Upconversion Nanoparticles-Encoded Hydrogel Microbeads-Based Multiplexed Protein Detection
Corresponding Author: Yong Zhang
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 31
Abstract
Fluorescently encoded microbeads are in demand for multiplexed applications in different fields. Compared to organic dye-based commercially available Luminex’s xMAP technology, upconversion nanoparticles (UCNPs) are better alternatives due to their large anti-Stokes shift, photostability, nil background, and single wavelength excitation. Here, we developed a new multiplexed detection system using UCNPs for encoding poly(ethylene glycol) diacrylate (PEGDA) microbeads as well as for labeling reporter antibody. However, to prepare UCNPs-encoded microbeads, currently used swelling-based encapsulation leads to non-uniformity, which is undesirable for fluorescence-based multiplexing. Hence, we utilized droplet microfluidics to obtain encoded microbeads of uniform size, shape, and UCNPs distribution inside. Additionally, PEGDA microbeads lack functionality for probe antibodies conjugation on their surface. Methods to functionalize the surface of PEGDA microbeads (acrylic acid incorporation, polydopamine coating) reported thus far quench the fluorescence of UCNPs. Here, PEGDA microbeads surface was coated with silica followed by carboxyl modification without compromising the fluorescence intensity of UCNPs. In this study, droplet microfluidics-assisted UCNPs-encoded microbeads of uniform shape, size, and fluorescence were prepared. Multiple color codes were generated by mixing UCNPs emitting red and green colors at different ratios prior to encapsulation. UCNPs emitting blue color were used to label the reporter antibody. Probe antibodies were covalently immobilized on red UCNPs-encoded microbeads for specific capture of human serum albumin (HSA) as a model protein. The system was also demonstrated for multiplexed detection of both human C-reactive protein (hCRP) and HSA protein by immobilizing anti-hCRP antibodies on green UCNPs.
Highlights:
1 Upconversion nanoparticles (UCNPs) were used for encoding as well as labeling reporter antibody for multiplexed detection.
2 UCNPs-encoded microbeads with uniformity in shape, size and fluorescence intensity were prepared by droplet microfluidics method.
3 Surface modification of poly(ethylene glycol) diacrylate microbeads achieved by silica coating followed with carboxyl modification.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.M. Grüner, C.J. Schulze, D. Yang, D. Ogasawara, M.M. Dix et al., An in vivo multiplexed small-molecule screening platform. Nat. Methods 13(10), 883–889 (2016). https://doi.org/10.1038/nmeth.3992
- B. Spurgeon, A. Aburima, N. Oberprieler, K. Taskén, K. Naseem, Multiplexed phosphospecific flow cytometry enables large-scale signaling profiling and drug screening in blood platelets. J. Thromb. Haemost. 12(10), 1733–1743 (2014). https://doi.org/10.1111/jth.12670
- X. Tan, L. Hu, L.J. Luquette III, G. Gao, Y. Liu, H. Qu, R. Xi, Z.J. Lu, P.J. Park, S.J. Elledge, Systematic identification of synergistic drug pairs targeting HIV. Nat. Biotechnol. 30(11), 1125–1130 (2012). https://doi.org/10.1038/nbt.2391
- R.I. Zeitoun, A.D. Garst, G.D. Degen, G. Pines, T.J. Mansell, T.Y. Glebes, N.R. Boyle, R.T. Gill, Multiplexed tracking of combinatorial genomic mutations in engineered cell populations. Nat. Biotechnol. 33(6), 631–637 (2015). https://doi.org/10.1038/nbt.3177
