Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells
Corresponding Author: Jingjing Chang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 117
Abstract
Flexible perovskite solar cells (FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the development of flexible electrodes compatible with the optoelectronic properties of perovskite. In this review, the recent progress of flexible electrodes used in FPSCs is comprehensively reviewed. The major features of flexible transparent electrodes, including transparent conductive oxides, conductive polymer, carbon nanomaterials and nanostructured metallic materials are systematically compared. And the corresponding modification strategies and device performance are summarized. Moreover, flexible opaque electrodes including metal films, opaque carbon materials and metal foils are critically assessed. Finally, the development directions and difficulties of flexible electrodes are given.
Highlights:
1 Convincing candidates of flexible transparent electrodes are discussed in detail from the views of fabrication, properties and device performance.
2 The progresses of flexible opaque electrodes used in flexible perovskite solar cells are provided.
3 The future directions and challenges in developing flexible electrodes are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Meng, E.P. Yao, Z. Hong, H. Chen, P. Sun et al., Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage. Adv. Mater. 29(4), 1603826 (2017). https://doi.org/10.1002/adma.201603826
- L. Gu, M.M. Tavakoli, D. Zhang, Q. Zhang, A. Waleed et al., 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 28(44), 9713–9721 (2016). https://doi.org/10.1002/adma.201601603
- J. Di, J. Chang, S. Liu, Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications. EcoMat 2(3), e12036 (2020). https://doi.org/10.1002/eom2.12036
- J. Di, J. Du, Z. Lin, S. Liu, J. Ouyang et al., Recent advances in resistive random access memory based on lead halide perovskite. InfoMat 3(3), 293–315 (2021). https://doi.org/10.1002/inf2.12162
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- NREL, Best research-cell efficiency chart. (2021). https://www.nrel.gov/pv/cell-efficiency.html
- M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer et al., Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14(10), 1032–1039 (2015). https://doi.org/10.1038/nmat4388
- S. Kang, J. Jeong, S. Cho, Y.J. Yoon, S. Park et al., Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. J. Mater. Chem. A 7(3), 1107–1114 (2019). https://doi.org/10.1039/C8TA10585E
- Y. Hu, T. Niu, Y. Liu, Y. Zhou, Y. Xia et al., Flexible perovskite solar cells with high power-per-weight: progress, application, and perspectives. ACS Energy Lett. 6(8), 2917–2943 (2021). https://doi.org/10.1021/acsenergylett.1c01193
- X. Meng, Z. Xing, X. Hu, Z. Huang, T. Hu et al., Stretchable perovskite solar cells with recoverable performance. Angew. Chem. Int. Ed. 59(38), 16602–16608 (2020). https://doi.org/10.1002/anie.202003813
- P. Ma, Y. Lou, S. Cong, Z. Lu, K. Zhu et al., Malleability and pliability of silk-derived electrodes for efficient deformable perovskite solar cells. Adv. Energy Mater. 10(8), 1903357 (2020). https://doi.org/10.1002/aenm.201903357
- K. Zhu, Z. Lu, S. Cong, G. Cheng, P. Ma et al., Ultraflexible and lightweight bamboo-derived transparent electrodes for perovskite solar cells. Small 15(33), 1902878 (2019). https://doi.org/10.1002/smll.201902878
- X. Meng, Z. Cai, Y. Zhang, X. Hu, Z. Xing et al., Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat. Commun. 11, 3016 (2020). https://doi.org/10.1038/s41467-020-16831-3
- Z. Wang, L. Zeng, C. Zhang, Y. Lu, S. Qiu et al., Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%. Adv. Funct. Mater. 30(32), 2001240 (2020). https://doi.org/10.1002/adfm.202001240
- D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
- Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
- B. Zhang, J. Su, X. Guo, L. Zhou, Z. Lin et al., NiO/perovskite heterojunction contact engineering for highly efficient and stable perovskite solar cells. Adv. Sci. 7(11), 1903044 (2020). https://doi.org/10.1002/advs.201903044
- M. Yue, J. Su, P. Zhao, Z. Lin, J. Zhang et al., Optimizing the performance of CsPbI3-based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering. Nano-Micro Lett. 11, 91 (2019). https://doi.org/10.1007/s40820-019-0320-y
- X. Hu, Z. Huang, F. Li, M. Su, Z. Huang et al., Nacre-inspired crystallization and elastic “brick-and-mortar” structure for a wearable perovskite solar module. Energy Environ. Sci. 12(3), 979–987 (2019). https://doi.org/10.1039/C8EE01799A
- M. Li, Y. Yang, Z. Wang, T. Kang, Q. Wang et al., Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv. Mater. 31(25), 1901519 (2019). https://doi.org/10.1002/adma.201901519
- X. Duan, X. Li, L. Tan, Z. Huang, J. Yang et al., Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv. Mater. 32(26), 2000617 (2020). https://doi.org/10.1002/adma.202000617
- G. Lee, M.C. Kim, Y.W. Choi, N. Ahn, J. Jang et al., Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy Environ. Sci. 12(10), 3182–3191 (2019). https://doi.org/10.1039/c9ee01944h
- Y. Zhang, Z. Wu, P. Li, L.K. Ono, Y. Qi et al., Fully solution-processed TCO-free semitransparent perovskite solar cells for tandem and flexible applications. Adv. Energy Mater. 8(1), 1701569 (2018). https://doi.org/10.1002/aenm.201701569
- Z. Wang, X. Zhu, J. Feng, D. Yang, S. Liu, Semitransparent flexible perovskite solar cells for potential greenhouse applications. Sol. RRL 5(8), 2100264 (2021). https://doi.org/10.1002/solr.202100264
- B. Dou, E.M. Miller, J.A. Christians, E.M. Sanehira, T.R. Klein et al., High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO. J. Phys. Chem. Lett. 8(19), 4960–4966 (2017). https://doi.org/10.1021/acs.jpclett.7b02128
- B.J. Kim, D.H. Kim, Y.Y. Lee, H.W. Shin, G.S. Han et al., Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8(3), 916–921 (2015). https://doi.org/10.1039/C4EE02441A
- H.C. Weerasinghe, Y. Dkhissi, A.D. Scully, R.A. Caruso, Y.B.B. Cheng, Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy 18, 118–125 (2015). https://doi.org/10.1016/j.nanoen.2015.10.006
- S. Pisoni, F. Fu, R. Widmer, R. Carron, T. Moser et al., Impact of interlayer application on band bending for improved electron extraction for efficient flexible perovskite mini-modules. Nano Energy 49, 300–307 (2018). https://doi.org/10.1016/j.nanoen.2018.04.056
- J.G. Kim, S.I. Na, H. Kim, Flexible and transparent IWO films prepared by plasma arc ion plating for flexible perovskite solar cells. AIP Adv. 8(10), 105122 (2018). https://doi.org/10.1063/1.5054347
- J.W. Bae, S.W. Lee, G.Y. Yeom, Doped-fluorine on electrical and optical properties of tin oxide films grown by ozone-assisted thermal CVD. J. Electrochem. Soc. 154, D34 (2007). https://doi.org/10.1149/1.2382346
- T. Kawashima, T. Ezure, K. Okada, H. Matsui, K. Goto et al., FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 164, 199–202 (2004). https://doi.org/10.1016/j.jphotochem.2003.12.028
- M.P. Taylor, D.W. Readey, M.F.A.M. Hest, C.W. Teplin, J.L. Alleman et al., The remarkable thermal stability of amorphous In-Zn-O transparent conductors. Adv. Funct. Mater. 18(20), 3169–3178 (2008). https://doi.org/10.1002/adfm.200700604
- J.I. Park, J.H. Heo, S.H. Park, K.I. Hong, H.G. Jeong et al., Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. J. Power Sources 341, 340–347 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.026
- Y. Dkhissi, F. Huang, S. Rubanov, M. Xiao, U. Bach et al., Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. J. Power Sources 278, 325–331 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.104
- L. Yang, Q. Xiong, Y. Li, P. Gao, B. Xu et al., Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J. Mater. Chem. A 9(3), 1574–1582 (2021). https://doi.org/10.1039/D0TA10717D
- L. Yang, Y. Li, L. Wang, Y. Pei, Z. Wang et al., Exfoliated fluorographene quantum dots as outstanding passivants for improved flexible perovskite solar cells. ACS Appl. Mater. Interfaces 12(20), 22992–23001 (2020). https://doi.org/10.1021/acsami.0c04975
- P. Ru, E. Bi, Y. Zhang, Y. Wang, W. Kong et al., High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 10(12), 1903487 (2020). https://doi.org/10.1002/aenm.201903487
- E. Cho, Y. Yun, D. Seok, J. Heung, J. Park et al., Highly efficient and stable flexible perovskite solar cells enabled by using plasma-polymerized-fluorocarbon antireflection layer. Nano Energy 82, 105737 (2021). https://doi.org/10.1016/j.nanoen.2020.105737
- J. Zhang, W. Zhang, H.M. Cheng, S.R.P. Silva, Critical review of recent progress of flexible perovskite solar cells. Mater. Today 39, 66–88 (2020). https://doi.org/10.1016/j.mattod.2020.05.002
