Flexible Nanocomposite Conductors for Electromagnetic Interference Shielding
Corresponding Author: Jingjing Chang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 172
Abstract
With the extensive use of electronic communication technology in integrated circuit systems and wearable devices, electromagnetic interference (EMI) has increased dramatically. The shortcomings of conventional rigid EMI shielding materials include high brittleness, poor comfort, and unsuitability for conforming and deformable applications. Hitherto, flexible (particularly elastic) nanocomposites have attracted enormous interest due to their excellent deformability. However, the current flexible shielding nanocomposites present low mechanical stability and resilience, relatively poor EMI shielding performance, and limited multifunctionality. Herein, the advances in low-dimensional EMI shielding nanomaterials-based elastomers are outlined and a selection of the most remarkable examples is discussed. And the corresponding modification strategies and deformability performance are summarized. Finally, expectations for this quickly increasing sector are discussed, as well as future challenges.
Highlights:
1 Convincing candidates of flexible (stretchable/compressible) electromagnetic interference shielding nanocomposites are discussed in detail from the views of fabrication, mechanical elasticity and shielding performance.
2 Detailed summary of the relationship between deformation of materials and electromagnetic shielding performance.
3 The future directions and challenges in developing flexible (particularly elastic) shielding nanocomposites are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xie, S. Liu, K. Huang, B. Chen, P. Shi et al., Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric. Adv. Mater. 34(30), 2202982 (2022). https://doi.org/10.1002/adma.202202982
- R. Rehpade, S.D. Pable, G.K. Kharate, Design issues & challenges with EMI/EMC in system on packages (SOPs). In: 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA). (2017)
- D. Kapoor, C.M. Tan, V. Sangwan, Evaluation of the potential electromagnetic interference in vertically stacked 3D integrated circuits. Appl. Sci.-Basel. 10(3), 748 (2020). https://doi.org/10.3390/app10030748
- E. Sicard, W. Jianfei, R.J. Shen, E.P. Li, E.X. Liu et al., Recent advances in electromagnetic compatibility of 3D-ICs &2013; part I. IEEE Electromagn. Compat. Mag. 4(4), 79–89 (2015). https://doi.org/10.1109/MEMC.2015.7407186
- E. Sicard, W. Jianfei, R. Shen, E.P. Li, E.X. Liu et al., Recent advances in electromagnetic compatibility of 3D-ICS—part II. IEEE Electromagn. Compat. Mag. 5(1), 65–74 (2016). https://doi.org/10.1109/MEMC.2016.7477137
- N. Wang, W. Zou, X. Li, Y. Liang, P. Wang, Study and application status of the nonthermal effects of microwaves in chemistry and materials science - a brief review. RSC Adv. 12(27), 17158–17181 (2022). https://doi.org/10.1039/D2RA00381C
- Z. Zhang, W. Wang, Y. Jiang, Y.-X. Wang, Y. Wu et al., High-brightness all-polymer stretchable led with charge-trapping dilution. Nature 603(7902), 624–630 (2022). https://doi.org/10.1038/s41586-022-04400-1
- J.Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel et al., Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539(7629), 411–415 (2016). https://doi.org/10.1038/nature20102
- Y. Liu, S. Shen, J. Hu, L. Chen, Embedded Ag mesh electrodes for polymer dispersed liquid crystal devices on flexible substrate. Opt. Express 24(22), 25774–25784 (2016). https://doi.org/10.1364/OE.24.025774
- Y.-H. Liu, J.-L. Xu, S. Shen, X.-L. Cai, L.-S. Chen et al., High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. J. Mater. Chem. A 5(19), 9032–9041 (2017). https://doi.org/10.1039/C7TA01947E
- H. Zhao, Y. Huang, J. Yun, Z. Wang, Y. Han et al., Stretchable polymer composite film based on pseudo-high carbon-filler loadings for electromagnetic interference shielding. Compos. Pt. A-Appl. Sci. Manuf. 157, 106937 (2022). https://doi.org/10.1016/j.compositesa.2022.106937
- Z.-Y. Jiang, W. Huang, L.-S. Chen, Y.-H. Liu, Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding. Opt. Express 27(17), 24194–24206 (2019). https://doi.org/10.1364/OE.27.024194
- C. Yuan, J. Huang, Y. Dong, X. Huang, Y. Lu et al., Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave fabry–pérot interference and optical antireflection. ACS Appl. Mater. Intefaces 12(23), 26659–26669 (2020). https://doi.org/10.1021/acsami.0c05334
- J. Wang, Q. Li, K. Li, X. Sun, Y. Wang et al., Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 34(12), 2109904 (2022). https://doi.org/10.1002/adma.202109904
- Y. Bai, S. Bi, W. Wang, N. Ding, Y. Lu et al., Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Mater. 20(4), 444–454 (2022). https://doi.org/10.1080/1539445X.2022.2081580
- S. Ganguly, S. Ghosh, P. Das, T. Das, S.K. Ghosh et al., Poly(n-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77, 2923–2943 (2020). https://doi.org/10.1007/s00289-019-02892-y
- Z. Wang, X. Xia, M. Zhu, X. Zhang, R. Liu et al., Rational assembly of liquid metal/elastomer lattice conductors for high-performance and strain-invariant stretchable electronics. Adv. Funct. Mater. 32(10), 2108336 (2022). https://doi.org/10.1002/adfm.202108336
- A. Kamyshny, S. Magdassi, Conductive nanomaterials for 2d and 3d printed flexible electronics. Chem. Soc. Rev. 48(6), 1712–1740 (2019). https://doi.org/10.1039/C8CS00738A
- X. Jia, Y. Li, B. Shen, W. Zheng, Evaluation, fabrication and dynamic performance regulation of green emi-shielding materials with low reflectivity: A review. Compos. Pt. B-Eng. 233, 109652 (2022). https://doi.org/10.1016/j.compositesb.2022.109652
- J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4(5), 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
- M. Huang, L. Wang, B. Zhao, G. Chen, R. Che, Engineering the electronic structure on mxenes via multidimensional component interlayer insertion for enhanced electromagnetic shielding. J. Mater. Sci. Technol. 138, 149–156 (2023). https://doi.org/10.1016/j.jmst.2022.07.047
- B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), 1907499 (2020). https://doi.org/10.1002/adma.201907499
- S. Liu, J. Liu, X. Dong, Y. Duan, Electromagnetic shielding and absorbing materials (second edition). (Chemical Industry Press; 2014).
- A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
- Q. Yang, J. Yang, L. Tang, H. Zhang, D. Wei et al., Superhydrophobic graphene nanowalls for electromagnetic interference shielding and infrared photodetection via a two-step transfer method. Chem. Eng. J. 454, 140159 (2023). https://doi.org/10.1016/j.cej.2022.140159
- Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
- H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang et al., Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7(8), 1801318 (2019). https://doi.org/10.1002/adom.201801318
- Z. Zeng, W. Li, N. Wu, S. Zhao, X. Lu, Polymer-assisted fabrication of silver nanowire cellular monoliths: Toward hydrophobic and ultraflexible high-performance electromagnetic interference shielding materials. ACS Appl. Mater. Intefaces 12(34), 38584–38592 (2020). https://doi.org/10.1021/acsami.0c10492
- Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
- Y. Xu, Z. Lin, Y. Yang, H. Duan, G. Zhao et al., Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horizons. 9(2), 708–719 (2022). https://doi.org/10.1039/D1MH01346G
- B. Fu, P. Ren, Z. Guo, Y. Du, Y. Jin et al., Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Compos. Pt. B-Eng. 215, 108813 (2021). https://doi.org/10.1016/j.compositesb.2021.108813
- M. Han, X. Yin, K. Hantanasirisakul, X. Li, A. Iqbal et al., Anisotropic mxene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7(10), 1900267 (2019). https://doi.org/10.1002/adom.201900267
- N. Zhang, Z. Wang, R. Song, Q. Wang, H. Chen et al., Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci. Bull. 64(8), 540–546 (2019). /https://doi.org/10.1016/j.scib.2019.03.028
- Z. Wang, B. Jiao, Y. Qing, H. Nan, L. Huang et al., Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding. ACS Appl. Mater. Intefaces 12(2), 2826–2834 (2020). https://doi.org/10.1021/acsami.9b17513
- J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Intefaces 9(51), 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
- R.F. Landel, L.E. Nielsen, Mechanical properties of polymers and composites. (Mechanical Properties of Polymers and Composites; 1993).
