states, leading to a degradation in efficiency and stability. To address these issues, a facile yet effective strategy of introducing hydroiodic acid (HI) into the synthesis procedure is established to achieve high-quality QDs and devices. Through an in-depth experimental analysis, the introduction of HI was found to convert PbI2 into highly coordinated [PbIm]2−m, enabling control of the nucleation numbers and growth kinetics. Combined optical and structural investigations illustrate that such a synthesis technique is beneficial for achieving enhanced crystallinity and a reduced density of crystallographic defects. Finally, the effect of HI is further reflected on the PV performance. The optimal device demonstrated a significantly improved power conversion efficiency of 15.72% along with enhanced storage stability. This technique illuminates a novel and simple methodology to regulate the formed species during synthesis, shedding light on further understanding solar cell performance, and aiding the design of future novel synthesis protocols for high-performance optoelectronic devices.
Highlights:
1 The introduction of hydroiodic acid (HI) manipulates the dynamic conversion of PbI2 into highly coordinated species to optimize the nucleation and growth kinetics.
2 The addition of HI enables the fabrication of CsPbI3 perovskite quantum dots with reduced defect density, enhanced crystallinity, higher phase purity, and near-unity photoluminescence quantum yield.
3 The efficiency of CsPbI3 perovskite quantum dot solar cells was enhanced from 14.07% to 15.72% together with enhanced storage stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot-induced phase stabilization of alpha-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). https://doi.org/10.1126/science.aag2700
- K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
- N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10(11), 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
- M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11(10), 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
- C.Y. Huang, H. Li, Y. Wu, C.H. Lin, X. Guan et al., Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications. Nano-Micro Lett. 15(1), 16 (2022). https://doi.org/10.1007/s40820-022-00983-6
- S. Lim, S. Han, D. Kim, J. Min, J. Choi et al., Key factors affecting the stability of CsPbI3 perovskite quantum dot solar cells: a comprehensive review. Adv. Mater. 35(4), 2203430 (2022). https://doi.org/10.1002/adma.202203430
- X. Mei, D. Jia, J. Chen, S. Zheng, X. Zhang, Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects. Nano Today 43, 101449 (2022). https://doi.org/10.1016/j.nantod.2022.101449
- S.-T. Ha, R. Su, J. Xing, Q. Zhang, Q. Xiong, Metal halide perovskite nanomaterials: synthesis and applications. Chem. Sci. 8(4), 2522–2536 (2017). https://doi.org/10.1039/c6sc04474c
- S. Lim, D.H. Lee, H. Choi, Y. Choi, D.G. Lee et al., High-performance perovskite quantum dot solar cells enabled by incorporation with dimensionally engineered organic semiconductor. Nano-Micro Lett. 14(1), 204 (2022). https://doi.org/10.1007/s40820-022-00946-x
- E.M. Sanehira, A.R. Marshall, J.A. Christians, S.P. Harvey, P.N. Ciesielski et al., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3(10), eaao4204 (2017). https://doi.org/10.1126/sciadv.aao4204
- J. Xue, J.-W. Lee, Z. Dai, R. Wang, S. Nuryyeva et al., Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2(9), 1866–1878 (2018). https://doi.org/10.1016/j.joule.2018.07.018