- U.J. Ryu, S. Jee, J.S. Park, I.K. Han, J.H. Lee et al., Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano 12(5), 4968–4975 (2018). https://doi.org/10.1021/acsnano.8b02079
- S. Jon, G. Sin, G. Kim, G. Jong, J. Ri, Flexible perovskite solar cells based on AgNW/ATO composite transparent electrodes. Synth. Met. 262, 116286 (2020). https://doi.org/10.1016/j.synthmet.2019.116286
- M. Dianetti, F.D. Giacomo, G. Polino, C. Ciceroni, A. Liscio et al., TCO-free flexible organo metal trihalide perovskite planar-heterojunction solar cells. Sol. Energy Mater. Sol. Cells 140, 150–157 (2015). https://doi.org/10.1016/j.solmat.2015.03.016
- K. Poorkazem, D. Liu, T.L. Kelly, Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell. J. Mater. Chem. A 3(17), 9241–9248 (2015). https://doi.org/10.1039/C5TA00084J
- B. Cao, L. Yang, S. Jiang, H. Lin, N. Wang et al., Flexible quintuple cation perovskite solar cells with high efficiency. J. Mater. Chem. A 7(9), 4960–4970 (2019). https://doi.org/10.1039/C8TA11945G
- M. Cai, Y. Wu, H. Chen, X. Yang, Y. Qiang et al., Cost-performance analysis of perovskite solar modules. Adv. Sci. 4(1), 1600269 (2017). https://doi.org/10.1002/advs.201600269
- J.S. Yeo, J.M. Yun, Y.S. Jung, D.Y. Kim, Y.J. Noh et al., Sulfonic acid-functionalized, reduced graphene oxide as an advanced interfacial material leading to donor polymer-independent high-performance polymer solar cells. J. Mater. Chem. A 2(2), 292–298 (2014). https://doi.org/10.1039/c3ta13647g
- J.S. Yeo, R. Kang, S. Lee, Y.J. Jeon, N. Myoung et al., Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12, 96–104 (2015). https://doi.org/10.1016/j.nanoen.2014.12.022
- X. Wan, G. Long, L. Huang, Y. Chen, Graphene - a promising material for organic photovoltaic cells. Adv. Mater. 23(45), 5342–5358 (2011). https://doi.org/10.1002/adma.201102735
- S. Pang, Y. Hernandez, X. Feng, K. Müllen, Graphene as transparent electrode material for organic electronics. Adv. Mater. 23(25), 2779–2795 (2011). https://doi.org/10.1002/adma.201100304
- J. Feng, X. Zhu, Z. Yang, X. Zhang, J. Niu et al., Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater. 30(35), 1801418 (2018). https://doi.org/10.1002/adma.201801418
- M.M. Tavakoli, K.H. Tsui, Q. Zhang, J. He, Y. Yao et al., Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano 9(10), 10287–10295 (2015). https://doi.org/10.1021/acsnano.5b04284
- J.H. Kim, H.J. Seok, H.J. Seo, T.Y. Seong, J.H. Heo et al., Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells. Nanoscale 10(44), 20587–20598 (2018). https://doi.org/10.1039/C8NR06586A
- Y. Zhu, L. Shu, Q. Zhang, Y. Zhu, S. Poddar et al., Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics. EcoMat 3(4), e12117 (2021). https://doi.org/10.1002/eom2.12117
- J.A. Raiford, R.A. Belisle, K.A. Bush, R. Prasanna, A.F. Palmstrom et al., Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n–i–p perovskite solar cells for tandems. Sustain. Energy Fuels 3(6), 1517–1525 (2019). https://doi.org/10.1039/C9SE00081J
- J. Werner, G. Dubuis, A. Walter, P. Löper, S.J. Moon et al., Sputtered rear electrode with broadband transparency for perovskite solar cells. Sol. Energy Mater. Sol. Cells 141, 407–413 (2015). https://doi.org/10.1016/j.solmat.2015.06.024
- K.A. Bush, C.D. Bailie, Y. Chen, A.R. Bowring, W. Wang et al., Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanop buffer layer and sputtered ITO electrode. Adv. Mater. 28(20), 3937–3943 (2016). https://doi.org/10.1002/adma.201505279
- Y.J. Noh, J.G. Kim, S.S. Kim, H.K. Kim, S.I. Na, Efficient semi-transparent perovskite solar cells with a novel indium zinc tin oxide top electrode grown by linear facing target sputtering. J. Power Sources 437, 226894 (2019). https://doi.org/10.1016/j.jpowsour.2019.226894
- M. Lee, Y. Jo, D.S. Kim, H.Y. Jeong, Y. Jun, Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate. J. Mater. Chem. A 3(28), 14592–14597 (2015). https://doi.org/10.1039/c5ta03240g
- Y. Xiao, G. Han, H. Zhou, J. Wu, An efficient titanium foil based perovskite solar cell: using a titanium dioxide nanowire array anode and transparent poly (3,4-ethylenedioxythiophene) electrode. RSC Adv. 6(4), 2778–2784 (2016). https://doi.org/10.1039/C5RA23430A
- K.G. Lim, H.B. Kim, J. Jeong, H. Kim, J.Y. Kim et al., Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26(37), 6461–6466 (2014). https://doi.org/10.1002/adma.201401775
- Z. Gu, L. Zuo, T.T. Larsen-Olsen, T. Ye, G. Wu et al., Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. J. Mater. Chem. A 3(48), 24254–24260 (2015). https://doi.org/10.1039/C5TA07008B
- C. Zuo, L. Ding, Modified PEDOT layer makes a 1.52V Voc for perovskite/PCBM solar cells. Adv. Energy Mater. 7(2), 1601193 (2017). https://doi.org/10.1002/aenm.201601193
- P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013). https://doi.org/10.1038/ncomms3761
- C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao, One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 46, 185–192 (2018). https://doi.org/10.1016/j.nanoen.2018.01.037
- M. Park, H.J. Kim, I. Jeong, J. Lee, H. Lee et al., Mechanically recoverable and highly efficient perovskite solar cells: investigation of intrinsic flexibility of organic-inorganic perovskite. Adv. Energy Mater. 5(22), 1501406 (2015). https://doi.org/10.1002/aenm.201501406
- L. Chen, X. Xie, Z. Liu, E.C. Lee, A transparent poly(3,4-ethylenedioxylenethiophene):poly(styrene sulfonate) cathode for low temperature processed, metal-oxide free perovskite solar cells. J. Mater. Chem. A 5(15), 6974–6980 (2017). https://doi.org/10.1039/C6TA10588B
- N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng et al., Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26(14), 2268–2272 (2014). https://doi.org/10.1002/adma.201304611
- X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang et al., PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6(19), 1900813 (2019). https://doi.org/10.1002/advs.201900813
- M. Vosgueritchian, D.J. Lipomi, Z. Bao, Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22(2), 421–428 (2012). https://doi.org/10.1002/adfm.201101775
- X. Hu, Z. Huang, X. Zhou, P. Li, Y. Wang et al., Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv. Mater. 29(42), 1703236 (2017). https://doi.org/10.1002/adma.201703236
- K. Sun, P. Li, Y. Xia, J. Chang, J. Ouyang, Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode. ACS Appl. Mater. Interfaces 7(28), 15314–15320 (2015). https://doi.org/10.1021/acsami.5b03171
- N. Kim, H. Kang, J.H. Lee, S. Kee, S.H. Lee et al., Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv. Mater. 27(14), 2317–2323 (2015). https://doi.org/10.1002/adma.201500078
- B. Vaagensmith, K.M. Reza, M.D.N.N. Hasan, H. Elbohy, N. Adhikari et al., Environmentally friendly plasma-treated PEDOT:PSS as electrodes for ITO-free perovskite solar cells. ACS Appl. Mater. Interfaces 9(41), 35861–35870 (2017). https://doi.org/10.1021/acsami.7b10987
- X. Hu, X. Meng, L. Zhang, Y. Zhang, Z. Cai et al., A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule 3(9), 2205–2218 (2019). https://doi.org/10.1016/j.joule.2019.06.011
- X. Hu, X. Meng, X. Yang, Z. Huang, Z. Xing et al., Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Sci. Bull. 66(6), 527–535 (2021). https://doi.org/10.1016/j.scib.2020.10.023
- M. Xu, J. Feng, Z.J. Fan, X.L. Ou, Z.Y. Zhang et al., Flexible perovskite solar cells with ultrathin Au anode and vapour-deposited perovskite film. Sol. Energy Mater. Sol. Cells 169, 8–12 (2017). https://doi.org/10.1016/j.solmat.2017.04.039
- J.H. Heo, D.H. Shin, D.H. Song, D.H. Kim, S.J. Lee et al., Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. J. Mater. Chem. A 6(18), 8251–8258 (2018). https://doi.org/10.1039/C8TA02672F
- X. Wang, Z. Li, W. Xu, S.A. Kulkarni, S.K. Batabyal et al., TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728–735 (2014). https://doi.org/10.1016/j.nanoen.2014.11.042
- Z. Li, S.A. Kulkarni, P.P. Boix, E. Shi, A. Cao et al., Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8(7), 6797–6804 (2014). https://doi.org/10.1021/nn501096h
- T.J. Macdonald, M. Batmunkh, C.T. Lin, J. Kim, D.D. Tune et al., Origin of performance enhancement in TiO2-carbon nanotube composite perovskite solar cells. Small Methods 3(10), 1900164 (2019). https://doi.org/10.1002/smtd.201900164
- A. Amini, H. Abdizadeh, M.R. Golobostanfard, Hybrid 1D/2D carbon nanostructure-incorporated titania photoanodes for perovskite solar cells. ACS Appl. Energy Mater. 3(7), 6195–6204 (2020). https://doi.org/10.1021/acsaem.0c00200