- B. Wang, A. Facchetti, Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv. Mater. 31(28), 1901408 (2019). https://doi.org/10.1002/adma.201901408
- B.R. Donovan, H.E. Fowler, V.M. Matavulj, T.J. White, Mechanotropic elastomers. Angew. Chem. Int. Ed. 58(39), 13744–13748 (2019). https://doi.org/10.1002/anie.201905176
- S.M. Sapuan, A. Leenie, M. Harimi, Y.K. Beng, Mechanical properties of woven banana fibre reinforced epoxy composites. Mater. Des. 27(8), 689–693 (2006). https://doi.org/10.1016/j.matdes.2004.12.016
- C. Majidi, R. Kramer, R.J. Wood, A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater. Struct. 20(10), 105017 (2011). https://doi.org/10.1088/0964-1726/20/10/105017
- B. Liu, T. Yin, J. Zhu, D. Zhao, H. Yu et al., Tough and fatigue-resistant polymer networks by crack tip softening. Proc. Natl. Acad. Sci. USA 120(6), e2217781120 (2023). https://doi.org/10.1073/pnas.2217781120
- M. Touron, C. Celle, L. Orgéas, J.-P. Simonato, Hybrid silver nanowire–CMC aerogels: From 1D nanomaterials to 3D electrically conductive and mechanically resistant lightweight architectures. ACS Nano 16(9), 14188–14197 (2022). https://doi.org/10.1021/acsnano.2c04288
- Y. Hu, Z. Chen, H. Zhuo, L. Zhong, X. Peng et al., Advanced compressible and elastic 3d monoliths beyond hydrogels. Adv. Funct. Mater. 29(44), 1904472 (2019). https://doi.org/10.1002/adfm.201904472
- Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2022). https://doi.org/10.1002/adma.202107538
- K. Raagulan, B.M. Kim, K.Y. Chai, Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 10(4), 702 (2020). https://doi.org/10.3390/nano10040702
- Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su et al., Stretchable nanop conductors with self-organized conductive pathways. Nature 500(7460), 59–63 (2013). https://doi.org/10.1038/nature12401
- Y.F. Xu, K.P. Qian, D.M. Deng, L.Q. Luo, J.H. Ye et al., Electroless deposition of silver nanops on cellulose nanofibrils for electromagnetic interference shielding films. Carbohydrate Polym. 250, 116915 (2020). https://doi.org/10.1016/j.carbpol.2020.116915
- Y. Yu, L. Wu, S. Gao, K. Jia, W. Zeng et al., Fabrication of multi-nanocavity and multi-reflection interface in rgo for enhanced EMI absorption and reduced EMI reflection. Appl. Surf. Sci. 562, 150034 (2021). https://doi.org/10.1016/j.apsusc.2021.150034
- G.H. Hong, H.T. Cheng, K.Q. Zhang, Z.H. Chen, S.B. Zhang, Cleaner production strategy tailored versatile biocomposites for antibacterial application and electromagnetic interference shielding. J. Clean Prod. 366, 132835 (2022). https://doi.org/10.1016/j.jclepro.2022.132835
- M. Zhou, J.W. Wang, G.H. Wang, Y. Zhao, J.M. Tang et al., Lotus leaf-inspired and multifunctional janus carbon felt@Ag composites enabled by in situ asymmetric modification for electromagnetic protection and low-voltage joule heating. Compos. Pt. B-Eng. 242, 110110 (2022). https://doi.org/10.1016/j.compositesb.2022.110110
- Y. Sun, Y. Xia, Gold and silver nanops: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 128(6), 686–691 (2003). https://doi.org/10.1039/B212437H
- J. Park, V. Privman, E. Matijević, Model of formation of monodispersed colloids. J. Phys. Chem. B 105(47), 11630–11635 (2001). https://doi.org/10.1021/jp011306a
- D.V. Goia, E. Matijević, Preparation of monodispersed metal ps. New J. Chem. 22(11), 1203–1215 (1998). https://doi.org/10.1039/A709236I
- L.M. Liz-Marzán, Nanometals: Formation and color. Mater. Today 7(2), 26–31 (2004). https://doi.org/10.1016/S1369-7021(04)00080-X
- C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao et al., Anisotropic metal nanops: Synthesis, assembly, and optical applications. J. Phys. Chem. B 109(29), 13857–13870 (2005). https://doi.org/10.1021/jp0516846
- D.C. Kim, H.J. Shim, W. Lee, J.H. Koo, D.-H. Kim, Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 32(15), 1902743 (2020). https://doi.org/10.1002/adma.201902743
- C. Liang, Y. Liu, Y. Ruan, H. Qiu, P. Song et al., Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding. Compos. Pt. A-Appl. Sci. Manuf. 139, 106143 (2020). https://doi.org/10.1016/j.compositesa.2020.106143
- S. Zhang, X. Huang, W. Xiao, L. Zhang, H. Yao et al., Polyvinylpyrrolidone assisted preparation of highly conductive, antioxidation, and durable nanofiber composite with an extremely high electromagnetic interference shielding effectiveness. ACS Appl. Mater. Intefaces 13(18), 21865–21875 (2021). https://doi.org/10.1021/acsami.1c05319
- L. Zhang, J. Luo, S. Zhang, J. Yan, X. Huang et al., Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding. J. Mater. Sci. Technol. 98, 62–71 (2022). https://doi.org/10.1016/j.jmst.2021.05.014
- Y. Sun, S. Luo, H. Sun, W. Zeng, C. Ling et al., Engineering closed-cell structure in lightweight and flexible carbon foam composite for high-efficient electromagnetic interference shielding. Carbon 136, 299–308 (2018). https://doi.org/10.1016/j.carbon.2018.04.084
- X. Lei, X. Zhang, A. Song, S. Gong, Y. Wang et al., Investigation of electrical conductivity and electromagnetic interference shielding performance of Au@CNT/sodium alginate/polydimethylsiloxane flexible composite. Compos. Pt. A-Appl. Sci. Manuf. 130, 105762 (2020). https://doi.org/10.1016/j.compositesa.2019.105762
- E. Kim, D.Y. Lim, Y. Kang, E. Yoo, Fabrication of a stretchable electromagnetic interference shielding silver nanop/elastomeric polymer composite. RSC Adv. 6(57), 52250–52254 (2016). https://doi.org/10.1039/C6RA04765C
- Z. Liu, F. Wan, L. Mou, M. Jung de Andrade, D. Qian et al., A general approach for buckled bulk composites by combined biaxial stretch and layer-by-layer deposition and their electrical and electromagnetic applications. Adv. Electron. Mater. 5(4), 1800817 (2019). https://doi.org/10.1002/aelm.201800817
- L.-P. Wu, Y.-Z. Li, B.-J. Wang, Z.-P. Mao, H. Xu et al., Electroless ag-plated sponges by tunable deposition onto cellulose-derived templates for ultra-high electromagnetic interference shielding. Mater. Des. 159, 47–56 (2018). https://doi.org/10.1016/j.matdes.2018.08.037
- S.-Y. Liao, G. Li, X.-Y. Wang, Y.-J. Wan, P.-L. Zhu et al., Metallized skeleton of polymer foam based on metal–organic decomposition for high-performance EMI shielding. ACS Appl. Mater. Intefaces 14(2), 3302–3314 (2022). https://doi.org/10.1021/acsami.1c21836
- Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3C2Tx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
- L. Lin, L. Wang, B. Li, J. Luo, X. Huang et al., Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 385, 123391 (2020). https://doi.org/10.1016/j.cej.2019.123391
- B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin et al., Bicontinuous, high-strength, and multifunctional chemical-cross-linked mxene/superaligned carbon nanotube film. ACS Nano 16(11), 19293–19304 (2022). https://doi.org/10.1021/acsnano.2c08678
- Y. Shen, Z. Lin, X. Liu, T. Zhao, P. Zhu et al., Robust and flexible silver-embedded elastomeric polymer/carbon black foams with outstanding electromagnetic interference shielding performance. Compos. Sci. Technol. 213(108942 (2021). https://doi.org/10.1016/j.compscitech.2021.108942
- D. Tian, Y. Xu, Y. Wang, Z. Lei, Z. Lin et al., In-situ metallized carbon nanotubes/poly(styrene-butadiene-styrene) (CNTs/SBS) foam for electromagnetic interference shielding. Chem. Eng. J. 420, 130482 (2021). https://doi.org/10.1016/j.cej.2021.130482
- R. Aepuru, M. Ramalinga Viswanathan, B.V.B. Rao, H.S. Panda, S. Sahu et al., Tailoring the performance of mechanically robust highly conducting silver/3d graphene aerogels with superior electromagnetic shielding effectiveness. Diam. Relat. Mat. 109, 108043 (2020). https://doi.org/10.1016/j.diamond.2020.108043