- Q.A. Akkerman, G. Raino, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17(5), 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
- X. Ling, J. Yuan, W. Ma, The rise of colloidal lead halide perovskite quantum dot solar cells. Acc. Mater. Res. 3(8), 866–878 (2022). https://doi.org/10.1021/accountsmr.2c00081
- Y. Han, W. Liang, X. Lin, Y. Li, F. Sun et al., Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots. Nat. Mater. 21(11), 1282–1289 (2022). https://doi.org/10.1038/s41563-022-01349-4
- H. Zhu, Y. Pan, C. Peng, H. Lian, J. Lin, 4-bromo-butyric acid-assisted in situ passivation strategy for superstable all-inorganic halide perovskite CsPbI3 quantum dots in polar media. Angew. Chem. Int. Ed. 61(22), e202116702 (2022). https://doi.org/10.1002/anie.202116702
- S. Kumar, J. Jagielski, T. Marcato, S.F. Solari, C.J. Shih, Understanding the ligand effects on photophysical, optical, and electroluminescent characteristics of hybrid lead halide perovskite nanocrystal solids. J. Phys. Chem. Lett. 10(24), 7560–7567 (2019). https://doi.org/10.1021/acs.jpclett.9b02950
- M.A. Boles, D. Ling, T. Hyeon, D.V. Talapin, The surface science of nanocrystals. Nat. Mater. 15(3), 364 (2016). https://doi.org/10.1038/nmat4578
- D. Jia, J. Chen, R. Zhuang, Y. Hua, X. Zhang, Inhibiting lattice distortion of CsPbI3 perovskite quantum dots for solar cells with efficiency over 16.6%. Energy Environ. Sci. 15(10), 4201–4212 (2022). https://doi.org/10.1039/d2ee02164a
- X. Ling, S. Zhou, J. Yuan, J. Shi, Y. Qian et al., 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9(28), 19007 (2019). https://doi.org/10.1002/aenm.201900721
- D. Jia, J. Chen, J. Qiu, H. Ma, M. Yu et al., Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 6(7), 1632–1653 (2022). https://doi.org/10.1016/j.joule.2022.05.007
- L.M. Wheeler, E.M. Sanehira, A.R. Marshall, P. Schulz, M. Suri et al., Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140(33), 10504–10513 (2018). https://doi.org/10.1021/jacs.8b04984
- L.N. Quan, D. Ma, Y. Zhao, O. Voznyy, H. Yuan et al., Edge stabilization in reduced-dimensional perovskites. Nat. Commun. 11(1), 170 (2020). https://doi.org/10.1038/s41467-019-13944-2
- X. Ling, J. Yuan, X. Zhang, Y. Qian, S.M. Zakeeruddin et al., Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32(26), e2001906 (2020). https://doi.org/10.1002/adma.202001906
- J.X. Chen, D.L. Jia, E.M.J. Johansson, A. Hagfeldt, X.L. Zhang, Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ Sci. 14(1), 224–261 (2021). https://doi.org/10.1039/d0ee02900a
- A.H. Ip, S.M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky et al., Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 7(9), 577–582 (2012). https://doi.org/10.1038/nnano.2012.127
- J. Shi, F. Li, Y. Jin, C. Liu, B. Cohen-Kleinstein et al., In situ ligand bonding management of CsPbI(3) perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem. Int. Ed. 59(49), 22230–22237 (2020). https://doi.org/10.1002/anie.202010440
- M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI(3) nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14(1), 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
- Y. Qian, Y. Shi, G. Shi, G. Shi, X. Zhang et al., The impact of precursor ratio on the synthetic production, surface chemistry, and photovoltaic performance of CsPbI3 perovskite quantum dots. Sol. RRL 5(5), 2100090 (2021). https://doi.org/10.1002/solr.202100090