- V.T. Tiong, N.D. Pham, T. Wang, T. Zhu, X. Zhao et al., Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells. Adv. Funct. Mater. 28(10), 1705545 (2018). https://doi.org/10.1002/adfm.201705545
- H.S. Lin, S. Okawa, Y. Ma, S. Yotsumoto, C. Lee et al., Polyaromatic nanotweezers on semiconducting carbon nanotubes for the growth and interfacing of lead halide perovskite crystal grains in solar cells. Chem. Mater. 32(12), 5125–5133 (2020). https://doi.org/10.1021/acs.chemmater.0c01011
- S. Seo, I. Jeon, R. Xiang, C. Lee, H. Zhang et al., Semiconducting carbon nanotubes as crystal growth templates and grain bridges in perovskite solar cells. J. Mater. Chem. A 7(21), 12987–12992 (2019). https://doi.org/10.1039/c9ta02629k
- Y. Yang, H. Chen, C. Hu, S. Yang, Polyethyleneimine-functionalized carbon nanotubes as an interlayer to bridge perovskite/carbon for all inorganic carbon-based perovskite solar cells. J. Mater. Chem. A 7(38), 22005–22011 (2019). https://doi.org/10.1039/c9ta08177a
- P. Schulz, A.M. Dowgiallo, M. Yang, K. Zhu, J.L. Blackburn et al., Charge transfer dynamics between carbon nanotubes and hybrid organic metal halide perovskite films. J. Phys. Chem. Lett. 7(3), 418–425 (2016). https://doi.org/10.1021/acs.jpclett.5b02721
- R.A. Hatton, A.J. Miller, S.R.P.P. Silva, Carbon nanotubes: a multi-functional material for organic optoelectronics. J. Mater. Chem. 18(11), 1183–1192 (2008). https://doi.org/10.1039/B713527K
- I. Jeon, T. Chiba, C. Delacou, Y. Guo, A. Kaskela et al., Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett. 15(10), 6665–6671 (2015). https://doi.org/10.1021/acs.nanolett.5b02490
- S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas et al., Enhanced hole extraction in perovskite solar cells through carbon nanotubes. J. Phys. Chem. Lett. 5(23), 4207–4212 (2014). https://doi.org/10.1021/jz5021795
- I. Jeon, J. Yoon, N. Ahn, M. Atwa, C. Delacou et al., Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells. J. Phys. Chem. Lett. 8(21), 5395–5401 (2017). https://doi.org/10.1021/acs.jpclett.7b02229
- J. Yoon, U. Kim, Y. Yoo, J. Byeon, S.K. Lee et al., Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor. Adv. Sci. 8(7), 2004092 (2021). https://doi.org/10.1002/advs.202004092
- I. Jeon, J. Yoon, U. Kim, C. Lee, R. Xiang et al., High-performance solution-processed double-walled carbon nanotube transparent electrode for perovskite solar cells. Adv. Energy Mater. 9(27), 1901204 (2019). https://doi.org/10.1002/aenm.201901204
- C. Zhang, M. Chen, F. Fu, H. Zhu, T. Feurer et al., CNT-based bifacial perovskite solar cells toward highly efficient 4-terminal tandem photovoltaics. Energy Environ. Sci. (2022). https://doi.org/10.1039/D1EE04008A
- Z. Liu, S.P. Lau, F. Yan, Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev. 44(15), 5638–5679 (2015). https://doi.org/10.1039/c4cs00455h
- Q. Luo, H. Ma, Q. Hou, Y. Li, J. Ren et al., All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. 28(11), 1706777 (2018). https://doi.org/10.1002/adfm.201706777
- J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10(1), 337–345 (2017). https://doi.org/10.1039/C6EE02650H
- Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016). https://doi.org/10.1016/j.nanoen.2016.08.038
- J.H. Heo, D.H. Shin, M.L. Lee, M.G. Kang, S.H. Im, Efficient organic-inorganic hybrid flexible perovskite solar cells prepared by lamination of polytriarylamine/CH3NH3PbI3/anodized Ti metal substrate and graphene/PDMS transparent electrode substrate. ACS Appl. Mater. Interf. 10(37), 31413–31421 (2018). https://doi.org/10.1021/acsami.8b11411
- J.T.W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber et al., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724–730 (2014). https://doi.org/10.1021/nl403997a
- Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang et al., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6(18), 10505–10510 (2014). https://doi.org/10.1039/C4NR03181D
- H. Sung, N. Ahn, M.S. Jang, J.K. Lee, H. Yoon et al., Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6(3), 1501873 (2016). https://doi.org/10.1002/aenm.201501873
- J.H. Heo, D.H. Shin, M.H. Jang, M.L. Lee, M.G. Kang et al., Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes. J. Mater. Chem. A 5(40), 21146–21152 (2017). https://doi.org/10.1039/C7TA06465A
- W. Shin, W. Cho, S.J. Baik, Silver nanowires network encapsulated by low temperature sol–gel ZnO for transparent flexible electrodes with ambient stability. Mater. Res. Express 5(1), 15050 (2018). https://doi.org/10.1088/2053-1591/aaa67a
- H. Lu, J. Sun, H. Zhang, S. Lu, W.C.H.H. Choy, Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale 8(11), 5946–5953 (2016). https://doi.org/10.1039/c6nr00011h
- M. Lee, Y. Ko, B.K. Min, Y. Jun, Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate. Chemsuschem 9(1), 31–35 (2016). https://doi.org/10.1002/cssc.201501332
- F. Guo, H. Azimi, Y. Hou, T. Przybilla, M. Hu et al., High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7(5), 1642–1649 (2015). https://doi.org/10.1039/C4NR06033D
- F. Guo, X. Zhu, K. Forberich, J. Krantz, T. Stubhan et al., ITO-free and fully solution-processed semitransparent organic solar cells with high fill factors. Adv. Energy Mater. 3(8), 1062–1067 (2013). https://doi.org/10.1002/aenm.201300100
- K.K. Sears, M. Fievez, M. Gao, H.C. Weerasinghe, C.D. Easton et al., ITO-free flexible perovskite solar cells based on roll-to-roll, slot-die coated silver nanowire electrodes. Sol. RRL 1(8), 1700059 (2017). https://doi.org/10.1002/solr.201700059
- X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen et al., Realizing ultrahigh mechanical flexibility and > 15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 32(14), 1908478 (2020). https://doi.org/10.1002/adma.201908478
- H. Dong, Z. Wu, Y. Jiang, W. Liu, X. Li et al., A flexible and thin graphene/silver nanowires/polymer hybrid transparent electrode for optoelectronic devices. ACS Appl. Mater. Interf. 8(45), 31212–31221 (2016). https://doi.org/10.1021/acsami.6b09056
- E. Lee, J. Ahn, H.C. Kwon, S. Ma, K. Kim et al., All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection. Adv. Energy Mater. 8(9), 1702182 (2018). https://doi.org/10.1002/aenm.201702182
- T.Y. Jin, W. Li, Y.Q. Li, Y.X. Luo, Y. Shen et al., High-performance flexible perovskite solar cells enabled by low-temperature ALD-assisted surface passivation. Adv. Opt. Mater. 6(24), 1801153 (2018). https://doi.org/10.1002/adom.201801153
- H. Im, S. Jeong, J. Jin, J. Lee, D. Youn et al., Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Mater. 8(6), e282–e282 (2016). https://doi.org/10.1038/am.2016.85
- J. Han, S. Yuan, L. Liu, X. Qiu, H. Gong et al., Fully indium-free flexible Ag nanowires/ZnO: F composite transparent conductive electrodes with high haze. J. Mater. Chem. A 3(10), 5375–5384 (2015). https://doi.org/10.1039/C4TA05728G
- A. Kim, H. Lee, H.C. Kwon, H.S. Jung, N.G. Park et al., Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells. Nanoscale 8(12), 6308–6316 (2016). https://doi.org/10.1039/C5NR04585A
- Z. Lu, Y. Lou, P. Ma, K. Zhu, S. Cong et al., Highly flexible and transparent polylactic acid composite electrode for perovskite solar cells. Sol. RRL 4(10), 2000320 (2020). https://doi.org/10.1002/solr.202000320
- G. Zeng, J. Zhang, X. Chen, H. Gu, Y. Li et al., Breaking 12% efficiency in flexible organic solar cells by using a composite electrode. Sci. China Chem. 62(7), 851–858 (2019). https://doi.org/10.1007/s11426-018-9430-8
- S. Kang, T. Kim, S. Cho, Y. Lee, B. Walker et al., Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices. Nano Lett. 15(12), 7933–7942 (2015). https://doi.org/10.1021/acs.nanolett.5b03019
- T.B. Song, Y. Chen, C.H. Chung, Y. Yang, B. Bob et al., Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 8(3), 2804–2811 (2014). https://doi.org/10.1021/nn4065567
- R. Chen, S.R. Das, C. Jeong, M.R. Khan, D.B. Janes et al., Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv. Funct. Mater. 23(41), 5150–5158 (2013). https://doi.org/10.1002/adfm.201300124
- B.A. Nejand, P. Nazari, S. Gharibzadeh, V. Ahmadi, A. Moshaii, All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate. Chem. Commun. 53(4), 747–750 (2017). https://doi.org/10.1039/C6CC07573H
- Y. Liu, J. Zhang, H. Gao, Y. Wang, Q. Liu et al., Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 17(2), 1090–1096 (2017). https://doi.org/10.1021/acs.nanolett.6b04613
- Y. Fang, Z. Wu, J. Li, F. Jiang, K. Zhang et al., High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Adv. Funct. Mater. 28(9), 1705409 (2018). https://doi.org/10.1002/adfm.201705409
- H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao et al., Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach. Adv. Funct. Mater. 25(27), 4211–4218 (2015). https://doi.org/10.1002/adfm.201501004