- M. Xiang, S.-Q. Zhu, S. Qin, J. Yang, W. Fan et al., Flexible composites by ionic liquid/silver/graphene in towel-gourd sponge fibers: Synergistic effect and dual-band electromagnetic interference shielding in x-band and terahertz-band. J. Appl. Polym. Sci. 139(28), e52511 (2022). https://doi.org/10.1002/app.52511
- W. Zhai, C. Wang, S. Wang, J. Li, Y. Zhao et al., Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy and biomotion monitoring. J. Mater. Chem. A 9(11), 7238–7247 (2021). https://doi.org/10.1039/D0TA10991F
- P. Feng, Z. Ye, Q. Wang, Z. Chen, G. Wang et al., Stretchable and conductive composites film with efficient electromagnetic interference shielding and absorptivity. J. Mater. Sci. 55(20), 8576–8590 (2020). https://doi.org/10.1007/s10853-019-04172-6
- R. Ravindren, S. Mondal, P. Bhawal, S.M.N. Ali, N.C. Das, Superior electromagnetic interference shielding effectiveness and low percolation threshold through the preferential distribution of carbon black in the highly flexible polymer blend composites. Polym. Compos. 40(4), 1404–1418 (2019). https://doi.org/10.1002/pc.24874
- C.-H. Cui, D.-X. Yan, H. Pang, L.-C. Jia, Y. Bao et al., Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks. Chin. J. Polym. Sci. 34(12), 1490–1499 (2016). https://doi.org/10.1007/s10118-016-1849-6
- D. Sethi, R. Ram, D. Khastgir, Electrical conductivity and dynamic mechanical properties of silicon rubber-based conducting composites: Effect of cyclic deformation, pressure and temperature. Polym. Int. 66(9), 1295–1305 (2017). https://doi.org/10.1002/pi.5385
- J. Zhang, F. Chen, Y. Zhao, M. Liu, Improving elasticity of conductive silicone rubber by hollow carbon black. Chem. Res. Chin. Univ. 35(6), 1124–1132 (2019). https://doi.org/10.1007/s40242-019-9057-x
- H. Zou, L. Zhang, M. Tian, S. Wu, S. Zhao, Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite. J. Appl. Polym. Sci. 115(5), 2710–2717 (2010). https://doi.org/10.1002/app.29901
- P. Cong, P. Xu, S. Chen, Effects of carbon black on the anti aging, rheological and conductive properties of SBS/asphalt/carbon black composites. Constr. Build. Mater. 52, 306–313 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.061
- A. Houbi, Z.A. Aldashevich, Y. Atassi, Z. Bagasharova Telmanovna, M. Saule et al., Microwave absorbing properties of ferrites and their composites: A review. J. Magn. Magn. Mater. 529, 167839 (2021). https://doi.org/10.1016/j.jmmm.2021.167839
- X. Xie, B. Wang, Y. Wang, C. Ni, X. Sun et al., Spinel structured mFe2O4 (m = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review. Chem. Eng. J. 428, 131160 (2022). https://doi.org/10.1016/j.cej.2021.131160
- H. Liang, H. Xing, M. Qin, H. Wu, Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials. Compos. Pt. A-Appl. Sci. Manuf. 135, 105959 (2020). https://doi.org/10.1016/j.compositesa.2020.105959
- Z. Li, D. Feng, B. Li, D. Xie, Y. Mei, Fdm printed MXene/MnFe2O4/MWCNTs reinforced tpu composites with 3D voronoi structure for sensor and electromagnetic shielding applications. Compos. Sci. Technol. 231, 109803 (2023). https://doi.org/10.1016/j.compscitech.2022.109803
- F. Ren, D. Song, Z. Li, L. Jia, Y. Zhao et al., Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. J. Mater. Chem. C 6(6), 1476–1486 (2018). https://doi.org/10.1039/C7TC05213H
- Y. Wang, Q. Qi, G. Yin, W. Wang, D. Yu, Flexible, ultralight, and mechanically robust waterborne polyurethane/Ti3C2Tx mxene/nickel ferrite hybrid aerogels for high-performance electromagnetic interference shielding. ACS Appl. Mater. Intefaces 13(18), 21831–21843 (2021). https://doi.org/10.1021/acsami.1c04962
- X.-X. Wang, Q. Zheng, Y.-J. Zheng, M.-S. Cao, Green emi shielding: Dielectric/magnetic “genes” and design philosophy. Carbon 206, 124–141 (2023). https://doi.org/10.1016/j.carbon.2023.02.012
- H.-G. Shi, H.-B. Zhao, B.-W. Liu, Y.-Z. Wang, Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Intefaces 13(22), 26505–26514 (2021). https://doi.org/10.1021/acsami.1c07363
- M. Ma, W. Tao, X. Liao, S. Chen, Y. Shi et al., Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding. Chem. Eng. J. 452, 139471 (2023). https://doi.org/10.1016/j.cej.2022.139471
- M. Ma, X. Liao, Q. Chu, S. Chen, Y. Shi et al., Construction of gradient conductivity cellulose nanofiber/MXene composites with efficient electromagnetic interference shielding and excellent mechanical properties. Compos. Sci. Technol. 226, 109540 (2022). https://doi.org/10.1016/j.compscitech.2022.109540
- Z. Lei, D. Tian, X. Liu, J. Wei, K. Rajavel et al., Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity. Chem. Eng. J. 424, 130365 (2021). https://doi.org/10.1016/j.cej.2021.130365
- M. Hao, Y. Wang, L. Li, Q. Lu, F. Sun et al., Stretchable multifunctional hydrogels for sensing electronics with effective EMI shielding properties. Soft Matter 17(40), 9057–9065 (2021). https://doi.org/10.1039/D1SM01027A
- Q. Ze, X. Kuang, S. Wu, J. Wong, S.M. Montgomery et al., Shape memory polymers: Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv. Mater. 32(4), 2070025 (2020). https://doi.org/10.1002/adma.202070025
- R.T. Olsson, M.A.S. Azizi Samir, G. Salazar-Alvarez, L. Belova, V. Ström et al., Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 5(8), 584–588 (2010). https://doi.org/10.1038/nnano.2010.155
- Y. Li, G. Huang, X. Zhang, B. Li, Y. Chen et al., Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 23(6), 660–672 (2013). https://doi.org/10.1002/adfm.201201708
- X. Xu, H. Li, Q. Zhang, H. Hu, Z. Zhao et al., Self-sensing, ultralight, and conductive 3d graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano 9(4), 3969–3977 (2015). https://doi.org/10.1021/nn507426u
- Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived fe/carbon porous composite with low fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017). https://doi.org/10.1016/j.cej.2016.11.089
- Q. Liu, C. Yi, J. Chen, M. Xia, Y. Lu et al., Flexible, breathable, and highly environmental-stable Ni/PPY/PET conductive fabrics for efficient electromagnetic interference shielding and wearable textile antennas. Compos. Pt. B-Eng. 215, 108752 (2021). https://doi.org/10.1016/j.compositesb.2021.108752
- Y. Lin, G. Hou, X. Su, S. Bi, J. Tang, Compressible Ni and reduced graphene oxide (Ni-rGO) coated polymer foams for electromagnetic interference (EMI) shielding. IOP Conf. Ser. Earth Environ. Sci. 186, 012031 (2018). https://doi.org/10.1088/1755-1315/186/2/012031
- J. Zhang, D. Zhu, S. Zhang, H. Cheng, S. Chen et al., Asymmetric electromagnetic shielding performance based on spatially controlled deposition of nickel nanops on carbon nanotube sponge. Carbon 194, 290–296 (2022). https://doi.org/10.1016/j.carbon.2022.04.012
- R. Kumar, S. Kumari, S.R. Dhakate, Nickel nanops embedded in carbon foam for improving electromagnetic shielding effectiveness. Appl. Nanosci. 5(5), 553–561 (2015). https://doi.org/10.1007/s13204-014-0349-7
- Y. Zhan, X. Hao, L. Wang, X. Jiang, Y. Cheng et al., Superhydrophobic and flexible silver nanowire-coated cellulose filter papers with sputter-deposited nickel nanops for ultrahigh electromagnetic interference shielding. ACS Appl. Mater. Intefaces 13(12), 14623–14633 (2021). https://doi.org/10.1021/acsami.1c03692
- Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2d/1d/0d construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13(1), 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
- M. Zhang, M. Wang, M. Zhang, Q. Gao, X. Feng et al., Stretchable conductive Ni@ Fe3O4@polyester fabric strain sensor with negative resistance variation and electromagnetic interference shielding. Org. Electron. 81, 105677 (2020). https://doi.org/10.1016/j.orgel.2020.105677
- Y. Chen, H. Luo, H. Guo, K. Liu, C. Mei et al., Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydrate Polym. 276, 118799 (2022). https://doi.org/10.1016/j.carbpol.2021.118799
- M. Jaroszewski, S. Thomas, A.V. Rane, Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications. (2018).