- F. Liu, C. Ding, Y. Zhang, T. Kamisaka, Q. Zhao et al., GeI2 additive for high optoelectronic quality CsPbI3 quantum dots and their application in photovoltaic devices. Chem. Mater. 31(3), 798–807 (2019). https://doi.org/10.1021/acs.chemmater.8b03871
- X. Lu, D. Yan, J. Feng, M. Li, B. Hou et al., Ecotoxicity and sustainability of emerging pb-based photovoltaics. Sol. RRL 6(12), 2200699 (2022). https://doi.org/10.1002/solr.202200699
- Q. Tian, G.Z. Ding, Y.T. Cai, Z.C. Li, X.Y. Tang et al., Enhanced performance of perovskite solar cells loaded with iodine-rich CsPbI3 quantum dots. ACS Appl. Energy Mater. 4(8), 7535–7543 (2021). https://doi.org/10.1021/acsaem.1c00517
- X. Shen, Y. Zhang, S.V. Kershaw, T. Li, C. Wang et al., Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 19(3), 1552–1559 (2019). https://doi.org/10.1021/acs.nanolett.8b04339
- Y.H. Huang, W.L. Luan, M.K. Liu, L. Turyanska, Ddab-assisted synthesis of iodine-rich CsPbI3 perovskite nanocrystals with improved stability in multiple environments. J. Mater. Chem. C 8(7), 2381–2387 (2020). https://doi.org/10.1039/c9tc06566k
- J. Yuan, X. Ling, D. Yang, F. Li, S. Zhou et al., Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule 2(11), 2450–2463 (2018). https://doi.org/10.1016/j.joule.2018.08.011
- L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
- Z. Zhang, J. Sung, D.T.W. Toolan, S. Han, R. Pandya et al., Ultrafast exciton transport at early times in quantum dot solids. Nat. Mater. 21(5), 533–539 (2022). https://doi.org/10.1038/s41563-022-01204-6
- M. Liu, O. Voznyy, R. Sabatini, F.P. Garcia de Arquer, R. Munir et al., Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16(2), 258–263 (2017). https://doi.org/10.1038/nmat4800
- M. Liu, S.D. Verma, Z. Zhang, J. Sung, A. Rao, Nonequilibrium carrier transport in quantum dot heterostructures. Nano Lett. 21(21), 8945–8951 (2021). https://doi.org/10.1021/acs.nanolett.1c01892
- Y. Zhang, G. Wu, F. Liu, C. Ding, Z. Zou et al., Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chem. Soc. Rev. 49(1), 49–84 (2020). https://doi.org/10.1039/c9cs00560a
- K. Chen, Q. Zhong, W. Chen, B. Sang, Y. Wang et al., Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 29(24), 1900991 (2019). https://doi.org/10.1002/adfm.201900991
- S. Lim, G. Lee, S. Han, J. Kim, S. Yun et al., Monodisperse perovskite colloidal quantum dots enable high-efficiency photovoltaics. ACS Energy Lett. 6(6), 2229–2237 (2021). https://doi.org/10.1021/acsenergylett.1c00462
- Z. Ding, S. Li, Y. Jiang, D. Wang, M. Yuan, Open-circuit voltage loss in perovskite quantum dot solar cells. Nanoscale 15(8), 3713–3729 (2023). https://doi.org/10.1039/d2nr06976h
- A. Ghorai, S. Mahato, S.K. Srivastava, S.K. Ray, Atomic insights of stable, monodispersed CsPbI3−xBrx (x = 0, 1, 2, 3) nanocrystals synthesized by modified ligand cell. Adv. Funct. Mater. 32(32), 2202087 (2022). https://doi.org/10.1002/adfm.202202087
- X. Huang, J. Hu, C. Bi, J. Yuan, Y. Lu et al., B-site doping of CsPbI3 quantum dot to stabilize the cubic structure for high-efficiency solar cells. Chem. Eng. J. 421, 127822 (2021). https://doi.org/10.1016/j.cej.2020.127822
- Y. Zhou, H. Sternlicht, N.P. Padture, Transmission electron microscopy of halide perovskite materials and devices. Joule 3(3), 641–661 (2019). https://doi.org/10.1016/j.joule.2018.12.011
- Y. Li, J. Shi, J. Zheng, J. Bing, J. Yuan et al., Acetic acid assisted crystallization strategy for high efficiency and long-term stable perovskite solar cell. Adv. Sci. 7(5), 1903368 (2020). https://doi.org/10.1002/advs.201903368