- Z. Sun, R. Zhang, Z. Liu, C. Liu, X. Li, W. Zhou, L. Yang, Q. Ruan, X. Zhang, Development of a fluorescence–based multiplex genotyping method for simultaneous determination of human papillomavirus infections and viral loads. BMC Cancer 15(1), 860 (2015). https://doi.org/10.1186/s12885-015-1874-9
- J. Zhu, C. Qiu, M. Palla, T. Nguyen, J.J. Russo, J. Ju, Q. Lin, A microfluidic device for multiplex single-nucleotide polymorphism genotyping. RSC Adv. 4(9), 4269–4277 (2014). https://doi.org/10.1039/C3RA44091E
- R. Tozzoli, D. Villalta, Autoantibody profiling of patients with antiphospholipid syndrome using an automated multiplexed immunoassay system. Autoimmun. Rev. 13(1), 59–63 (2014). https://doi.org/10.1016/j.autrev.2013.08.007
- P. Lea, E. Keystone, S. Mudumba, A. Kahama, S.-F. Ding, J. Hansen, A.A. Azad, S. Wang, D. Weber, Advantages of multiplex proteomics in clinical immunology. Clin. Rev. Allergy Immunol. 41(1), 20–35 (2011). https://doi.org/10.1007/s12016-009-8189-z
- J.D. Lapek Jr., P. Greninger, R. Morris, A. Amzallag, I. Pruteanu-Malinici, C.H. Benes, W. Haas, Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nat. Biotechnol. 35(10), 983–989 (2017). https://doi.org/10.1038/nbt.3955
- X.-P. He, X.-L. Hu, T.D. James, J. Yoon, H. Tian, Multiplexed photoluminescent sensors: towards improved disease diagnostics. Chem. Soc. Rev. 46(22), 6687–6696 (2017). https://doi.org/10.1039/C6CS00778C
- D.-W. Li, W.-L. Zhai, Y.-T. Li, Y.-T. Long, Recent progress in surface enhanced raman spectroscopy for the detection of environmental pollutants. Microchim. Acta 181(1–2), 23–43 (2014). https://doi.org/10.1007/s00604-013-1115-3
- C.D. Earle, E.M. King, A. Tsay, K. Pittman, B. Saric, L. Vailes, R. Godbout, K.G. Oliver, M.D. Chapman, High-throughput fluorescent multiplex array for indoor allergen exposure assessment. J. Allergy Clin. Immunol. 119(2), 428–433 (2007). https://doi.org/10.1016/j.jaci.2006.11.004
- Y.C. Cao, R. Jin, C.A. Mirkin, Nanops with raman spectroscopic fingerprints for DNA and rna detection. Science 297(5586), 1536–1540 (2002). https://doi.org/10.1126/science.297.5586.1536
- I.E. Sendroiu, L.K. Gifford, A. Lupták, R.M. Corn, Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanop-enhanced SPR imaging. J. Am. Chem. Soc. 133(12), 4271–4273 (2011). https://doi.org/10.1021/ja2005576
- Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, Y. Cui, Sers-fluorescence joint spectral encoding using organic–metal–QD hybrid nanops with a huge encoding capacity for high-throughput biodetection: putting theory into practice. J. Am. Chem. Soc. 134(6), 2993–3000 (2012). https://doi.org/10.1021/ja208154m
- F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, G.D. Stucky, Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding. Adv. Mater. 23(33), 3775–3779 (2011). https://doi.org/10.1002/adma.201190129
- T.R. Sathe, A. Agrawal, S. Nie, Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal. Chem. 78(16), 5627–5632 (2006). https://doi.org/10.1021/ac0610309
- J. Du, P. Bernasconi, K.R. Clauser, D. Mani, S.P. Finn et al., Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat. Biotechnol. 27(1), 77–83 (2009). https://doi.org/10.1038/nbt.1513
- D.S. Dandy, P. Wu, D.W. Grainger, Array feature size influences nucleic acid surface capture in DNA microarrays. P. Natl. Acad. Sci. USA 104(20), 8223–8228 (2007). https://doi.org/10.1073/pnas.0606054104
- Y. Leng, K. Sun, X. Chen, W. Li, Suspension arrays based on nanop-encoded microspheres for high-throughput multiplexed detection. Chem. Soc. Rev. 44(15), 5552–5595 (2015). https://doi.org/10.1039/C4CS00382A