- X. Cui, X. Liang, J. Chen, W. Gu, G. Ji et al., Customized unique core-shell Fe2N@n-doped carbon with tunable void space for microwave response. Carbon 156, 49–57 (2020). https://doi.org/10.1016/j.carbon.2019.09.041
- Y.-Y. Wang, Z.-H. Zhou, C.-G. Zhou, W.-J. Sun, J.-F. Gao et al., Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Intefaces 12(7), 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
- Y. Xie, Z. Li, J. Tang, P. Li, W. Chen et al., Microwave-assisted foaming and sintering to prepare lightweight high-strength polystyrene/carbon nanotube composite foams with an ultralow percolation threshold. J. Mater. Chem. C 9(30), 9702–9711 (2021). https://doi.org/10.1039/D1TC01923F
- Z. Xu, J. Chen, B. Shen, Y. Zhao, W. Zheng, A proof-of-concept study of auxetic composite foams with negative poisson’s ratio for enhanced strain-stable performance of electromagnetic shielding. ACS Mater. Lett. 421–428 (2023). https://doi.org/10.1021/acsmaterialslett.2c01177
- M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: Present and future commercial applications. Science 339(6119), 535–539 (2013). https://doi.org/10.1126/science.1222453
- W.S. Bao, S.A. Meguid, Z.H. Zhu, G.J. Weng, Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 111(9), 093726 (2012). https://doi.org/10.1063/1.4716010
- W.A. de Heer, W.S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker et al., Aligned carbon nanotube films: Production and optical and electronic properties. Science 268(5212), 845–847 (1995). https://doi.org/10.1126/science.268.5212.845
- X. Feng, X. Qin, D. Liu, Z. Huang, Y. Zhou et al., High electromagnetic interference shielding effectiveness of carbon nanotube–cellulose composite films with layered structures. Macromol. Mater. Eng. 303(11), 1800377 (2018). https://doi.org/10.1002/mame.201800377
- Z.-J. Zhou, Z.-X. Wang, X.-S. Han, J.-W. Pu, Cnt@pdms/nw composite materials with superior electromagnetic shielding. Holzforschung 76(3), 299–304 (2022). https://doi.org/10.1515/hf-2021-0132
- B. Hu, N. Hu, Y. Li, K. Akagi, W. Yuan et al., Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites. Nanoscale Res. Lett. 7(1), 402 (2012). https://doi.org/10.1186/1556-276X-7-402
- I.V. Novikov, D.V. Krasnikov, A.M. Vorobei, Y.I. Zuev, H.A. Butt et al., Multifunctional elastic nanocomposites with extremely low concentrations of single-walled carbon nanotubes. ACS Appl. Mater. Intefaces 14(16), 18866–18876 (2022). https://doi.org/10.1021/acsami.2c01086
- D. Lu, Z. Mo, B. Liang, L. Yang, Z. He et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018). https://doi.org/10.1016/j.carbon.2018.03.061
- D. Feng, D. Xu, Q. Wang, P. Liu, Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. J. Mater. Chem. C 7(26), 7938–7946 (2019). https://doi.org/10.1039/C9TC02311A
- K. Huang, M. Chen, G. He, X. Hu, W. He et al., Stretchable microwave absorbing and electromagnetic interference shielding foam with hierarchical buckling induced by solvent swelling. Carbon 157, 466–477 (2020). https://doi.org/10.1016/j.carbon.2019.10.059
- Y.-Y. Wang, W.-J. Sun, D.-X. Yan, K. Dai, Z.-M. Li, Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 176, 118–125 (2021). https://doi.org/10.1016/j.carbon.2020.12.028
- Z. Sun, B. Shen, Y. Li, J. Chen, W. Zheng, High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Res. 15(8), 6851–6859 (2022). https://doi.org/10.1007/s12274-022-4572-3
- Y. Chen, Y. Liu, Y. Li, H. Qi, Highly sensitive, flexible, stable, and hydrophobic biofoam based on wheat flour for multifunctional sensor and adjustable emi shielding applications. ACS Appl. Mater. Intefaces 13(25), 30020–30029 (2021). https://doi.org/10.1021/acsami.1c05803
- G. Wang, D. Yi, X. Jia, J. Chen, B. Shen et al., Structural design of compressible shape-memory foams for smart self-fixable electromagnetic shielding with reduced reflection. Mater. Today Phys. 22, 100612 (2022). https://doi.org/10.1016/j.mtphys.2022.100612
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13(34), 1701388 (2017). https://doi.org/10.1002/smll.201701388
- M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13(1), 27 (2020). https://doi.org/10.1007/s40820-020-00552-9
- S. Choi, S.I. Han, D. Kim, T. Hyeon, D.-H. Kim, High-performance stretchable conductive nanocomposites: Materials, processes, and device applications. Chem. Soc. Rev. 48(6), 1566–1595 (2019). https://doi.org/10.1039/C8CS00706C
- Q. Zhai, Y. Liu, R. Wang, Y. Wang, Q. Lyu et al., Intrinsically stretchable fuel cell based on enokitake-like standing gold nanowires. Adv. Energy Mater. 10(2), 1903512 (2020). https://doi.org/10.1002/aenm.201903512
- S. Takane, Y. Noda, N. Toyoshima, T. Sekitani, Effect of macroscale mesh design of metal nanowire networks on the conductive properties for stretchable electrodes. Appl. Phys. Lett. 118(24), 243102 (2021). https://doi.org/10.1063/5.0051935
- M.D. Ho, Y. Ling, L.W. Yap, Y. Wang, D. Dong et al., Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater. 27(25), 1700845 (2017). https://doi.org/10.1002/adfm.201700845
- S. Gong, S. Du, J. Kong, Q. Zhai, F. Lin et al., Skin-like stretchable fuel cell based on gold-nanowire-impregnated porous polymer scaffolds. Small 16(39), 2003269 (2020). https://doi.org/10.1002/smll.202003269
- H. Zhang, F. Lin, W. Cheng, Y. Chen, N. Gu, Hierarchically oriented jellyfish-like gold nanowires film for elastronics. Adv. Funct. Mater. 33(2), 2209760 (2023). https://doi.org/10.1002/adfm.202209760
- D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373(6558), 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
- S. Liu, S. Chen, W. Shi, Z. Peng, K. Luo et al., Self-healing, robust, and stretchable electrode by direct printing on dynamic polyurea surface at slightly elevated temperatureself-healing, robust, and stretchable electrode by direct printing on dynamic polyurea surface at slightly elevated temperature. Adv. Funct. Mater. 31(26), 2102225 (2021). https://doi.org/10.1002/adfm.202102225
- H. Hu, S. Wang, S. Wang, G. Liu, T. Cao et al., Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater. 29(33), 1902922 (2019). https://doi.org/10.1002/adfm.201902922
- N.J. Schrenker, Z. Xie, P. Schweizer, M. Moninger, F. Werner et al., Microscopic deformation modes and impact of network anisotropy on the mechanical and electrical performance of five-fold twinned silver nanowire electrodes. ACS Nano 15(1), 362–376 (2020). https://doi.org/10.1021/acsnano.0c06480
- Q. Zhou, J. Lyu, G. Wang, M. Robertson, Z. Qiang et al., Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater. 31(40), 2104536 (2021). https://doi.org/10.1002/adfm.202104536
- D. Kim, J. Bang, W. Lee, I. Ha, J. Lee et al., Highly stretchable and oxidation-resistive Cu nanowire heater for replication of the feeling of heat in a virtual world. J. Mater. Chem. A 8(17), 8281–8291 (2020). https://doi.org/10.1039/D0TA00380H
- Y. Li, C. Li, S. Zhao, J. Cui, G. Zhang et al., Facile fabrication of highly conductive and robust three-dimensional graphene/silver nanowires bicontinuous skeletons for electromagnetic interference shielding silicone rubber nanocomposites. Compos. Pt. A-Appl. Sci. Manuf. 119, 101–110 (2019). https://doi.org/10.1016/j.compositesa.2019.01.025
- L.-C. Jia, K.-Q. Ding, R.-J. Ma, H.-L. Wang, W.-J. Sun et al., Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Adv. Mater. Technol. 4(2), 1800503 (2019). https://doi.org/10.1002/admt.201800503