- C.Y. Chang, K.T. Lee, W.K. Huang, H.Y. Siao, Y.C. Chang, High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition. Chem. Mater. 27(14), 5122–5130 (2015). https://doi.org/10.1021/acs.chemmater.5b01933
- Y. Li, M. Lei, Y. Yang, X. Guiying, H. Ziruo et al., High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 10214 (2016). https://doi.org/10.1038/ncomms10214
- J. Wang, X. Chen, F. Jiang, Q. Luo, L. Zhang et al., Electrochemical corrosion of Ag electrode in the silver grid electrode-based flexible perovskite solar cells and the suppression method. Sol. RRL 2(9), 1800118 (2018). https://doi.org/10.1002/solr.201800118
- S.W. Jin, Y.H. Lee, K.M. Yeom, J. Yun, H. Park et al., Highly durable and flexible transparent electrode for flexible optoelectronic applications. ACS Appl. Mater. Interf. 10(36), 30706–30715 (2018). https://doi.org/10.1021/acsami.8b10190
- P. Li, Z. Wu, H. Hu, Y. Zhang, T. Xiao et al., Efficient flexible perovskite solar cells using low-cost cu top and bottom electrodes. ACS Appl. Mater. Interf. 12(23), 26050–26059 (2020). https://doi.org/10.1021/acsami.0c06461
- Y. Yang, F. Min, Y. Qiao, Z. Li, F. Vogelbacher et al., Embossed transparent electrodes assembled by bubble templates for efficient flexible perovskite solar cells. Nano Energy 89, 106384 (2021). https://doi.org/10.1016/j.nanoen.2021.106384
- J. Choi, Y.S. Shim, C.H. Park, H. Hwang, J.H. Kwack et al., Junction-free electrospun Ag fiber electrodes for flexible organic light-emitting diodes. Small 14(7), 1702567 (2018). https://doi.org/10.1002/smll.201702567
- K.W. Seo, J. Lee, J. Jo, C. Cho, J. Lee, Highly efficient (>10%) flexible organic solar cells on PEDOT-free and ITO-free transparent electrodes. Adv. Mater. 31(36), 1902447 (2019). https://doi.org/10.1002/adma.201902447
- G. Jeong, D. Koo, J. Seo, S. Jung, Y. Choi et al., Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Lett. 20(5), 3718–3727 (2020). https://doi.org/10.1021/acs.nanolett.0c00663
- M. Li, W. Zuo, A.G. Ricciardulli, Y. Yang, Y. Liu et al., Embedded nickel-mesh transparent electrodes for highly efficient and mechanically stable flexible perovskite photovoltaics: toward a portable mobile energy source. Adv. Mater. 32(38), 2003422 (2020). https://doi.org/10.1002/adma.202003422
- J. Troughton, D. Bryant, K. Wojciechowski, M.J. Carnie, H. Snaith et al., Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J. Mater. Chem. A 3(17), 9141–9145 (2015). https://doi.org/10.1039/C5TA01755F
- H. Li, X. Li, W. Wang, J. Huang, J. Li et al., Highly foldable and efficient paper-based perovskite solar cells. Sol. RRL 3(3), 1800317 (2019). https://doi.org/10.1002/solr.201800317
- H. Li, X. Li, W. Wang, J. Huang, J. Li et al., Ultraflexible and biodegradable perovskite solar cells utilizing ultrathin cellophane paper substrates and TiO2/Ag/TiO2 transparent electrodes. Sol. Energy 188, 158–163 (2019). https://doi.org/10.1016/j.solener.2019.05.061
- E.D. Gaspera, Y. Peng, Q. Hou, L. Spiccia, U. Bach et al., Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy 13, 249–257 (2015). https://doi.org/10.1016/j.nanoen.2015.02.028
- C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G.M. Espallargas, A. Garcia et al., Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 7(3), 994 (2014). https://doi.org/10.1039/c3ee43619e
- Y. Zhang, X. Guo, J. Huang, Z. Ren, H. Hu et al., Solution process formation of high performance, stable nanostructured transparent metal electrodes via displacement-diffusion-etch process. NPJ Flex. Electron. 6(1), 4 (2022). https://doi.org/10.1038/s41528-022-00134-2
- M. Lee, Y. Jo, D.S. Kim, Y. Jun, Flexible organo-metal halide perovskite solar cells on a Ti metal substrate. J. Mater. Chem. A 3(8), 4129–4133 (2015). https://doi.org/10.1039/C4TA06011C
- X.L. Ou, M. Xu, J. Feng, H.B. Sun, Flexible and efficient ITO-free semitransparent perovskite solar cells. Sol. Energy Mater. Sol. Cells 157, 660–665 (2016). https://doi.org/10.1016/j.solmat.2016.07.010
- C. Hanmandlu, C.C. Liu, C.Y. Chen, K.M. Boopathi, S.H. Wu et al., Top illuminated hysteresis-free perovskite solar cells incorporating microcavity structures on metal electrodes: a combined experimental and theoretical approach. ACS Appl. Mater. Interf. 10(21), 17973–17984 (2018). https://doi.org/10.1021/acsami.8b04329
- Q. Dong, M. Chen, Y. Liu, F.T. Eickemeyer, W. Zhao et al., Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule 5(6), 1587–1601 (2021). https://doi.org/10.1016/j.joule.2021.04.014
- S.S. Shin, W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon et al., High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 6, 7410 (2015). https://doi.org/10.1038/ncomms8410
- X. Guo, J. Su, Z. Lin, X. Wang, Q. Wang et al., Synergetic surface charge transfer doping and passivation toward high efficient and stable perovskite solar cells. iScience 24(4), 102276 (2021). https://doi.org/10.1016/j.isci.2021.102276
- L. Zhou, X. Guo, Z. Lin, J. Ma, J. Su et al., Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy 60, 583–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.081
- J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai et al., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8(2), 1674–1680 (2014). https://doi.org/10.1021/nn406020d
- D. Bogachuk, S. Zouhair, K. Wojciechowski, B. Yang, V. Babu et al., Low-temperature carbon-based electrodes in perovskite solar cells. Energy Environ. Sci. 13(11), 3880–3916 (2020). https://doi.org/10.1039/d0ee02175j
- J. Li, Q. Dong, N. Li, L. Wang, Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv. Energy Mater. 7(14), 1602922 (2017). https://doi.org/10.1002/aenm.201602922
- S. Svanström, T.J. Jacobsson, G. Boschloo, E.M.J. Johansson, H. Rensmo et al., Degradation mechanism of silver metal deposited on lead halide perovskites. ACS Appl. Mater. Interf. 12(6), 7212–7221 (2020). https://doi.org/10.1021/acsami.9b20315
- Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle et al., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3(15), 8139–8147 (2015). https://doi.org/10.1039/C5TA00358J
- J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao et al., Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9(12), 3650–3656 (2016). https://doi.org/10.1039/C6EE02980A
- K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate et al., Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6), 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613
- Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3(1), 3132 (2013). https://doi.org/10.1038/srep03132
- Q. Luo, H. Ma, F. Hao, Q. Hou, J. Ren et al., Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv. Funct. Mater. 27(42), 1703068 (2017). https://doi.org/10.1002/adfm.201703068
- V. Babu, R.F. Pineda, T. Ahmad, A.O. Alvarez, L.A. Castriotta et al., Improved stability of inverted and flexible perovskite solar cells with carbon electrode. ACS Appl. Energy Mater. 3(6), 5126–5134 (2020). https://doi.org/10.1021/acsaem.0c00702
- Z. Wu, Z. Liu, Z. Hu, Z. Hawash, L. Qiu et al., Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv. Mater. 31(11), 1804284 (2019). https://doi.org/10.1002/adma.201804284
- Q.Q. Chu, B. Ding, J. Peng, H. Shen, X. Li et al., Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. J. Mater. Sci. Technol. 35(6), 987–993 (2019). https://doi.org/10.1016/j.jmst.2018.12.025
- S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte et al., High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO 2 photoanode. Chem. Commun. 38, 4004–4006 (2006). https://doi.org/10.1039/B608279C
- Z. Xiong, X. Chen, B. Zhang, G.O. Odunmbaku, Z. Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34(8), 2106118 (2022). https://doi.org/10.1002/adma.202106118
- J.M. Burst, W.L. Rance, D.M. Meysing, C.A. Wolden, W.K. Metzger et al., Performance of transparent conductors on flexible glass and plastic substrates for thin film photovoltaics. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 1589–1592. https://doi.org/10.1109/PVSC.2014.6925223
- X. Dai, Y. Deng, C.H. Brackle, S. Chen, P.N. Rudd et al., Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv. Energy Mater. 10(1), 1903108 (2020). https://doi.org/10.1002/aenm.201903108
- G. Xu, R. Xue, W. Chen, J. Zhang, M. Zhang et al., New strategy for two-step sequential deposition: incorporation of hydrophilic fullerene in secondhygroscopic precursor for high-performance p-i-n planar perovskite solar cells. Adv. Energy Mater. 8(12), 1703054 (2018). https://doi.org/10.1002/aenm.201703054
References
L. Meng, E.P. Yao, Z. Hong, H. Chen, P. Sun et al., Pure formamidinium-based perovskite light-emitting diodes with high efficiency and low driving voltage. Adv. Mater. 29(4), 1603826 (2017). https://doi.org/10.1002/adma.201603826