- X. Ling, H. Zhu, W. Xu, C. Liu, L. Pan et al., Combined precursor engineering and grain anchoring leading to ma-free, phase-pure, and stable α-formamidinium lead iodide perovskites for efficient solar cells. Angew. Chem. Int. Ed. 133(52), 27505–27512 (2021). https://doi.org/10.1002/ange.202112555
- S. Bi, H. Wang, J. Zhou, S. You, Y. Zhang et al., Halogen bonding reduces intrinsic traps and enhances charge mobilities in halide perovskite solar cells. J. Mater. Chem. A 7(12), 6840–6848 (2019). https://doi.org/10.1039/c8ta11835c
- E. Radicchi, E. Mosconi, F. Elisei, F. Nunzi, F. De Angelis, Understanding the solution chemistry of lead halide perovskites precursors. ACS Appl. Energy Mater. 2(5), 3400–3409 (2019). https://doi.org/10.1021/acsaem.9b00206
- F. Wang, M. Yang, S. Yang, X. Qu, L. Yang et al., Iodine-assisted antisolvent engineering for stable perovskite solar cells with efficiency >21.3%. Nano Energy 67, 1042 (2020). https://doi.org/10.1016/j.nanoen.2019.104224
- X. Zhang, H. Huang, X. Ling, J. Sun, X. Jiang et al., Homojunction perovskite quantum dot solar cells with over 1 microm-thick photoactive layer. Adv. Mater. 34(2), e2105977 (2022). https://doi.org/10.1002/adma.202105977
- J. Shi, F. Li, C. Liu, X. Ling, X. Zhang et al., Inverted perovskite solar cells with >85% fill factor via sequential interfacial engineering. Sol. RRL 7(11), 2300078 (2023). https://doi.org/10.1002/solr.202300078
- O. Almora, M. Garcia-Batlle, G. Garcia-Belmonte, Utilization of temperature-sweeping capacitive techniques to evaluate band gap defect densities in photovoltaic perovskites. J. Phys. Chem. Lett. 10(13), 3661–3669 (2019). https://doi.org/10.1021/acs.jpclett.9b00601
- X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375(6579), 434–437 (2022). https://doi.org/10.1126/science.abl5676
- Z.Y. Ni, C.X. Bao, Y. Liu, Q. Jiang, W.Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
- D. Jia, J. Chen, X. Mei, W. Fan, S. Luo et al., Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ. Sci. 14(8), 4599–4609 (2021). https://doi.org/10.1039/d1ee01463c
References
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot-induced phase stabilization of alpha-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354(6308), 92–95 (2016). https://doi.org/10.1126/science.aag2700
K. Lin, J. Xing, L.N. Quan, F.P.G. de Arquer, X. Gong et al., Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562(7726), 245–248 (2018). https://doi.org/10.1038/s41586-018-0575-3
N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao et al., Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10(11), 699–704 (2016). https://doi.org/10.1038/nphoton.2016.185
M. Yuan, L.N. Quan, R. Comin, G. Walters, R. Sabatini et al., Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11(10), 872–877 (2016). https://doi.org/10.1038/nnano.2016.110
C.Y. Huang, H. Li, Y. Wu, C.H. Lin, X. Guan et al., Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications. Nano-Micro Lett. 15(1), 16 (2022). https://doi.org/10.1007/s40820-022-00983-6
S. Lim, S. Han, D. Kim, J. Min, J. Choi et al., Key factors affecting the stability of CsPbI3 perovskite quantum dot solar cells: a comprehensive review. Adv. Mater. 35(4), 2203430 (2022). https://doi.org/10.1002/adma.202203430
X. Mei, D. Jia, J. Chen, S. Zheng, X. Zhang, Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects. Nano Today 43, 101449 (2022). https://doi.org/10.1016/j.nantod.2022.101449