- F. Sun, J. Xu, T. Liu, F. Li, Y. Poo et al., An autonomously ultrafast self-healing, highly colourless, tear-resistant and compliant elastomer tailored for transparent electromagnetic interference shielding films integrated in flexible and optical electronics. Mater. Horizons. 8(12), 3356–3367 (2021). https://doi.org/10.1039/D1MH01199E
- L.-C. Jia, L. Xu, F. Ren, P.-G. Ren, D.-X. Yan et al., Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 144, 101–108 (2019). https://doi.org/10.1016/j.carbon.2018.12.034
- S. Wang, D. Li, W. Meng, L. Jiang, D. Fang, Scalable, superelastic, and superhydrophobic mxene/silver nanowire/melamine hybrid sponges for high-performance electromagnetic interference shielding. J. Mater. Chem. C 10(13), 5336–5344 (2022). https://doi.org/10.1039/D2TC00516F
- S. Lin, J. Liu, Q. Wang, D. Zu, H. Wang et al., Highly robust, flexible, and large-scale 3D-metallized sponge for high-performance electromagnetic interference shielding. Adv. Mater. Technol. 5(2), 1900761 (2020). https://doi.org/10.1002/admt.201900761
- Y. Chen, L. Zhang, C. Mei, Y. Li, G. Duan et al., Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications. ACS Appl. Mater. Intefaces 12(31), 35513–35522 (2020). https://doi.org/10.1021/acsami.0c10645
- Z. Zeng, M. Chen, Y. Pei, S.I. Seyed Shahabadi, B. Che et al., Ultralight and flexible polyurethane/silver nanowire nanocomposites with unidirectional pores for highly effective electromagnetic shielding. ACS Appl. Mater. Intefaces 9(37), 32211–32219 (2017). https://doi.org/10.1021/acsami.7b07643
- Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14(1), 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
- H. Kang, G.-R. Yi, Y.J. Kim, J.H. Cho, Junction welding techniques for metal nanowire network electrodes. Macromol. Res. 26(12), 1066–1073 (2018). https://doi.org/10.1007/s13233-018-6150-9
- X. Yu, X. Liang, T. Zhao, P. Zhu, R. Sun et al., Thermally welded honeycomb-like silver nanowires aerogel backfilled with polydimethylsiloxane for electromagnetic interference shielding. Mater. Lett. 285, 129065 (2021). https://doi.org/10.1016/j.matlet.2020.129065
- H. Dong, Z. Wu, Y. Jiang, W. Liu, X. Li et al., A flexible and thin graphene/silver nanowires/polymer hybrid transparent electrode for optoelectronic devices. ACS Appl. Mater. Intefaces 8(45), 31212–31221 (2016). https://doi.org/10.1021/acsami.6b09056
- Q. Gao, J. Qin, B. Guo, X. Fan, F. Wang et al., High-performance electromagnetic interference shielding epoxy/Ag nanowire/thermal annealed graphene aerogel composite with bicontinuous three-dimensional conductive skeleton. Compos. Pt. A-Appl. Sci. Manuf. 151, 106648 (2021). https://doi.org/10.1016/j.compositesa.2021.106648
- Y. Yang, S. Chen, W. Li, P. Li, J. Ma et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14(7), 8754–8765 (2020). https://doi.org/10.1021/acsnano.0c03337
- W.-H. Chung, S.-H. Kim, H.-S. Kim, Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes. Sci. Rep. 6(1), 32086 (2016). https://doi.org/10.1038/srep32086
- T.-B. Song, Y. Chen, C.-H. Chung, Y. Yang, B. Bob et al., Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 8(3), 2804–2811 (2014). https://doi.org/10.1021/nn4065567
- S.J. Lee, Y.-H. Kim, J.K. Kim, H. Baik, J.H. Park et al., A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale 6(20), 11828–11834 (2014). https://doi.org/10.1039/C4NR03771E
- Y. Liu, J. Zhang, H. Gao, Y. Wang, Q. Liu et al., Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 17(2), 1090–1096 (2017). https://doi.org/10.1021/acs.nanolett.6b04613
- W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Flexible, transparent, and conductive Ti3C2Tx MXene–silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
- H. Kang, Y. Kim, S. Cheon, G.-R. Yi, J.H. Cho, Halide welding for silver nanowire network electrode. ACS Appl. Mater. Intefaces 9(36), 30779–30785 (2017). https://doi.org/10.1021/acsami.7b09839
- J.J. Patil, W.H. Chae, A. Trebach, K.-J. Carter, E. Lee et al., Failing forward: Stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 33(5), 2004356 (2021). https://doi.org/10.1002/adma.202004356
- D.P. Langley, M. Lagrange, G. Giusti, C. Jiménez, Y. Bréchet et al., Metallic nanowire networks: Effects of thermal annealing on electrical resistance. Nanoscale 6(22), 13535–13543 (2014). https://doi.org/10.1039/C4NR04151H
- T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T.T. Nge et al., Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4(12), 1215–1222 (2011). https://doi.org/10.1007/s12274-011-0172-3
- S.-S. Yoon, D.-Y. Khang, Facile patterning of ag nanowires network by micro-contact printing of siloxane. ACS Appl. Mater. Intefaces 8(35), 23236–23243 (2016). https://doi.org/10.1021/acsami.6b05909
- X. Liang, T. Zhao, W. Jiang, X. Yu, Y. Hu et al., Highly transparent triboelectric nanogenerator utilizing in-situ chemically welded silver nanowire network as electrode for mechanical energy harvesting and body motion monitoring. Nano Energy 59, 508–516 (2019). https://doi.org/10.1016/j.nanoen.2019.02.071
- G. Zeng, W. Chen, X. Chen, Y. Hu, Y. Chen et al., Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc. 144(19), 8658–8668 (2022). https://doi.org/10.1021/jacs.2c01503
- J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee et al., Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 23(34), 4171–4176 (2013). https://doi.org/10.1002/adfm.201203802
- J. Liang, L. Li, K. Tong, Z. Ren, W. Hu et al., Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8(2), 1590–1600 (2014). https://doi.org/10.1021/nn405887k
- D.G. Kim, J.H. Choi, D.-K. Choi, S.W. Kim, Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires. ACS Appl. Mater. Intefaces 10(35), 29730–29740 (2018). https://doi.org/10.1021/acsami.8b07054
- F. Qian, P.C. Lan, M.C. Freyman, W. Chen, T. Kou et al., Ultralight conductive silver nanowire aerogels. Nano Lett. 17(12), 7171–7176 (2017). https://doi.org/10.1021/acs.nanolett.7b02790
- X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li et al., Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Pt. A-Appl. Sci. Manuf. 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
- L. Zhao, G. Duan, G. Zhang, H. Yang, S. He et al., Electrospun functional materials toward food packaging applications: A review. Nanomaterials 10(1), 150 (2020). https://doi.org/10.3390/nano10010150
- F. Jia, J. Dong, X. Dai, Y. Liu, H. Wang et al., Robust, flexible, and stable CuNWs/MXene/ANFs hybrid film constructed by structural assemble strategy for efficient EMI shielding. Chem. Eng. J. 452, 139395 (2023). https://doi.org/10.1016/j.cej.2022.139395
- S. Yu, J. Li, L. Zhao, B. Wang, H. Zheng, Stretch-insensitive capacitive pressure sensor based on highly stretchable cunws electrode. Sens. Actuator A-Phys. 346, 113868 (2022). https://doi.org/10.1016/j.sna.2022.113868
- S. Wu, M. Zou, Z. Li, D. Chen, H. Zhang et al., Robust and stable Cu nanowire@graphene core–shell aerogels for ultraeffective electromagnetic interference shielding. Small 14(23), 1800634 (2018). https://doi.org/10.1002/smll.201800634
- L. Zhao, S. Yu, X. Li, M. Wu, L. Li. High-performance flexible transparent conductive films based on copper nanowires with electroplating welded junctions. Sol. Energy Mater. Sol. Cells 201, 110067 (2019). https://doi.org/10.1016/j.solmat.2019.110067