L. Gu, M.M. Tavakoli, D. Zhang, Q. Zhang, A. Waleed et al., 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv. Mater. 28(44), 9713–9721 (2016). https://doi.org/10.1002/adma.201601603
J. Di, J. Chang, S. Liu, Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications. EcoMat 2(3), e12036 (2020). https://doi.org/10.1002/eom2.12036
J. Di, J. Du, Z. Lin, S. Liu, J. Ouyang et al., Recent advances in resistive random access memory based on lead halide perovskite. InfoMat 3(3), 293–315 (2021). https://doi.org/10.1002/inf2.12162
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
NREL, Best research-cell efficiency chart. (2021). https://www.nrel.gov/pv/cell-efficiency.html
M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer et al., Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14(10), 1032–1039 (2015). https://doi.org/10.1038/nmat4388
S. Kang, J. Jeong, S. Cho, Y.J. Yoon, S. Park et al., Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. J. Mater. Chem. A 7(3), 1107–1114 (2019). https://doi.org/10.1039/C8TA10585E
Y. Hu, T. Niu, Y. Liu, Y. Zhou, Y. Xia et al., Flexible perovskite solar cells with high power-per-weight: progress, application, and perspectives. ACS Energy Lett. 6(8), 2917–2943 (2021). https://doi.org/10.1021/acsenergylett.1c01193
X. Meng, Z. Xing, X. Hu, Z. Huang, T. Hu et al., Stretchable perovskite solar cells with recoverable performance. Angew. Chem. Int. Ed. 59(38), 16602–16608 (2020). https://doi.org/10.1002/anie.202003813
P. Ma, Y. Lou, S. Cong, Z. Lu, K. Zhu et al., Malleability and pliability of silk-derived electrodes for efficient deformable perovskite solar cells. Adv. Energy Mater. 10(8), 1903357 (2020). https://doi.org/10.1002/aenm.201903357
K. Zhu, Z. Lu, S. Cong, G. Cheng, P. Ma et al., Ultraflexible and lightweight bamboo-derived transparent electrodes for perovskite solar cells. Small 15(33), 1902878 (2019). https://doi.org/10.1002/smll.201902878
X. Meng, Z. Cai, Y. Zhang, X. Hu, Z. Xing et al., Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nat. Commun. 11, 3016 (2020). https://doi.org/10.1038/s41467-020-16831-3
Z. Wang, L. Zeng, C. Zhang, Y. Lu, S. Qiu et al., Rational interface design and morphology control for blade-coating efficient flexible perovskite solar cells with a record fill factor of 81%. Adv. Funct. Mater. 30(32), 2001240 (2020). https://doi.org/10.1002/adfm.202001240
D. Yang, R. Yang, K. Wang, C. Wu, X. Zhu et al., High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat. Commun. 9, 3239 (2018). https://doi.org/10.1038/s41467-018-05760-x
Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
B. Zhang, J. Su, X. Guo, L. Zhou, Z. Lin et al., NiO/perovskite heterojunction contact engineering for highly efficient and stable perovskite solar cells. Adv. Sci. 7(11), 1903044 (2020). https://doi.org/10.1002/advs.201903044
M. Yue, J. Su, P. Zhao, Z. Lin, J. Zhang et al., Optimizing the performance of CsPbI3-based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering. Nano-Micro Lett. 11, 91 (2019). https://doi.org/10.1007/s40820-019-0320-y
X. Hu, Z. Huang, F. Li, M. Su, Z. Huang et al., Nacre-inspired crystallization and elastic “brick-and-mortar” structure for a wearable perovskite solar module. Energy Environ. Sci. 12(3), 979–987 (2019). https://doi.org/10.1039/C8EE01799A
M. Li, Y. Yang, Z. Wang, T. Kang, Q. Wang et al., Perovskite grains embraced in a soft fullerene network make highly efficient flexible solar cells with superior mechanical stability. Adv. Mater. 31(25), 1901519 (2019). https://doi.org/10.1002/adma.201901519
X. Duan, X. Li, L. Tan, Z. Huang, J. Yang et al., Controlling crystal growth via an autonomously longitudinal scaffold for planar perovskite solar cells. Adv. Mater. 32(26), 2000617 (2020). https://doi.org/10.1002/adma.202000617
G. Lee, M.C. Kim, Y.W. Choi, N. Ahn, J. Jang et al., Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy Environ. Sci. 12(10), 3182–3191 (2019). https://doi.org/10.1039/c9ee01944h
Y. Zhang, Z. Wu, P. Li, L.K. Ono, Y. Qi et al., Fully solution-processed TCO-free semitransparent perovskite solar cells for tandem and flexible applications. Adv. Energy Mater. 8(1), 1701569 (2018). https://doi.org/10.1002/aenm.201701569
Z. Wang, X. Zhu, J. Feng, D. Yang, S. Liu, Semitransparent flexible perovskite solar cells for potential greenhouse applications. Sol. RRL 5(8), 2100264 (2021). https://doi.org/10.1002/solr.202100264
B. Dou, E.M. Miller, J.A. Christians, E.M. Sanehira, T.R. Klein et al., High-performance flexible perovskite solar cells on ultrathin glass: implications of the TCO. J. Phys. Chem. Lett. 8(19), 4960–4966 (2017). https://doi.org/10.1021/acs.jpclett.7b02128
B.J. Kim, D.H. Kim, Y.Y. Lee, H.W. Shin, G.S. Han et al., Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8(3), 916–921 (2015). https://doi.org/10.1039/C4EE02441A
H.C. Weerasinghe, Y. Dkhissi, A.D. Scully, R.A. Caruso, Y.B.B. Cheng, Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy 18, 118–125 (2015). https://doi.org/10.1016/j.nanoen.2015.10.006
S. Pisoni, F. Fu, R. Widmer, R. Carron, T. Moser et al., Impact of interlayer application on band bending for improved electron extraction for efficient flexible perovskite mini-modules. Nano Energy 49, 300–307 (2018). https://doi.org/10.1016/j.nanoen.2018.04.056
J.G. Kim, S.I. Na, H. Kim, Flexible and transparent IWO films prepared by plasma arc ion plating for flexible perovskite solar cells. AIP Adv. 8(10), 105122 (2018). https://doi.org/10.1063/1.5054347
J.W. Bae, S.W. Lee, G.Y. Yeom, Doped-fluorine on electrical and optical properties of tin oxide films grown by ozone-assisted thermal CVD. J. Electrochem. Soc. 154, D34 (2007). https://doi.org/10.1149/1.2382346
T. Kawashima, T. Ezure, K. Okada, H. Matsui, K. Goto et al., FTO/ITO double-layered transparent conductive oxide for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 164, 199–202 (2004). https://doi.org/10.1016/j.jphotochem.2003.12.028
M.P. Taylor, D.W. Readey, M.F.A.M. Hest, C.W. Teplin, J.L. Alleman et al., The remarkable thermal stability of amorphous In-Zn-O transparent conductors. Adv. Funct. Mater. 18(20), 3169–3178 (2008). https://doi.org/10.1002/adfm.200700604
J.I. Park, J.H. Heo, S.H. Park, K.I. Hong, H.G. Jeong et al., Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. J. Power Sources 341, 340–347 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.026
Y. Dkhissi, F. Huang, S. Rubanov, M. Xiao, U. Bach et al., Low temperature processing of flexible planar perovskite solar cells with efficiency over 10%. J. Power Sources 278, 325–331 (2015). https://doi.org/10.1016/j.jpowsour.2014.12.104
L. Yang, Q. Xiong, Y. Li, P. Gao, B. Xu et al., Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J. Mater. Chem. A 9(3), 1574–1582 (2021). https://doi.org/10.1039/D0TA10717D
L. Yang, Y. Li, L. Wang, Y. Pei, Z. Wang et al., Exfoliated fluorographene quantum dots as outstanding passivants for improved flexible perovskite solar cells. ACS Appl. Mater. Interfaces 12(20), 22992–23001 (2020). https://doi.org/10.1021/acsami.0c04975
P. Ru, E. Bi, Y. Zhang, Y. Wang, W. Kong et al., High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells. Adv. Energy Mater. 10(12), 1903487 (2020). https://doi.org/10.1002/aenm.201903487
E. Cho, Y. Yun, D. Seok, J. Heung, J. Park et al., Highly efficient and stable flexible perovskite solar cells enabled by using plasma-polymerized-fluorocarbon antireflection layer. Nano Energy 82, 105737 (2021). https://doi.org/10.1016/j.nanoen.2020.105737
J. Zhang, W. Zhang, H.M. Cheng, S.R.P. Silva, Critical review of recent progress of flexible perovskite solar cells. Mater. Today 39, 66–88 (2020). https://doi.org/10.1016/j.mattod.2020.05.002
U.J. Ryu, S. Jee, J.S. Park, I.K. Han, J.H. Lee et al., Nanocrystalline titanium metal-organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano 12(5), 4968–4975 (2018). https://doi.org/10.1021/acsnano.8b02079
S. Jon, G. Sin, G. Kim, G. Jong, J. Ri, Flexible perovskite solar cells based on AgNW/ATO composite transparent electrodes. Synth. Met. 262, 116286 (2020). https://doi.org/10.1016/j.synthmet.2019.116286
M. Dianetti, F.D. Giacomo, G. Polino, C. Ciceroni, A. Liscio et al., TCO-free flexible organo metal trihalide perovskite planar-heterojunction solar cells. Sol. Energy Mater. Sol. Cells 140, 150–157 (2015). https://doi.org/10.1016/j.solmat.2015.03.016
K. Poorkazem, D. Liu, T.L. Kelly, Fatigue resistance of a flexible, efficient, and metal oxide-free perovskite solar cell. J. Mater. Chem. A 3(17), 9241–9248 (2015). https://doi.org/10.1039/C5TA00084J