S.-T. Ha, R. Su, J. Xing, Q. Zhang, Q. Xiong, Metal halide perovskite nanomaterials: synthesis and applications. Chem. Sci. 8(4), 2522–2536 (2017). https://doi.org/10.1039/c6sc04474c
S. Lim, D.H. Lee, H. Choi, Y. Choi, D.G. Lee et al., High-performance perovskite quantum dot solar cells enabled by incorporation with dimensionally engineered organic semiconductor. Nano-Micro Lett. 14(1), 204 (2022). https://doi.org/10.1007/s40820-022-00946-x
E.M. Sanehira, A.R. Marshall, J.A. Christians, S.P. Harvey, P.N. Ciesielski et al., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3(10), eaao4204 (2017). https://doi.org/10.1126/sciadv.aao4204
J. Xue, J.-W. Lee, Z. Dai, R. Wang, S. Nuryyeva et al., Surface ligand management for stable FAPbI3 perovskite quantum dot solar cells. Joule 2(9), 1866–1878 (2018). https://doi.org/10.1016/j.joule.2018.07.018
Q.A. Akkerman, G. Raino, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17(5), 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
X. Ling, J. Yuan, W. Ma, The rise of colloidal lead halide perovskite quantum dot solar cells. Acc. Mater. Res. 3(8), 866–878 (2022). https://doi.org/10.1021/accountsmr.2c00081
Y. Han, W. Liang, X. Lin, Y. Li, F. Sun et al., Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots. Nat. Mater. 21(11), 1282–1289 (2022). https://doi.org/10.1038/s41563-022-01349-4
H. Zhu, Y. Pan, C. Peng, H. Lian, J. Lin, 4-bromo-butyric acid-assisted in situ passivation strategy for superstable all-inorganic halide perovskite CsPbI3 quantum dots in polar media. Angew. Chem. Int. Ed. 61(22), e202116702 (2022). https://doi.org/10.1002/anie.202116702
S. Kumar, J. Jagielski, T. Marcato, S.F. Solari, C.J. Shih, Understanding the ligand effects on photophysical, optical, and electroluminescent characteristics of hybrid lead halide perovskite nanocrystal solids. J. Phys. Chem. Lett. 10(24), 7560–7567 (2019). https://doi.org/10.1021/acs.jpclett.9b02950
M.A. Boles, D. Ling, T. Hyeon, D.V. Talapin, The surface science of nanocrystals. Nat. Mater. 15(3), 364 (2016). https://doi.org/10.1038/nmat4578
D. Jia, J. Chen, R. Zhuang, Y. Hua, X. Zhang, Inhibiting lattice distortion of CsPbI3 perovskite quantum dots for solar cells with efficiency over 16.6%. Energy Environ. Sci. 15(10), 4201–4212 (2022). https://doi.org/10.1039/d2ee02164a
X. Ling, S. Zhou, J. Yuan, J. Shi, Y. Qian et al., 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation. Adv. Energy Mater. 9(28), 19007 (2019). https://doi.org/10.1002/aenm.201900721
D. Jia, J. Chen, J. Qiu, H. Ma, M. Yu et al., Tailoring solvent-mediated ligand exchange for CsPbI3 perovskite quantum dot solar cells with efficiency exceeding 16.5%. Joule 6(7), 1632–1653 (2022). https://doi.org/10.1016/j.joule.2022.05.007
L.M. Wheeler, E.M. Sanehira, A.R. Marshall, P. Schulz, M. Suri et al., Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc. 140(33), 10504–10513 (2018). https://doi.org/10.1021/jacs.8b04984
L.N. Quan, D. Ma, Y. Zhao, O. Voznyy, H. Yuan et al., Edge stabilization in reduced-dimensional perovskites. Nat. Commun. 11(1), 170 (2020). https://doi.org/10.1038/s41467-019-13944-2
X. Ling, J. Yuan, X. Zhang, Y. Qian, S.M. Zakeeruddin et al., Guanidinium-assisted surface matrix engineering for highly efficient perovskite quantum dot photovoltaics. Adv. Mater. 32(26), e2001906 (2020). https://doi.org/10.1002/adma.202001906