- S. Ding, J. Jiu, Y. Gao, Y. Tian, T. Araki et al., One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices. ACS Appl. Mater. Intefaces 8(9), 6190–6199 (2016). https://doi.org/10.1021/acsami.5b10802
- A.K. Geim, Graphene: Status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
- K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab et al., A roadmap for graphene. Nature 490(7419), 192–200 (2012). https://doi.org/10.1038/nature11458
- Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32(42), 2204591 (2022). https://doi.org/10.1002/adfm.202204591
- H. Jia, Q.-Q. Kong, Z. Liu, X.-X. Wei, X.-M. Li et al., 3D graphene/ carbon nanotubes/ polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band. Compos. Pt. A-Appl. Sci. Manuf. 129, 105712 (2020). https://doi.org/10.1016/j.compositesa.2019.105712
- S. Zhao, Y. Yan, A. Gao, S. Zhao, J. Cui et al., Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding. ACS Appl. Mater. Intefaces 10(31), 26723–26732 (2018). https://doi.org/10.1021/acsami.8b09275
- Y. Li, X. Tian, S.-P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5), 1907451 (2020). https://doi.org/10.1002/adfm.201907451
- D. Lai, X. Chen, G. Wang, X. Xu, Y. Wang, Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon 188, 513–522 (2022). https://doi.org/10.1016/j.carbon.2021.12.047
- R. Bera, A. Maitra, S. Paria, S.K. Karan, A.K. Das et al., An approach to widen the electromagnetic shielding efficiency in PDMS/ferrous ferric oxide decorated rGO–SWCNH composite through pressure induced tunability. Chem. Eng. J. 335, 501–509 (2018). https://doi.org/10.1016/j.cej.2017.10.178
- H. Liu, Y. Xu, J.-P. Cao, D. Han, Q. Yang et al., Skin structured silver/three-dimensional graphene/polydimethylsiloxane composites with exceptional electromagnetic interference shielding effectiveness. Compos. Pt. A-Appl. Sci. Manuf. 148, 106476 (2021). https://doi.org/10.1016/j.compositesa.2021.106476
- J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15(5), 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
- H. Duan, H. Zhu, J. Gao, D.-X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8(18), 9146–9159 (2020). https://doi.org/10.1039/D0TA01393E
- F. Xie, K. Gao, L. Zhuo, F. Jia, Q. Ma et al., Robust Ti3C2Tx /rGO/ANFs hybrid aerogel with outstanding electromagnetic shielding performance and compression resilience. Compos. Pt. A-Appl. Sci. Manuf. 160, 107049 (2022). https://doi.org/10.1016/j.compositesa.2022.107049
- X. Liu, T. Chen, H. Liang, F. Qin, H. Yang et al., Facile approach for a robust graphene/silver nanowires aerogel with high-performance electromagnetic interference shielding. RSC Adv. 9(1), 27–33 (2019). https://doi.org/10.1039/C8RA08738E
- R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan et al., Heteroatom doping of 2D graphene materials for electromagnetic interference shielding: A review of recent progress. Crit. Rev. Solid State Mat. Sci. 47(4), 570–619 (2022). https://doi.org/10.1080/10408436.2021.1965954
- I.K. Moon, S. Yoon, K.-Y. Chun, J. Oh, Highly elastic and conductive n-doped monolithic graphene aerogels for multifunctional applications. Adv. Funct. Mater. 25(45), 6976–6984 (2015). https://doi.org/10.1002/adfm.201502395
- X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu et al., Boron-doped graphene for electrocatalytic N2 reduction. Joule 2(8), 1610–1622 (2018). https://doi.org/10.1016/j.joule.2018.06.007
- P. Błoński, J. Tuček, Z. Sofer, V. Mazánek, M. Petr et al., Doping with graphitic nitrogen triggers ferromagnetism in graphene. J. Am. Chem. Soc. 139(8), 3171–3180 (2017). https://doi.org/10.1021/jacs.6b12934
- C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan et al., Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv. Mater. 33(9), 2003521 (2021). https://doi.org/10.1002/adma.202003521
- R. Langer, P. Błoński, C. Hofer, P. Lazar, K. Mustonen et al., Tailoring electronic and magnetic properties of graphene by phosphorus doping. ACS Appl. Mater. Intefaces 12(30), 34074–34085 (2020). https://doi.org/10.1021/acsami.0c07564
- F. Shahzad, P. Kumar, Y.-H. Kim, S.M. Hong, C.M. Koo, Biomass-derived thermally annealed interconnected sulfur-doped graphene as a shield against electromagnetic interference. ACS Appl. Mater. Intefaces 8(14), 9361–9369 (2016). https://doi.org/10.1021/acsami.6b00418
- S. Lin, S. Ju, G. Shi, J. Zhang, Y. He et al., Ultrathin nitrogen-doping graphene films for flexible and stretchable emi shielding materials. J. Mater. Sci. 54(9), 7165–7179 (2019). https://doi.org/10.1007/s10853-019-03372-4
- X. Jia, B. Dai, Z. Zhu, J. Wang, W. Qiao et al., Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying. Carbon 108, 551–560 (2016). https://doi.org/10.1016/j.carbon.2016.07.060
- L. Zhang, M. Liu, S. Bi, L. Yang, S. Roy et al., Polydopamine decoration on 3D graphene foam and its electromagnetic interference shielding properties. J. Colloid Interface Sci. 493, 327–333 (2017). https://doi.org/10.1016/j.jcis.2017.01.046
- X. Shen, L. Jiang, Z. Ji, J. Wu, H. Zhou et al., Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. J. Colloid Interface Sci. 354(2), 493–497 (2011). https://doi.org/10.1016/j.jcis.2010.11.037
- C. Chen, W. Kong, H.-M. Duan, J. Zhang, Theoretical simulation of reduction mechanism of graphene oxide in sodium hydroxide solution. Phys. Chem. Chem. Phys. 16(25), 12858 (2014). https://doi.org/10.1039/C4CP01031K
- Z. Xing, Z. Ju, Y. Zhao, J. Wan, Y. Zhu et al., One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci Rep. 6(1), 26146 (2016). https://doi.org/10.1038/srep26146
- Q. Zheng, J.-H. Lee, X. Shen, X. Chen, J.-K. Kim, Graphene-based wearable piezoresistive physical sensors. Mater. Today 36, 158–179 (2020). https://doi.org/10.1016/j.mattod.2019.12.004
- Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng et al., A lightweight and conductive mxene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
- M. Huang, C. Wang, L. Quan, T.H.-Y. Nguyen, H. Zhang et al., CVD growth of porous graphene foam in film form. Matter 3(2), 487–497 (2020). https://doi.org/10.1016/j.matt.2020.06.012
- D. Liao, Y. Guan, Y. He, S. Li, Y. Wang et al., Pickering emulsion strategy for high compressive carbon aerogel as lightweight electromagnetic interference shielding material and flexible pressure sensor. Ceram. Int. 47(16), 23433–23443 (2021). https://doi.org/10.1016/j.ceramint.2021.05.059
- J. Liu, Y. Liu, H.-B. Zhang, Y. Dai, Z. Liu et al., Superelastic and multifunctional graphene-based aerogels by interfacial reinforcement with graphitized carbon at high temperatures. Carbon 132, 95–103 (2018). https://doi.org/10.1016/j.carbon.2018.02.026
- H. Zhang, G. Zhang, Q. Gao, M. Zong, M. Wang et al., Electrically electromagnetic interference shielding microcellular composite foams with 3d hierarchical graphene-carbon nanotube hybrids. Compos. Pt. A-Appl. Sci. Manuf. 130, 105773 (2020). https://doi.org/10.1016/j.compositesa.2020.105773
- Y. Chen, P. Pötschke, J. Pionteck, B. Voit, H. Qi, Multifunctional cellulose/rgo/Fe3O4 composite aerogels for electromagnetic interference shielding. ACS Appl. Mater. Intefaces 12(19), 22088–22098 (2020). https://doi.org/10.1021/acsami.9b23052
- Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115, 629–639 (2017). https://doi.org/10.1016/j.carbon.2017.01.054
- B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Intefaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