B. Cao, L. Yang, S. Jiang, H. Lin, N. Wang et al., Flexible quintuple cation perovskite solar cells with high efficiency. J. Mater. Chem. A 7(9), 4960–4970 (2019). https://doi.org/10.1039/C8TA11945G
M. Cai, Y. Wu, H. Chen, X. Yang, Y. Qiang et al., Cost-performance analysis of perovskite solar modules. Adv. Sci. 4(1), 1600269 (2017). https://doi.org/10.1002/advs.201600269
J.S. Yeo, J.M. Yun, Y.S. Jung, D.Y. Kim, Y.J. Noh et al., Sulfonic acid-functionalized, reduced graphene oxide as an advanced interfacial material leading to donor polymer-independent high-performance polymer solar cells. J. Mater. Chem. A 2(2), 292–298 (2014). https://doi.org/10.1039/c3ta13647g
J.S. Yeo, R. Kang, S. Lee, Y.J. Jeon, N. Myoung et al., Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12, 96–104 (2015). https://doi.org/10.1016/j.nanoen.2014.12.022
X. Wan, G. Long, L. Huang, Y. Chen, Graphene - a promising material for organic photovoltaic cells. Adv. Mater. 23(45), 5342–5358 (2011). https://doi.org/10.1002/adma.201102735
S. Pang, Y. Hernandez, X. Feng, K. Müllen, Graphene as transparent electrode material for organic electronics. Adv. Mater. 23(25), 2779–2795 (2011). https://doi.org/10.1002/adma.201100304
J. Feng, X. Zhu, Z. Yang, X. Zhang, J. Niu et al., Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater. 30(35), 1801418 (2018). https://doi.org/10.1002/adma.201801418
M.M. Tavakoli, K.H. Tsui, Q. Zhang, J. He, Y. Yao et al., Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano 9(10), 10287–10295 (2015). https://doi.org/10.1021/acsnano.5b04284
J.H. Kim, H.J. Seok, H.J. Seo, T.Y. Seong, J.H. Heo et al., Flexible ITO films with atomically flat surfaces for high performance flexible perovskite solar cells. Nanoscale 10(44), 20587–20598 (2018). https://doi.org/10.1039/C8NR06586A
Y. Zhu, L. Shu, Q. Zhang, Y. Zhu, S. Poddar et al., Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics. EcoMat 3(4), e12117 (2021). https://doi.org/10.1002/eom2.12117
J.A. Raiford, R.A. Belisle, K.A. Bush, R. Prasanna, A.F. Palmstrom et al., Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n–i–p perovskite solar cells for tandems. Sustain. Energy Fuels 3(6), 1517–1525 (2019). https://doi.org/10.1039/C9SE00081J
J. Werner, G. Dubuis, A. Walter, P. Löper, S.J. Moon et al., Sputtered rear electrode with broadband transparency for perovskite solar cells. Sol. Energy Mater. Sol. Cells 141, 407–413 (2015). https://doi.org/10.1016/j.solmat.2015.06.024
K.A. Bush, C.D. Bailie, Y. Chen, A.R. Bowring, W. Wang et al., Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanop buffer layer and sputtered ITO electrode. Adv. Mater. 28(20), 3937–3943 (2016). https://doi.org/10.1002/adma.201505279
Y.J. Noh, J.G. Kim, S.S. Kim, H.K. Kim, S.I. Na, Efficient semi-transparent perovskite solar cells with a novel indium zinc tin oxide top electrode grown by linear facing target sputtering. J. Power Sources 437, 226894 (2019). https://doi.org/10.1016/j.jpowsour.2019.226894
M. Lee, Y. Jo, D.S. Kim, H.Y. Jeong, Y. Jun, Efficient, durable and flexible perovskite photovoltaic devices with Ag-embedded ITO as the top electrode on a metal substrate. J. Mater. Chem. A 3(28), 14592–14597 (2015). https://doi.org/10.1039/c5ta03240g
Y. Xiao, G. Han, H. Zhou, J. Wu, An efficient titanium foil based perovskite solar cell: using a titanium dioxide nanowire array anode and transparent poly (3,4-ethylenedioxythiophene) electrode. RSC Adv. 6(4), 2778–2784 (2016). https://doi.org/10.1039/C5RA23430A
K.G. Lim, H.B. Kim, J. Jeong, H. Kim, J.Y. Kim et al., Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv. Mater. 26(37), 6461–6466 (2014). https://doi.org/10.1002/adma.201401775
Z. Gu, L. Zuo, T.T. Larsen-Olsen, T. Ye, G. Wu et al., Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. J. Mater. Chem. A 3(48), 24254–24260 (2015). https://doi.org/10.1039/C5TA07008B
C. Zuo, L. Ding, Modified PEDOT layer makes a 1.52V Voc for perovskite/PCBM solar cells. Adv. Energy Mater. 7(2), 1601193 (2017). https://doi.org/10.1002/aenm.201601193
P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013). https://doi.org/10.1038/ncomms3761
C. Zuo, D. Vak, D. Angmo, L. Ding, M. Gao, One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 46, 185–192 (2018). https://doi.org/10.1016/j.nanoen.2018.01.037
M. Park, H.J. Kim, I. Jeong, J. Lee, H. Lee et al., Mechanically recoverable and highly efficient perovskite solar cells: investigation of intrinsic flexibility of organic-inorganic perovskite. Adv. Energy Mater. 5(22), 1501406 (2015). https://doi.org/10.1002/aenm.201501406
L. Chen, X. Xie, Z. Liu, E.C. Lee, A transparent poly(3,4-ethylenedioxylenethiophene):poly(styrene sulfonate) cathode for low temperature processed, metal-oxide free perovskite solar cells. J. Mater. Chem. A 5(15), 6974–6980 (2017). https://doi.org/10.1039/C6TA10588B
N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng et al., Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26(14), 2268–2272 (2014). https://doi.org/10.1002/adma.201304611
X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang et al., PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 6(19), 1900813 (2019). https://doi.org/10.1002/advs.201900813
M. Vosgueritchian, D.J. Lipomi, Z. Bao, Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22(2), 421–428 (2012). https://doi.org/10.1002/adfm.201101775
X. Hu, Z. Huang, X. Zhou, P. Li, Y. Wang et al., Wearable large-scale perovskite solar-power source via nanocellular scaffold. Adv. Mater. 29(42), 1703236 (2017). https://doi.org/10.1002/adma.201703236
K. Sun, P. Li, Y. Xia, J. Chang, J. Ouyang, Transparent conductive oxide-free perovskite solar cells with PEDOT:PSS as transparent electrode. ACS Appl. Mater. Interfaces 7(28), 15314–15320 (2015). https://doi.org/10.1021/acsami.5b03171
N. Kim, H. Kang, J.H. Lee, S. Kee, S.H. Lee et al., Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv. Mater. 27(14), 2317–2323 (2015). https://doi.org/10.1002/adma.201500078
B. Vaagensmith, K.M. Reza, M.D.N.N. Hasan, H. Elbohy, N. Adhikari et al., Environmentally friendly plasma-treated PEDOT:PSS as electrodes for ITO-free perovskite solar cells. ACS Appl. Mater. Interfaces 9(41), 35861–35870 (2017). https://doi.org/10.1021/acsami.7b10987
X. Hu, X. Meng, L. Zhang, Y. Zhang, Z. Cai et al., A mechanically robust conducting polymer network electrode for efficient flexible perovskite solar cells. Joule 3(9), 2205–2218 (2019). https://doi.org/10.1016/j.joule.2019.06.011
X. Hu, X. Meng, X. Yang, Z. Huang, Z. Xing et al., Cementitious grain-boundary passivation for flexible perovskite solar cells with superior environmental stability and mechanical robustness. Sci. Bull. 66(6), 527–535 (2021). https://doi.org/10.1016/j.scib.2020.10.023
M. Xu, J. Feng, Z.J. Fan, X.L. Ou, Z.Y. Zhang et al., Flexible perovskite solar cells with ultrathin Au anode and vapour-deposited perovskite film. Sol. Energy Mater. Sol. Cells 169, 8–12 (2017). https://doi.org/10.1016/j.solmat.2017.04.039
J.H. Heo, D.H. Shin, D.H. Song, D.H. Kim, S.J. Lee et al., Super-flexible bis(trifluoromethanesulfonyl)-amide doped graphene transparent conductive electrodes for photo-stable perovskite solar cells. J. Mater. Chem. A 6(18), 8251–8258 (2018). https://doi.org/10.1039/C8TA02672F
X. Wang, Z. Li, W. Xu, S.A. Kulkarni, S.K. Batabyal et al., TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728–735 (2014). https://doi.org/10.1016/j.nanoen.2014.11.042
Z. Li, S.A. Kulkarni, P.P. Boix, E. Shi, A. Cao et al., Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8(7), 6797–6804 (2014). https://doi.org/10.1021/nn501096h
T.J. Macdonald, M. Batmunkh, C.T. Lin, J. Kim, D.D. Tune et al., Origin of performance enhancement in TiO2-carbon nanotube composite perovskite solar cells. Small Methods 3(10), 1900164 (2019). https://doi.org/10.1002/smtd.201900164
A. Amini, H. Abdizadeh, M.R. Golobostanfard, Hybrid 1D/2D carbon nanostructure-incorporated titania photoanodes for perovskite solar cells. ACS Appl. Energy Mater. 3(7), 6195–6204 (2020). https://doi.org/10.1021/acsaem.0c00200
V.T. Tiong, N.D. Pham, T. Wang, T. Zhu, X. Zhao et al., Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells. Adv. Funct. Mater. 28(10), 1705545 (2018). https://doi.org/10.1002/adfm.201705545
H.S. Lin, S. Okawa, Y. Ma, S. Yotsumoto, C. Lee et al., Polyaromatic nanotweezers on semiconducting carbon nanotubes for the growth and interfacing of lead halide perovskite crystal grains in solar cells. Chem. Mater. 32(12), 5125–5133 (2020). https://doi.org/10.1021/acs.chemmater.0c01011
S. Seo, I. Jeon, R. Xiang, C. Lee, H. Zhang et al., Semiconducting carbon nanotubes as crystal growth templates and grain bridges in perovskite solar cells. J. Mater. Chem. A 7(21), 12987–12992 (2019). https://doi.org/10.1039/c9ta02629k