J.X. Chen, D.L. Jia, E.M.J. Johansson, A. Hagfeldt, X.L. Zhang, Emerging perovskite quantum dot solar cells: feasible approaches to boost performance. Energy Environ Sci. 14(1), 224–261 (2021). https://doi.org/10.1039/d0ee02900a
A.H. Ip, S.M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky et al., Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 7(9), 577–582 (2012). https://doi.org/10.1038/nnano.2012.127
J. Shi, F. Li, Y. Jin, C. Liu, B. Cohen-Kleinstein et al., In situ ligand bonding management of CsPbI(3) perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem. Int. Ed. 59(49), 22230–22237 (2020). https://doi.org/10.1002/anie.202010440
M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI(3) nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14(1), 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
Y. Qian, Y. Shi, G. Shi, G. Shi, X. Zhang et al., The impact of precursor ratio on the synthetic production, surface chemistry, and photovoltaic performance of CsPbI3 perovskite quantum dots. Sol. RRL 5(5), 2100090 (2021). https://doi.org/10.1002/solr.202100090
F. Liu, C. Ding, Y. Zhang, T. Kamisaka, Q. Zhao et al., GeI2 additive for high optoelectronic quality CsPbI3 quantum dots and their application in photovoltaic devices. Chem. Mater. 31(3), 798–807 (2019). https://doi.org/10.1021/acs.chemmater.8b03871
X. Lu, D. Yan, J. Feng, M. Li, B. Hou et al., Ecotoxicity and sustainability of emerging pb-based photovoltaics. Sol. RRL 6(12), 2200699 (2022). https://doi.org/10.1002/solr.202200699
Q. Tian, G.Z. Ding, Y.T. Cai, Z.C. Li, X.Y. Tang et al., Enhanced performance of perovskite solar cells loaded with iodine-rich CsPbI3 quantum dots. ACS Appl. Energy Mater. 4(8), 7535–7543 (2021). https://doi.org/10.1021/acsaem.1c00517
X. Shen, Y. Zhang, S.V. Kershaw, T. Li, C. Wang et al., Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 19(3), 1552–1559 (2019). https://doi.org/10.1021/acs.nanolett.8b04339
Y.H. Huang, W.L. Luan, M.K. Liu, L. Turyanska, Ddab-assisted synthesis of iodine-rich CsPbI3 perovskite nanocrystals with improved stability in multiple environments. J. Mater. Chem. C 8(7), 2381–2387 (2020). https://doi.org/10.1039/c9tc06566k
J. Yuan, X. Ling, D. Yang, F. Li, S. Zhou et al., Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule 2(11), 2450–2463 (2018). https://doi.org/10.1016/j.joule.2018.08.011
L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779
Z. Zhang, J. Sung, D.T.W. Toolan, S. Han, R. Pandya et al., Ultrafast exciton transport at early times in quantum dot solids. Nat. Mater. 21(5), 533–539 (2022). https://doi.org/10.1038/s41563-022-01204-6
M. Liu, O. Voznyy, R. Sabatini, F.P. Garcia de Arquer, R. Munir et al., Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16(2), 258–263 (2017). https://doi.org/10.1038/nmat4800
M. Liu, S.D. Verma, Z. Zhang, J. Sung, A. Rao, Nonequilibrium carrier transport in quantum dot heterostructures. Nano Lett. 21(21), 8945–8951 (2021). https://doi.org/10.1021/acs.nanolett.1c01892
Y. Zhang, G. Wu, F. Liu, C. Ding, Z. Zou et al., Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chem. Soc. Rev. 49(1), 49–84 (2020). https://doi.org/10.1039/c9cs00560a
K. Chen, Q. Zhong, W. Chen, B. Sang, Y. Wang et al., Short-chain ligand-passivated stable α-CsPbI3 quantum dot for all-inorganic perovskite solar cells. Adv. Funct. Mater. 29(24), 1900991 (2019). https://doi.org/10.1002/adfm.201900991