- T. Guo, X. Chen, L. Su, C. Li, X. Huang et al., Stretched graphene nanosheets formed the “obstacle walls” in melamine sponge towards effective electromagnetic interference shielding applications. Mater. Des. 182, 108029 (2019). https://doi.org/10.1016/j.matdes.2019.108029
- Y.A. Samad, Y. Li, A. Schiffer, S.M. Alhassan, K. Liao, Graphene foam developed with a novel two-step technique for low and high strains and pressure-sensing applications. Small 11(20), 2380–2385 (2015). https://doi.org/10.1002/smll.201403532
- M. Li, Y. Feng, Y. Zhong, M. Hou, J. Wang, Facile fabrication of novel high-performance electromagnetic interference shielding nickel foam. Colloid Surf. A-Physicochem. Eng. Asp. 656, 130352 (2023). https://doi.org/10.1016/j.colsurfa.2022.130352
- D.-S. Li, S.-J. Wang, Y. Zhou, L. Jiang, Lightweight and hydrophobic Ni/GO/PVA composite aerogels for ultrahigh performance electromagnetic interference shielding. Nanotechnol. Rev. 11(1), 1722–1732 (2022). https://doi.org/10.1515/ntrev-2022-0088
- R. Wang, H. Guo, J. Tang, J. Liu, X. Li et al., Electromagnetic interference shielding performances of graphene foam/pdms force-sensitive composites. ECS J. Solid State Sci. Technol. 11(2), 027003 (2022). https://doi.org/10.1149/2162-8777/ac5577
- Q. Guo, Y. Luo, J. Liu, X. Zhang, C. Lu, A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. J. Mater. Chem. C 6(8), 2139–2147 (2018). https://doi.org/10.1039/C7TC05758J
- Y.-J. Tan, J. Li, Y. Gao, J. Li, S. Guo et al., A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding. Appl. Surf. Sci. 458, 236–244 (2018). https://doi.org/10.1016/j.apsusc.2018.07.107
- C. Liu, S. Ye, J. Feng, The preparation of compressible and fire-resistant sponge-supported reduced graphene oxide aerogel for electromagnetic interference shielding. Chem. Asian J. 11(18), 2586–2593 (2016). https://doi.org/10.1002/asia.201600905
- J. Xu, H. Chang, B. Zhao, R. Li, T. Cui et al., Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 431, 133908 (2022). https://doi.org/10.1016/j.cej.2021.133908
- J. Wang, B. Liu, Y. Cheng, Z. Ma, Y. Zhan et al., Constructing a segregated magnetic graphene network in rubber composites for integrating electromagnetic interference shielding stability and multi-sensing performance. Polymers 13(19), 3277 (2021). https://doi.org/10.3390/polym13193277
- Y. Chen, Z. Wang, R. Liu, J. Yang, J. Xu et al., A facile preparation of flexible and porous reduced graphene oxide woven fabric/polydimethylsiloxane composites for emi shielding. Mater. Res. Express 6(10), 1050d1054 (2019). https://doi.org/10.1088/2053-1591/ab422a
- Z. Wang, W. Yang, R. Liu, X. Zhang, H. Nie et al., Highly stretchable graphene/polydimethylsiloxane composite lattices with tailored structure for strain-tolerant EMI shielding performance. Compos. Sci. Technol. 206, 108652 (2021). https://doi.org/10.1016/j.compscitech.2021.108652
- S. Yan, P. Li, Z. Ju, H. Chen, J. Ma, Electromagnetic interference shielding performance enhancement of stretchable transparent conducting silver nanowire networks with graphene encapsulation. J. Mater. Sci.-Mater. Electron. 32(11), 15475–15483 (2021). https://doi.org/10.1007/s10854-021-06096-x
- W. Sun, D. Ni, Q. Wang, Php-graphene nanoribbon-assembled porous metallic carbon for sodium-ion battery anode with high specific capacity. Carbon 202, 112–118 (2023). https://doi.org/10.1016/j.carbon.2022.10.050
- Y. Cheng, X. Sun, S. Yang, D. Wang, L. Liang et al., Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth and heat insulation. Chem. Eng. J. 452, 139376 (2023). https://doi.org/10.1016/j.cej.2022.139376
- Y.-S. Jun, S. Habibpour, M. Hamidinejad, M.G. Park, W. Ahn et al., Enhanced electrical and mechanical properties of graphene nano-ribbon/thermoplastic polyurethane composites. Carbon 174, 305–316 (2021). https://doi.org/10.1016/j.carbon.2020.12.023
- Q.-M. He, J.-R. Tao, D. Yang, Y. Yang, M. Wang. Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: A simulation and experimental study. Chem. Eng. J. 454, 140162 (2023). https://doi.org/10.1016/j.cej.2022.140162
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (mxenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao et al., 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- Y. Yao, J. Zhao, X. Yang, C. Chai, Recent advance in electromagnetic shielding of mxenes. Chin. Chem. Lett. 32(2), 620–634 (2021). https://doi.org/10.1016/j.cclet.2020.07.029
- L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: Synthesis, properties, and emerging applications. Chem. Mat. 32(5), 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
- J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight mxene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- L. Zhu, R. Mo, C.-G. Yin, W. Guo, J. Yu et al., Synergistically constructed electromagnetic network of magnetic p-decorated carbon nanotubes and MXene for efficient electromagnetic shielding. ACS Appl. Mater. Intefaces 14(50), 56120–56131 (2022). https://doi.org/10.1021/acsami.2c17696
- Z. Deng, P. Tang, X. Wu, H.-B. Zhang, Z.-Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Intefaces 13(17), 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-mxene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
- X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated mxene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
- D. Zhang, R. Yin, Y. Zheng, Q. Li, H. Liu et al., Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and joule heating performances. Chem. Eng. J. 438, 135587 (2022). https://doi.org/10.1016/j.cej.2022.135587
- J. Dong, S. Luo, S. Ning, G. Yang, D. Pan et al., MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Intefaces 13(50), 60478–60488 (2021). https://doi.org/10.1021/acsami.1c19890
- W. Yuan, J. Yang, F. Yin, Y. Li, Y. Yuan, Flexible and stretchable MXene/polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process. Compos. Commun. 19, 90–98 (2020). https://doi.org/10.1016/j.coco.2020.03.003
- W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx mxene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
- S.A. Mirkhani, A. Shayesteh Zeraati, E. Aliabadian, M. Naguib, U. Sundararaj, High dielectric constant and low dielectric loss via poly(vinyl alcohol)/ Ti3C2Tx MXene nanocomposites. ACS Appl. Mater. Intefaces 11(20), 18599–18608 (2019). https://doi.org/10.1021/acsami.9b00393
- Y. Hu, C. Hou, Y. Shi, J. Wu, D. Yang et al., Freestanding Fe3O4/ Ti3C2Tx MXene/polyurethane composite film with efficient electromagnetic shielding and ultra-stretchable performance. Nanotechnology 33(16), 165603 (2022). https://doi.org/10.1088/1361-6528/ac4878
- X. Zhou, J. Wen, Z. Wang, X. Ma, H. Wu, Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol. 115, 148–155 (2022). https://doi.org/10.1016/j.jmst.2021.11.029
- V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311#core-collateral-purchase-access
- X.C. Jia, B. Shen, L.H. Zhang, W.G. Zheng, Construction of shape-memory carbon foam composites for adjustable emi shielding under self-fixable mechanical deformation. Chem. Eng. J. 405, 126927 (2021). https://doi.org/10.1016/j.cej.2020.126927
- H. Wang, R. Li, Y. Cao, S. Chen, B. Yuan et al., Liquid metal fibers. Adv. Fiber Mater. 4(5), 987–1004 (2022). https://doi.org/10.1007/s42765-022-00173-4
- X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang et al., Pedot: Pss for flexible and stretchable electronics: Modifications, strategies, and applications. Adv. Sci. 6(19), 1900813 (2019). https://doi.org/10.1002/advs.201900813