Y. Yang, H. Chen, C. Hu, S. Yang, Polyethyleneimine-functionalized carbon nanotubes as an interlayer to bridge perovskite/carbon for all inorganic carbon-based perovskite solar cells. J. Mater. Chem. A 7(38), 22005–22011 (2019). https://doi.org/10.1039/c9ta08177a
P. Schulz, A.M. Dowgiallo, M. Yang, K. Zhu, J.L. Blackburn et al., Charge transfer dynamics between carbon nanotubes and hybrid organic metal halide perovskite films. J. Phys. Chem. Lett. 7(3), 418–425 (2016). https://doi.org/10.1021/acs.jpclett.5b02721
R.A. Hatton, A.J. Miller, S.R.P.P. Silva, Carbon nanotubes: a multi-functional material for organic optoelectronics. J. Mater. Chem. 18(11), 1183–1192 (2008). https://doi.org/10.1039/B713527K
I. Jeon, T. Chiba, C. Delacou, Y. Guo, A. Kaskela et al., Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett. 15(10), 6665–6671 (2015). https://doi.org/10.1021/acs.nanolett.5b02490
S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas et al., Enhanced hole extraction in perovskite solar cells through carbon nanotubes. J. Phys. Chem. Lett. 5(23), 4207–4212 (2014). https://doi.org/10.1021/jz5021795
I. Jeon, J. Yoon, N. Ahn, M. Atwa, C. Delacou et al., Carbon nanotubes versus graphene as flexible transparent electrodes in inverted perovskite solar cells. J. Phys. Chem. Lett. 8(21), 5395–5401 (2017). https://doi.org/10.1021/acs.jpclett.7b02229
J. Yoon, U. Kim, Y. Yoo, J. Byeon, S.K. Lee et al., Foldable perovskite solar cells using carbon nanotube-embedded ultrathin polyimide conductor. Adv. Sci. 8(7), 2004092 (2021). https://doi.org/10.1002/advs.202004092
I. Jeon, J. Yoon, U. Kim, C. Lee, R. Xiang et al., High-performance solution-processed double-walled carbon nanotube transparent electrode for perovskite solar cells. Adv. Energy Mater. 9(27), 1901204 (2019). https://doi.org/10.1002/aenm.201901204
C. Zhang, M. Chen, F. Fu, H. Zhu, T. Feurer et al., CNT-based bifacial perovskite solar cells toward highly efficient 4-terminal tandem photovoltaics. Energy Environ. Sci. (2022). https://doi.org/10.1039/D1EE04008A
Z. Liu, S.P. Lau, F. Yan, Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing. Chem. Soc. Rev. 44(15), 5638–5679 (2015). https://doi.org/10.1039/c4cs00455h
Q. Luo, H. Ma, Q. Hou, Y. Li, J. Ren et al., All-carbon-electrode-based endurable flexible perovskite solar cells. Adv. Funct. Mater. 28(11), 1706777 (2018). https://doi.org/10.1002/adfm.201706777
J. Yoon, H. Sung, G. Lee, W. Cho, N. Ahn et al., Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes: towards future foldable power sources. Energy Environ. Sci. 10(1), 337–345 (2017). https://doi.org/10.1039/C6EE02650H
Z. Liu, P. You, C. Xie, G. Tang, F. Yan, Ultrathin and flexible perovskite solar cells with graphene transparent electrodes. Nano Energy 28, 151–157 (2016). https://doi.org/10.1016/j.nanoen.2016.08.038
J.H. Heo, D.H. Shin, M.L. Lee, M.G. Kang, S.H. Im, Efficient organic-inorganic hybrid flexible perovskite solar cells prepared by lamination of polytriarylamine/CH3NH3PbI3/anodized Ti metal substrate and graphene/PDMS transparent electrode substrate. ACS Appl. Mater. Interf. 10(37), 31413–31421 (2018). https://doi.org/10.1021/acsami.8b11411
J.T.W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber et al., Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724–730 (2014). https://doi.org/10.1021/nl403997a
Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang et al., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6(18), 10505–10510 (2014). https://doi.org/10.1039/C4NR03181D
H. Sung, N. Ahn, M.S. Jang, J.K. Lee, H. Yoon et al., Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6(3), 1501873 (2016). https://doi.org/10.1002/aenm.201501873
J.H. Heo, D.H. Shin, M.H. Jang, M.L. Lee, M.G. Kang et al., Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes. J. Mater. Chem. A 5(40), 21146–21152 (2017). https://doi.org/10.1039/C7TA06465A
W. Shin, W. Cho, S.J. Baik, Silver nanowires network encapsulated by low temperature sol–gel ZnO for transparent flexible electrodes with ambient stability. Mater. Res. Express 5(1), 15050 (2018). https://doi.org/10.1088/2053-1591/aaa67a
H. Lu, J. Sun, H. Zhang, S. Lu, W.C.H.H. Choy, Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells. Nanoscale 8(11), 5946–5953 (2016). https://doi.org/10.1039/c6nr00011h
M. Lee, Y. Ko, B.K. Min, Y. Jun, Silver nanowire top electrodes in flexible perovskite solar cells using titanium metal as substrate. Chemsuschem 9(1), 31–35 (2016). https://doi.org/10.1002/cssc.201501332
F. Guo, H. Azimi, Y. Hou, T. Przybilla, M. Hu et al., High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale 7(5), 1642–1649 (2015). https://doi.org/10.1039/C4NR06033D
F. Guo, X. Zhu, K. Forberich, J. Krantz, T. Stubhan et al., ITO-free and fully solution-processed semitransparent organic solar cells with high fill factors. Adv. Energy Mater. 3(8), 1062–1067 (2013). https://doi.org/10.1002/aenm.201300100
K.K. Sears, M. Fievez, M. Gao, H.C. Weerasinghe, C.D. Easton et al., ITO-free flexible perovskite solar cells based on roll-to-roll, slot-die coated silver nanowire electrodes. Sol. RRL 1(8), 1700059 (2017). https://doi.org/10.1002/solr.201700059
X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen et al., Realizing ultrahigh mechanical flexibility and > 15% efficiency of flexible organic solar cells via a “welding” flexible transparent electrode. Adv. Mater. 32(14), 1908478 (2020). https://doi.org/10.1002/adma.201908478
H. Dong, Z. Wu, Y. Jiang, W. Liu, X. Li et al., A flexible and thin graphene/silver nanowires/polymer hybrid transparent electrode for optoelectronic devices. ACS Appl. Mater. Interf. 8(45), 31212–31221 (2016). https://doi.org/10.1021/acsami.6b09056
E. Lee, J. Ahn, H.C. Kwon, S. Ma, K. Kim et al., All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection. Adv. Energy Mater. 8(9), 1702182 (2018). https://doi.org/10.1002/aenm.201702182
T.Y. Jin, W. Li, Y.Q. Li, Y.X. Luo, Y. Shen et al., High-performance flexible perovskite solar cells enabled by low-temperature ALD-assisted surface passivation. Adv. Opt. Mater. 6(24), 1801153 (2018). https://doi.org/10.1002/adom.201801153
H. Im, S. Jeong, J. Jin, J. Lee, D. Youn et al., Hybrid crystalline-ITO/metal nanowire mesh transparent electrodes and their application for highly flexible perovskite solar cells. NPG Asia Mater. 8(6), e282–e282 (2016). https://doi.org/10.1038/am.2016.85
J. Han, S. Yuan, L. Liu, X. Qiu, H. Gong et al., Fully indium-free flexible Ag nanowires/ZnO: F composite transparent conductive electrodes with high haze. J. Mater. Chem. A 3(10), 5375–5384 (2015). https://doi.org/10.1039/C4TA05728G
A. Kim, H. Lee, H.C. Kwon, H.S. Jung, N.G. Park et al., Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells. Nanoscale 8(12), 6308–6316 (2016). https://doi.org/10.1039/C5NR04585A
Z. Lu, Y. Lou, P. Ma, K. Zhu, S. Cong et al., Highly flexible and transparent polylactic acid composite electrode for perovskite solar cells. Sol. RRL 4(10), 2000320 (2020). https://doi.org/10.1002/solr.202000320
G. Zeng, J. Zhang, X. Chen, H. Gu, Y. Li et al., Breaking 12% efficiency in flexible organic solar cells by using a composite electrode. Sci. China Chem. 62(7), 851–858 (2019). https://doi.org/10.1007/s11426-018-9430-8
S. Kang, T. Kim, S. Cho, Y. Lee, B. Walker et al., Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices. Nano Lett. 15(12), 7933–7942 (2015). https://doi.org/10.1021/acs.nanolett.5b03019
T.B. Song, Y. Chen, C.H. Chung, Y. Yang, B. Bob et al., Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 8(3), 2804–2811 (2014). https://doi.org/10.1021/nn4065567
R. Chen, S.R. Das, C. Jeong, M.R. Khan, D.B. Janes et al., Co-percolating graphene-wrapped silver nanowire network for high performance, highly stable, transparent conducting electrodes. Adv. Funct. Mater. 23(41), 5150–5158 (2013). https://doi.org/10.1002/adfm.201300124
B.A. Nejand, P. Nazari, S. Gharibzadeh, V. Ahmadi, A. Moshaii, All-inorganic large-area low-cost and durable flexible perovskite solar cells using copper foil as a substrate. Chem. Commun. 53(4), 747–750 (2017). https://doi.org/10.1039/C6CC07573H
Y. Liu, J. Zhang, H. Gao, Y. Wang, Q. Liu et al., Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 17(2), 1090–1096 (2017). https://doi.org/10.1021/acs.nanolett.6b04613
Y. Fang, Z. Wu, J. Li, F. Jiang, K. Zhang et al., High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Adv. Funct. Mater. 28(9), 1705409 (2018). https://doi.org/10.1002/adfm.201705409
H. Lu, D. Zhang, J. Cheng, J. Liu, J. Mao et al., Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach. Adv. Funct. Mater. 25(27), 4211–4218 (2015). https://doi.org/10.1002/adfm.201501004