S. Lim, G. Lee, S. Han, J. Kim, S. Yun et al., Monodisperse perovskite colloidal quantum dots enable high-efficiency photovoltaics. ACS Energy Lett. 6(6), 2229–2237 (2021). https://doi.org/10.1021/acsenergylett.1c00462
Z. Ding, S. Li, Y. Jiang, D. Wang, M. Yuan, Open-circuit voltage loss in perovskite quantum dot solar cells. Nanoscale 15(8), 3713–3729 (2023). https://doi.org/10.1039/d2nr06976h
A. Ghorai, S. Mahato, S.K. Srivastava, S.K. Ray, Atomic insights of stable, monodispersed CsPbI3−xBrx (x = 0, 1, 2, 3) nanocrystals synthesized by modified ligand cell. Adv. Funct. Mater. 32(32), 2202087 (2022). https://doi.org/10.1002/adfm.202202087
X. Huang, J. Hu, C. Bi, J. Yuan, Y. Lu et al., B-site doping of CsPbI3 quantum dot to stabilize the cubic structure for high-efficiency solar cells. Chem. Eng. J. 421, 127822 (2021). https://doi.org/10.1016/j.cej.2020.127822
Y. Zhou, H. Sternlicht, N.P. Padture, Transmission electron microscopy of halide perovskite materials and devices. Joule 3(3), 641–661 (2019). https://doi.org/10.1016/j.joule.2018.12.011
Y. Li, J. Shi, J. Zheng, J. Bing, J. Yuan et al., Acetic acid assisted crystallization strategy for high efficiency and long-term stable perovskite solar cell. Adv. Sci. 7(5), 1903368 (2020). https://doi.org/10.1002/advs.201903368
X. Ling, H. Zhu, W. Xu, C. Liu, L. Pan et al., Combined precursor engineering and grain anchoring leading to ma-free, phase-pure, and stable α-formamidinium lead iodide perovskites for efficient solar cells. Angew. Chem. Int. Ed. 133(52), 27505–27512 (2021). https://doi.org/10.1002/ange.202112555
S. Bi, H. Wang, J. Zhou, S. You, Y. Zhang et al., Halogen bonding reduces intrinsic traps and enhances charge mobilities in halide perovskite solar cells. J. Mater. Chem. A 7(12), 6840–6848 (2019). https://doi.org/10.1039/c8ta11835c
E. Radicchi, E. Mosconi, F. Elisei, F. Nunzi, F. De Angelis, Understanding the solution chemistry of lead halide perovskites precursors. ACS Appl. Energy Mater. 2(5), 3400–3409 (2019). https://doi.org/10.1021/acsaem.9b00206
F. Wang, M. Yang, S. Yang, X. Qu, L. Yang et al., Iodine-assisted antisolvent engineering for stable perovskite solar cells with efficiency >21.3%. Nano Energy 67, 1042 (2020). https://doi.org/10.1016/j.nanoen.2019.104224
X. Zhang, H. Huang, X. Ling, J. Sun, X. Jiang et al., Homojunction perovskite quantum dot solar cells with over 1 microm-thick photoactive layer. Adv. Mater. 34(2), e2105977 (2022). https://doi.org/10.1002/adma.202105977
J. Shi, F. Li, C. Liu, X. Ling, X. Zhang et al., Inverted perovskite solar cells with >85% fill factor via sequential interfacial engineering. Sol. RRL 7(11), 2300078 (2023). https://doi.org/10.1002/solr.202300078
O. Almora, M. Garcia-Batlle, G. Garcia-Belmonte, Utilization of temperature-sweeping capacitive techniques to evaluate band gap defect densities in photovoltaic perovskites. J. Phys. Chem. Lett. 10(13), 3661–3669 (2019). https://doi.org/10.1021/acs.jpclett.9b00601
X. Li, W. Zhang, X. Guo, C. Lu, J. Wei et al., Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells. Science 375(6579), 434–437 (2022). https://doi.org/10.1126/science.abl5676
Z.Y. Ni, C.X. Bao, Y. Liu, Q. Jiang, W.Q. Wu et al., Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science 367(6484), 1352–1358 (2020). https://doi.org/10.1126/science.aba0893
D. Jia, J. Chen, X. Mei, W. Fan, S. Luo et al., Surface matrix curing of inorganic CsPbI3 perovskite quantum dots for solar cells with efficiency over 16%. Energy Environ. Sci. 14(8), 4599–4609 (2021). https://doi.org/10.1039/d1ee01463c