- R. Wilson, A.R. Cossins, D.G. Spiller, Encoded microcarriers for high-throughput multiplexed detection. Angew. Chem. Int. Ed. 45(37), 6104–6117 (2006). https://doi.org/10.1002/anie.200600288
- K. Braeckmans, S.C. De Smedt, M. Leblans, R. Pauwels, J. Demeester, Encoding microcarriers: present and future technologies. Nat. Rev. Drug Discov. 1(6), 447–456 (2002). https://doi.org/10.1038/nrd817
- R.J. Fulton, R.L. McDade, P.L. Smith, L.J. Kienker, J.R. Kettman, Advanced multiplexed analysis with the FlowMetrixTM system. Clin. Chem. 43(9), 1749–1756 (1997)
- D. Peng, Q. Ju, X. Chen, R. Ma, B. Chen et al., Lanthanide-doped energy cascade nanops: full spectrum emission by single wavelength excitation. Chem. Mater. 27(8), 3115–3120 (2015). https://doi.org/10.1021/acs.chemmater.5b00775
- F. Wang, X. Liu, Multicolor tuning of lanthanide-doped nanops by single wavelength excitation. Acc. Chem. Res. 47(4), 1378–1385 (2014). https://doi.org/10.1021/ar5000067
- S. Wu, G. Han, D.J. Milliron, S. Aloni, V. Altoe, D.V. Talapin, B.E. Cohen, P.J. Schuck, Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009). https://doi.org/10.1073/pnas.0904792106
- J. Xu, L. Xu, C. Wang, R. Yang, Q. Zhuang et al., Near-infrared-triggered photodynamic therapy with multitasking upconversion nanops in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 11(5), 4463–4474 (2017). https://doi.org/10.1021/acsnano.7b00715
- S. Shikha, T. Salafi, J. Cheng, Y. Zhang, Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev. 46(22), 7054–7093 (2017). https://doi.org/10.1039/C7CS00271H
- J. Lee, P.W. Bisso, R.L. Srinivas, J.J. Kim, A.J. Swiston, P.S. Doyle, Universal process-inert encoding architecture for polymer microps. Nat. Mater. 13(5), 524–529 (2014). https://doi.org/10.1038/nmat3938
- H. Liu, Y. Zhang, Droplet formation in microfluidic cross-junctions. Phys. Fluids 23(8), 082101 (2011). https://doi.org/10.1063/1.3615643
- H. Liu, X. Qian, Z. Wu, R. Yang, S. Sun, H. Ma, Microfluidic synthesis of QD-encoded pegda microspheres for suspension assay. J. Mater. Chem. B 4(3), 482–488 (2016). https://doi.org/10.1039/C5TB02209F
- C. Yesildag, A. Tyushina, M. Lensen, Nano-contact transfer with gold nanops on PEG hydrogels and using wrinkled PDMS-stamps. Polym. Basel 9(6), 199 (2017). https://doi.org/10.3390/polym9060199
- H.S. Qian, H.C. Guo, P.C.L. Ho, R. Mahendran, Y. Zhang, Mesoporous-silica-coated up-conversion fluorescent nanops for photodynamic therapy. Small 5(20), 2285–2290 (2009). https://doi.org/10.1002/smll.200900692
- Q. Dou, N.M. Idris, Y. Zhang, Sandwich-structured upconversion nanops with tunable color for multiplexed cell labeling. Biomaterials 34(6), 1722–1731 (2013). https://doi.org/10.1016/j.biomaterials.2012.11.011
- C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C.I. Lang, D. Jin, Optimal sensitizer concentration in single upconversion nanocrystals. Nano Lett. 17(5), 2858–2864 (2017). https://doi.org/10.1021/acs.nanolett.6b05331
- S. Park, H.J. Lee, W.-G. Koh, Multiplex immunoassay platforms based on shape-coded poly (ethylene glycol) hydrogel microps incorporating acrylic acid. Sens. Basel 12(6), 8426–8436 (2012). https://doi.org/10.3390/s120608426
- D. Fan, C. Wu, K. Wang, X. Gu, Y. Liu, E. Wang, A polydopamine nanosphere based highly sensitive and selective aptamer cytosensor with enzyme amplification. Chem. Commun. 52(2), 406–409 (2016). https://doi.org/10.1039/C5CC06754E