C.Y. Chang, K.T. Lee, W.K. Huang, H.Y. Siao, Y.C. Chang, High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition. Chem. Mater. 27(14), 5122–5130 (2015). https://doi.org/10.1021/acs.chemmater.5b01933
Y. Li, M. Lei, Y. Yang, X. Guiying, H. Ziruo et al., High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat. Commun. 7, 10214 (2016). https://doi.org/10.1038/ncomms10214
J. Wang, X. Chen, F. Jiang, Q. Luo, L. Zhang et al., Electrochemical corrosion of Ag electrode in the silver grid electrode-based flexible perovskite solar cells and the suppression method. Sol. RRL 2(9), 1800118 (2018). https://doi.org/10.1002/solr.201800118
S.W. Jin, Y.H. Lee, K.M. Yeom, J. Yun, H. Park et al., Highly durable and flexible transparent electrode for flexible optoelectronic applications. ACS Appl. Mater. Interf. 10(36), 30706–30715 (2018). https://doi.org/10.1021/acsami.8b10190
P. Li, Z. Wu, H. Hu, Y. Zhang, T. Xiao et al., Efficient flexible perovskite solar cells using low-cost cu top and bottom electrodes. ACS Appl. Mater. Interf. 12(23), 26050–26059 (2020). https://doi.org/10.1021/acsami.0c06461
Y. Yang, F. Min, Y. Qiao, Z. Li, F. Vogelbacher et al., Embossed transparent electrodes assembled by bubble templates for efficient flexible perovskite solar cells. Nano Energy 89, 106384 (2021). https://doi.org/10.1016/j.nanoen.2021.106384
J. Choi, Y.S. Shim, C.H. Park, H. Hwang, J.H. Kwack et al., Junction-free electrospun Ag fiber electrodes for flexible organic light-emitting diodes. Small 14(7), 1702567 (2018). https://doi.org/10.1002/smll.201702567
K.W. Seo, J. Lee, J. Jo, C. Cho, J. Lee, Highly efficient (>10%) flexible organic solar cells on PEDOT-free and ITO-free transparent electrodes. Adv. Mater. 31(36), 1902447 (2019). https://doi.org/10.1002/adma.201902447
G. Jeong, D. Koo, J. Seo, S. Jung, Y. Choi et al., Suppressed interdiffusion and degradation in flexible and transparent metal electrode-based perovskite solar cells with a graphene interlayer. Nano Lett. 20(5), 3718–3727 (2020). https://doi.org/10.1021/acs.nanolett.0c00663
M. Li, W. Zuo, A.G. Ricciardulli, Y. Yang, Y. Liu et al., Embedded nickel-mesh transparent electrodes for highly efficient and mechanically stable flexible perovskite photovoltaics: toward a portable mobile energy source. Adv. Mater. 32(38), 2003422 (2020). https://doi.org/10.1002/adma.202003422
J. Troughton, D. Bryant, K. Wojciechowski, M.J. Carnie, H. Snaith et al., Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates. J. Mater. Chem. A 3(17), 9141–9145 (2015). https://doi.org/10.1039/C5TA01755F
H. Li, X. Li, W. Wang, J. Huang, J. Li et al., Highly foldable and efficient paper-based perovskite solar cells. Sol. RRL 3(3), 1800317 (2019). https://doi.org/10.1002/solr.201800317
H. Li, X. Li, W. Wang, J. Huang, J. Li et al., Ultraflexible and biodegradable perovskite solar cells utilizing ultrathin cellophane paper substrates and TiO2/Ag/TiO2 transparent electrodes. Sol. Energy 188, 158–163 (2019). https://doi.org/10.1016/j.solener.2019.05.061
E.D. Gaspera, Y. Peng, Q. Hou, L. Spiccia, U. Bach et al., Ultra-thin high efficiency semitransparent perovskite solar cells. Nano Energy 13, 249–257 (2015). https://doi.org/10.1016/j.nanoen.2015.02.028
C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G.M. Espallargas, A. Garcia et al., Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 7(3), 994 (2014). https://doi.org/10.1039/c3ee43619e
Y. Zhang, X. Guo, J. Huang, Z. Ren, H. Hu et al., Solution process formation of high performance, stable nanostructured transparent metal electrodes via displacement-diffusion-etch process. NPJ Flex. Electron. 6(1), 4 (2022). https://doi.org/10.1038/s41528-022-00134-2
M. Lee, Y. Jo, D.S. Kim, Y. Jun, Flexible organo-metal halide perovskite solar cells on a Ti metal substrate. J. Mater. Chem. A 3(8), 4129–4133 (2015). https://doi.org/10.1039/C4TA06011C
X.L. Ou, M. Xu, J. Feng, H.B. Sun, Flexible and efficient ITO-free semitransparent perovskite solar cells. Sol. Energy Mater. Sol. Cells 157, 660–665 (2016). https://doi.org/10.1016/j.solmat.2016.07.010
C. Hanmandlu, C.C. Liu, C.Y. Chen, K.M. Boopathi, S.H. Wu et al., Top illuminated hysteresis-free perovskite solar cells incorporating microcavity structures on metal electrodes: a combined experimental and theoretical approach. ACS Appl. Mater. Interf. 10(21), 17973–17984 (2018). https://doi.org/10.1021/acsami.8b04329
Q. Dong, M. Chen, Y. Liu, F.T. Eickemeyer, W. Zhao et al., Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule 5(6), 1587–1601 (2021). https://doi.org/10.1016/j.joule.2021.04.014
S.S. Shin, W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon et al., High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C. Nat. Commun. 6, 7410 (2015). https://doi.org/10.1038/ncomms8410
X. Guo, J. Su, Z. Lin, X. Wang, Q. Wang et al., Synergetic surface charge transfer doping and passivation toward high efficient and stable perovskite solar cells. iScience 24(4), 102276 (2021). https://doi.org/10.1016/j.isci.2021.102276
L. Zhou, X. Guo, Z. Lin, J. Ma, J. Su et al., Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14%. Nano Energy 60, 583–590 (2019). https://doi.org/10.1016/j.nanoen.2019.03.081
J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai et al., Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8(2), 1674–1680 (2014). https://doi.org/10.1021/nn406020d
D. Bogachuk, S. Zouhair, K. Wojciechowski, B. Yang, V. Babu et al., Low-temperature carbon-based electrodes in perovskite solar cells. Energy Environ. Sci. 13(11), 3880–3916 (2020). https://doi.org/10.1039/d0ee02175j
J. Li, Q. Dong, N. Li, L. Wang, Direct evidence of ion diffusion for the silver-electrode-induced thermal degradation of inverted perovskite solar cells. Adv. Energy Mater. 7(14), 1602922 (2017). https://doi.org/10.1002/aenm.201602922
S. Svanström, T.J. Jacobsson, G. Boschloo, E.M.J. Johansson, H. Rensmo et al., Degradation mechanism of silver metal deposited on lead halide perovskites. ACS Appl. Mater. Interf. 12(6), 7212–7221 (2020). https://doi.org/10.1021/acsami.9b20315
Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle et al., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3(15), 8139–8147 (2015). https://doi.org/10.1039/C5TA00358J
J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao et al., Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 9(12), 3650–3656 (2016). https://doi.org/10.1039/C6EE02980A
K. Domanski, J.P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate et al., Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano 10(6), 6306–6314 (2016). https://doi.org/10.1021/acsnano.6b02613
Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3(1), 3132 (2013). https://doi.org/10.1038/srep03132
Q. Luo, H. Ma, F. Hao, Q. Hou, J. Ren et al., Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv. Funct. Mater. 27(42), 1703068 (2017). https://doi.org/10.1002/adfm.201703068
V. Babu, R.F. Pineda, T. Ahmad, A.O. Alvarez, L.A. Castriotta et al., Improved stability of inverted and flexible perovskite solar cells with carbon electrode. ACS Appl. Energy Mater. 3(6), 5126–5134 (2020). https://doi.org/10.1021/acsaem.0c00702
Z. Wu, Z. Liu, Z. Hu, Z. Hawash, L. Qiu et al., Highly efficient and stable perovskite solar cells via modification of energy levels at the perovskite/carbon electrode interface. Adv. Mater. 31(11), 1804284 (2019). https://doi.org/10.1002/adma.201804284
Q.Q. Chu, B. Ding, J. Peng, H. Shen, X. Li et al., Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. J. Mater. Sci. Technol. 35(6), 987–993 (2019). https://doi.org/10.1016/j.jmst.2018.12.025
S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte et al., High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO 2 photoanode. Chem. Commun. 38, 4004–4006 (2006). https://doi.org/10.1039/B608279C
Z. Xiong, X. Chen, B. Zhang, G.O. Odunmbaku, Z. Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34(8), 2106118 (2022). https://doi.org/10.1002/adma.202106118
J.M. Burst, W.L. Rance, D.M. Meysing, C.A. Wolden, W.K. Metzger et al., Performance of transparent conductors on flexible glass and plastic substrates for thin film photovoltaics. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), 1589–1592. https://doi.org/10.1109/PVSC.2014.6925223
X. Dai, Y. Deng, C.H. Brackle, S. Chen, P.N. Rudd et al., Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Adv. Energy Mater. 10(1), 1903108 (2020). https://doi.org/10.1002/aenm.201903108
G. Xu, R. Xue, W. Chen, J. Zhang, M. Zhang et al., New strategy for two-step sequential deposition: incorporation of hydrophilic fullerene in secondhygroscopic precursor for high-performance p-i-n planar perovskite solar cells. Adv. Energy Mater. 8(12), 1703054 (2018). https://doi.org/10.1002/aenm.201703054