- J. Zhang, S. Kruss, A.J. Hilmer, S. Shimizu, Z. Schmois et al., A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin t using near-infrared fluorescent single-walled carbon nanotube sensors. Adv. Healthc. Mater. 3(3), 412–423 (2014). https://doi.org/10.1002/adhm.201300033
- Y. Tang, W. Di, X. Zhai, R. Yang, W. Qin, Nir-responsive photocatalytic activity and mechanism of nayf4:Yb, Tm@TiO2 core–shell nanops. ACS Catal. 3(3), 405–412 (2013). https://doi.org/10.1021/cs300808r
- B. Cao, J. Wu, Z. Feng, B. Dong, Investigation of near-infrared-to-ultraviolet upconversion luminescence of Tm3+ doped NAYF4 phosphors by Yb3+ codoping. Mater. Chem. Phys. 142(1), 333–338 (2013). https://doi.org/10.1016/j.matchemphys.2013.07.025
- G. Chen, T.Y. Ohulchanskyy, R. Kumar, H. Ågren, P.N. Prasad, Ultrasmall monodisperse nayf4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4(6), 3163–3168 (2010). https://doi.org/10.1021/nn100457j
- L.C. Ong, L.Y. Ang, S. Alonso, Y. Zhang, Bacterial imaging with photostable upconversion fluorescent nanops. Biomaterials 35(9), 2987–2998 (2014). https://doi.org/10.1016/j.biomaterials.2013.12.060
- J.B. Hall, M.A. Dobrovolskaia, A.K. Patri, S.E. McNeil, Characterization of nanops for therapeutics. Nanomed. UK 2(6), 789–803 (2007). https://doi.org/10.2217/17435889.2.6.789
References
B.M. Grüner, C.J. Schulze, D. Yang, D. Ogasawara, M.M. Dix et al., An in vivo multiplexed small-molecule screening platform. Nat. Methods 13(10), 883–889 (2016). https://doi.org/10.1038/nmeth.3992
B. Spurgeon, A. Aburima, N. Oberprieler, K. Taskén, K. Naseem, Multiplexed phosphospecific flow cytometry enables large-scale signaling profiling and drug screening in blood platelets. J. Thromb. Haemost. 12(10), 1733–1743 (2014). https://doi.org/10.1111/jth.12670
X. Tan, L. Hu, L.J. Luquette III, G. Gao, Y. Liu, H. Qu, R. Xi, Z.J. Lu, P.J. Park, S.J. Elledge, Systematic identification of synergistic drug pairs targeting HIV. Nat. Biotechnol. 30(11), 1125–1130 (2012). https://doi.org/10.1038/nbt.2391
R.I. Zeitoun, A.D. Garst, G.D. Degen, G. Pines, T.J. Mansell, T.Y. Glebes, N.R. Boyle, R.T. Gill, Multiplexed tracking of combinatorial genomic mutations in engineered cell populations. Nat. Biotechnol. 33(6), 631–637 (2015). https://doi.org/10.1038/nbt.3177
Z. Sun, R. Zhang, Z. Liu, C. Liu, X. Li, W. Zhou, L. Yang, Q. Ruan, X. Zhang, Development of a fluorescence–based multiplex genotyping method for simultaneous determination of human papillomavirus infections and viral loads. BMC Cancer 15(1), 860 (2015). https://doi.org/10.1186/s12885-015-1874-9
J. Zhu, C. Qiu, M. Palla, T. Nguyen, J.J. Russo, J. Ju, Q. Lin, A microfluidic device for multiplex single-nucleotide polymorphism genotyping. RSC Adv. 4(9), 4269–4277 (2014). https://doi.org/10.1039/C3RA44091E
R. Tozzoli, D. Villalta, Autoantibody profiling of patients with antiphospholipid syndrome using an automated multiplexed immunoassay system. Autoimmun. Rev. 13(1), 59–63 (2014). https://doi.org/10.1016/j.autrev.2013.08.007
P. Lea, E. Keystone, S. Mudumba, A. Kahama, S.-F. Ding, J. Hansen, A.A. Azad, S. Wang, D. Weber, Advantages of multiplex proteomics in clinical immunology. Clin. Rev. Allergy Immunol. 41(1), 20–35 (2011). https://doi.org/10.1007/s12016-009-8189-z
J.D. Lapek Jr., P. Greninger, R. Morris, A. Amzallag, I. Pruteanu-Malinici, C.H. Benes, W. Haas, Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nat. Biotechnol. 35(10), 983–989 (2017). https://doi.org/10.1038/nbt.3955
X.-P. He, X.-L. Hu, T.D. James, J. Yoon, H. Tian, Multiplexed photoluminescent sensors: towards improved disease diagnostics. Chem. Soc. Rev. 46(22), 6687–6696 (2017). https://doi.org/10.1039/C6CS00778C
D.-W. Li, W.-L. Zhai, Y.-T. Li, Y.-T. Long, Recent progress in surface enhanced raman spectroscopy for the detection of environmental pollutants. Microchim. Acta 181(1–2), 23–43 (2014). https://doi.org/10.1007/s00604-013-1115-3
C.D. Earle, E.M. King, A. Tsay, K. Pittman, B. Saric, L. Vailes, R. Godbout, K.G. Oliver, M.D. Chapman, High-throughput fluorescent multiplex array for indoor allergen exposure assessment. J. Allergy Clin. Immunol. 119(2), 428–433 (2007). https://doi.org/10.1016/j.jaci.2006.11.004
Y.C. Cao, R. Jin, C.A. Mirkin, Nanops with raman spectroscopic fingerprints for DNA and rna detection. Science 297(5586), 1536–1540 (2002). https://doi.org/10.1126/science.297.5586.1536
I.E. Sendroiu, L.K. Gifford, A. Lupták, R.M. Corn, Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanop-enhanced SPR imaging. J. Am. Chem. Soc. 133(12), 4271–4273 (2011). https://doi.org/10.1021/ja2005576
Z. Wang, S. Zong, W. Li, C. Wang, S. Xu, H. Chen, Y. Cui, Sers-fluorescence joint spectral encoding using organic–metal–QD hybrid nanops with a huge encoding capacity for high-throughput biodetection: putting theory into practice. J. Am. Chem. Soc. 134(6), 2993–3000 (2012). https://doi.org/10.1021/ja208154m
F. Zhang, Q. Shi, Y. Zhang, Y. Shi, K. Ding, D. Zhao, G.D. Stucky, Fluorescence upconversion microbarcodes for multiplexed biological detection: nucleic acid encoding. Adv. Mater. 23(33), 3775–3779 (2011). https://doi.org/10.1002/adma.201190129
T.R. Sathe, A. Agrawal, S. Nie, Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal. Chem. 78(16), 5627–5632 (2006). https://doi.org/10.1021/ac0610309
J. Du, P. Bernasconi, K.R. Clauser, D. Mani, S.P. Finn et al., Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat. Biotechnol. 27(1), 77–83 (2009). https://doi.org/10.1038/nbt.1513
D.S. Dandy, P. Wu, D.W. Grainger, Array feature size influences nucleic acid surface capture in DNA microarrays. P. Natl. Acad. Sci. USA 104(20), 8223–8228 (2007). https://doi.org/10.1073/pnas.0606054104
Y. Leng, K. Sun, X. Chen, W. Li, Suspension arrays based on nanop-encoded microspheres for high-throughput multiplexed detection. Chem. Soc. Rev. 44(15), 5552–5595 (2015). https://doi.org/10.1039/C4CS00382A
R. Wilson, A.R. Cossins, D.G. Spiller, Encoded microcarriers for high-throughput multiplexed detection. Angew. Chem. Int. Ed. 45(37), 6104–6117 (2006). https://doi.org/10.1002/anie.200600288
K. Braeckmans, S.C. De Smedt, M. Leblans, R. Pauwels, J. Demeester, Encoding microcarriers: present and future technologies. Nat. Rev. Drug Discov. 1(6), 447–456 (2002). https://doi.org/10.1038/nrd817
R.J. Fulton, R.L. McDade, P.L. Smith, L.J. Kienker, J.R. Kettman, Advanced multiplexed analysis with the FlowMetrixTM system. Clin. Chem. 43(9), 1749–1756 (1997)
D. Peng, Q. Ju, X. Chen, R. Ma, B. Chen et al., Lanthanide-doped energy cascade nanops: full spectrum emission by single wavelength excitation. Chem. Mater. 27(8), 3115–3120 (2015). https://doi.org/10.1021/acs.chemmater.5b00775
F. Wang, X. Liu, Multicolor tuning of lanthanide-doped nanops by single wavelength excitation. Acc. Chem. Res. 47(4), 1378–1385 (2014). https://doi.org/10.1021/ar5000067
S. Wu, G. Han, D.J. Milliron, S. Aloni, V. Altoe, D.V. Talapin, B.E. Cohen, P.J. Schuck, Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009). https://doi.org/10.1073/pnas.0904792106
J. Xu, L. Xu, C. Wang, R. Yang, Q. Zhuang et al., Near-infrared-triggered photodynamic therapy with multitasking upconversion nanops in combination with checkpoint blockade for immunotherapy of colorectal cancer. ACS Nano 11(5), 4463–4474 (2017). https://doi.org/10.1021/acsnano.7b00715
S. Shikha, T. Salafi, J. Cheng, Y. Zhang, Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev. 46(22), 7054–7093 (2017). https://doi.org/10.1039/C7CS00271H
J. Lee, P.W. Bisso, R.L. Srinivas, J.J. Kim, A.J. Swiston, P.S. Doyle, Universal process-inert encoding architecture for polymer microps. Nat. Mater. 13(5), 524–529 (2014). https://doi.org/10.1038/nmat3938
H. Liu, Y. Zhang, Droplet formation in microfluidic cross-junctions. Phys. Fluids 23(8), 082101 (2011). https://doi.org/10.1063/1.3615643
H. Liu, X. Qian, Z. Wu, R. Yang, S. Sun, H. Ma, Microfluidic synthesis of QD-encoded pegda microspheres for suspension assay. J. Mater. Chem. B 4(3), 482–488 (2016). https://doi.org/10.1039/C5TB02209F
C. Yesildag, A. Tyushina, M. Lensen, Nano-contact transfer with gold nanops on PEG hydrogels and using wrinkled PDMS-stamps. Polym. Basel 9(6), 199 (2017). https://doi.org/10.3390/polym9060199
H.S. Qian, H.C. Guo, P.C.L. Ho, R. Mahendran, Y. Zhang, Mesoporous-silica-coated up-conversion fluorescent nanops for photodynamic therapy. Small 5(20), 2285–2290 (2009). https://doi.org/10.1002/smll.200900692
Q. Dou, N.M. Idris, Y. Zhang, Sandwich-structured upconversion nanops with tunable color for multiplexed cell labeling. Biomaterials 34(6), 1722–1731 (2013). https://doi.org/10.1016/j.biomaterials.2012.11.011
C. Ma, X. Xu, F. Wang, Z. Zhou, D. Liu, J. Zhao, M. Guan, C.I. Lang, D. Jin, Optimal sensitizer concentration in single upconversion nanocrystals. Nano Lett. 17(5), 2858–2864 (2017). https://doi.org/10.1021/acs.nanolett.6b05331
S. Park, H.J. Lee, W.-G. Koh, Multiplex immunoassay platforms based on shape-coded poly (ethylene glycol) hydrogel microps incorporating acrylic acid. Sens. Basel 12(6), 8426–8436 (2012). https://doi.org/10.3390/s120608426
D. Fan, C. Wu, K. Wang, X. Gu, Y. Liu, E. Wang, A polydopamine nanosphere based highly sensitive and selective aptamer cytosensor with enzyme amplification. Chem. Commun. 52(2), 406–409 (2016). https://doi.org/10.1039/C5CC06754E
J. Zhang, S. Kruss, A.J. Hilmer, S. Shimizu, Z. Schmois et al., A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin t using near-infrared fluorescent single-walled carbon nanotube sensors. Adv. Healthc. Mater. 3(3), 412–423 (2014). https://doi.org/10.1002/adhm.201300033
Y. Tang, W. Di, X. Zhai, R. Yang, W. Qin, Nir-responsive photocatalytic activity and mechanism of nayf4:Yb, Tm@TiO2 core–shell nanops. ACS Catal. 3(3), 405–412 (2013). https://doi.org/10.1021/cs300808r
B. Cao, J. Wu, Z. Feng, B. Dong, Investigation of near-infrared-to-ultraviolet upconversion luminescence of Tm3+ doped NAYF4 phosphors by Yb3+ codoping. Mater. Chem. Phys. 142(1), 333–338 (2013). https://doi.org/10.1016/j.matchemphys.2013.07.025
G. Chen, T.Y. Ohulchanskyy, R. Kumar, H. Ågren, P.N. Prasad, Ultrasmall monodisperse nayf4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4(6), 3163–3168 (2010). https://doi.org/10.1021/nn100457j
L.C. Ong, L.Y. Ang, S. Alonso, Y. Zhang, Bacterial imaging with photostable upconversion fluorescent nanops. Biomaterials 35(9), 2987–2998 (2014). https://doi.org/10.1016/j.biomaterials.2013.12.060
J.B. Hall, M.A. Dobrovolskaia, A.K. Patri, S.E. McNeil, Characterization of nanops for therapeutics. Nanomed. UK 2(6), 789–803 (2007). https://doi.org/10.2217/17435889.2.6.789