- L.C. Abbott, F. Nigussie, Mercury toxicity and neurogenesis in the mammalian brain. Int. J. Mol. Sci. 22(14), 7520 (2021). https://doi.org/10.3390/ijms22147520
- L. Trasande, P.J. Landrigan, C. Schechter, Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ. Health Perspect. 113(5), 590–596 (2005). https://doi.org/10.1289/ehp.7743
- S. Chen, H.-Z. Wang, R.-Q. Zhao, W. Rao, J. Liu, Liquid metal composites. Matter 2(6), 1446–1480 (2020). https://doi.org/10.1016/j.matt.2020.03.016
- S. Veerapandian, W. Jang, J.B. Seol, H. Wang, M. Kong et al., Hydrogen-doped viscoplastic liquid metal microps for stretchable printed metal lines. Nat. Mater. 20(4), 533–540 (2021). https://doi.org/10.1038/s41563-020-00863-7
- Y.-H. Wu, Z.-F. Deng, Z.-F. Peng, R.-M. Zheng, S.-Q. Liu et al., A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 29(36), 1903840 (2019). https://doi.org/10.1002/adfm.201903840
- S.-Y. Liao, X.-Y. Wang, X.-M. Li, Y.-J. Wan, T. Zhao et al., Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband emi shielding. Chem. Eng. J. 422, 129962 (2021). https://doi.org/10.1016/j.cej.2021.129962
- M.D. Dickey, Stretchable and soft electronics using liquid metals. Adv. Mater. 29(27), 1606425 (2017). https://doi.org/10.1002/adma.201606425
- M. Zhang, P. Zhang, Q. Wang, L. Li, S. Dong et al., Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness. J. Mater. Chem. C 7(33), 10331–10337 (2019). https://doi.org/10.1039/C9TC02887K
- X. Sun, J.-H. Fu, C. Teng, M. Zhang, T. Liu et al., Superhydrophobic e-textile with an ag-egain conductive layer for motion detection and electromagnetic interference shielding. ACS Appl. Mater. Intefaces 14(29), 33650–33661 (2022). https://doi.org/10.1021/acsami.2c09554
- L.-C. Jia, X.-X. Jia, W.-J. Sun, Y.-P. Zhang, L. Xu et al., Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS Appl. Mater. Intefaces 12(47), 53230–53238 (2020). https://doi.org/10.1021/acsami.0c14397
- Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14(1), 29 (2021). https://doi.org/10.1007/s40820-021-00766-5
- B. Yao, X. Xu, H. Li, Z. Han, J. Hao et al., Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chem. Eng. J. 410, 128288 (2021). https://doi.org/10.1016/j.cej.2020.128288
- L.V. Kayser, D.J. Lipomi, Stretch
References
Y. Xie, S. Liu, K. Huang, B. Chen, P. Shi et al., Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric. Adv. Mater. 34(30), 2202982 (2022). https://doi.org/10.1002/adma.202202982
R. Rehpade, S.D. Pable, G.K. Kharate, Design issues & challenges with EMI/EMC in system on packages (SOPs). In: 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA). (2017)
D. Kapoor, C.M. Tan, V. Sangwan, Evaluation of the potential electromagnetic interference in vertically stacked 3D integrated circuits. Appl. Sci.-Basel. 10(3), 748 (2020). https://doi.org/10.3390/app10030748
E. Sicard, W. Jianfei, R.J. Shen, E.P. Li, E.X. Liu et al., Recent advances in electromagnetic compatibility of 3D-ICs &2013; part I. IEEE Electromagn. Compat. Mag. 4(4), 79–89 (2015). https://doi.org/10.1109/MEMC.2015.7407186
E. Sicard, W. Jianfei, R. Shen, E.P. Li, E.X. Liu et al., Recent advances in electromagnetic compatibility of 3D-ICS—part II. IEEE Electromagn. Compat. Mag. 5(1), 65–74 (2016). https://doi.org/10.1109/MEMC.2016.7477137
N. Wang, W. Zou, X. Li, Y. Liang, P. Wang, Study and application status of the nonthermal effects of microwaves in chemistry and materials science - a brief review. RSC Adv. 12(27), 17158–17181 (2022). https://doi.org/10.1039/D2RA00381C
Z. Zhang, W. Wang, Y. Jiang, Y.-X. Wang, Y. Wu et al., High-brightness all-polymer stretchable led with charge-trapping dilution. Nature 603(7902), 624–630 (2022). https://doi.org/10.1038/s41586-022-04400-1
J.Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel et al., Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539(7629), 411–415 (2016). https://doi.org/10.1038/nature20102
Y. Liu, S. Shen, J. Hu, L. Chen, Embedded Ag mesh electrodes for polymer dispersed liquid crystal devices on flexible substrate. Opt. Express 24(22), 25774–25784 (2016). https://doi.org/10.1364/OE.24.025774
Y.-H. Liu, J.-L. Xu, S. Shen, X.-L. Cai, L.-S. Chen et al., High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. J. Mater. Chem. A 5(19), 9032–9041 (2017). https://doi.org/10.1039/C7TA01947E
H. Zhao, Y. Huang, J. Yun, Z. Wang, Y. Han et al., Stretchable polymer composite film based on pseudo-high carbon-filler loadings for electromagnetic interference shielding. Compos. Pt. A-Appl. Sci. Manuf. 157, 106937 (2022). https://doi.org/10.1016/j.compositesa.2022.106937
Z.-Y. Jiang, W. Huang, L.-S. Chen, Y.-H. Liu, Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding. Opt. Express 27(17), 24194–24206 (2019). https://doi.org/10.1364/OE.27.024194
C. Yuan, J. Huang, Y. Dong, X. Huang, Y. Lu et al., Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave fabry–pérot interference and optical antireflection. ACS Appl. Mater. Intefaces 12(23), 26659–26669 (2020). https://doi.org/10.1021/acsami.0c05334
J. Wang, Q. Li, K. Li, X. Sun, Y. Wang et al., Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 34(12), 2109904 (2022). https://doi.org/10.1002/adma.202109904
Y. Bai, S. Bi, W. Wang, N. Ding, Y. Lu et al., Biocompatible, stretchable, and compressible cellulose/MXene hydrogel for strain sensor and electromagnetic interference shielding. Soft Mater. 20(4), 444–454 (2022). https://doi.org/10.1080/1539445X.2022.2081580
S. Ganguly, S. Ghosh, P. Das, T. Das, S.K. Ghosh et al., Poly(n-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym. Bull. 77, 2923–2943 (2020). https://doi.org/10.1007/s00289-019-02892-y
Z. Wang, X. Xia, M. Zhu, X. Zhang, R. Liu et al., Rational assembly of liquid metal/elastomer lattice conductors for high-performance and strain-invariant stretchable electronics. Adv. Funct. Mater. 32(10), 2108336 (2022). https://doi.org/10.1002/adfm.202108336
A. Kamyshny, S. Magdassi, Conductive nanomaterials for 2d and 3d printed flexible electronics. Chem. Soc. Rev. 48(6), 1712–1740 (2019). https://doi.org/10.1039/C8CS00738A
X. Jia, Y. Li, B. Shen, W. Zheng, Evaluation, fabrication and dynamic performance regulation of green emi-shielding materials with low reflectivity: A review. Compos. Pt. B-Eng. 233, 109652 (2022). https://doi.org/10.1016/j.compositesb.2022.109652
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14(1), 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
X. Liu, Y. Li, X. Sun, W. Tang, G. Deng et al., Off/on switchable smart electromagnetic interference shielding aerogel. Matter 4(5), 1735–1747 (2021). https://doi.org/10.1016/j.matt.2021.02.022
M. Huang, L. Wang, B. Zhao, G. Chen, R. Che, Engineering the electronic structure on mxenes via multidimensional component interlayer insertion for enhanced electromagnetic shielding. J. Mater. Sci. Technol. 138, 149–156 (2023). https://doi.org/10.1016/j.jmst.2022.07.047
B. Yao, W. Hong, T. Chen, Z. Han, X. Xu et al., Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 32(14), 1907499 (2020). https://doi.org/10.1002/adma.201907499
S. Liu, J. Liu, X. Dong, Y. Duan, Electromagnetic shielding and absorbing materials (second edition). (Chemical Industry Press; 2014).
A. Iqbal, P. Sambyal, C.M. Koo, 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 30(47), 2000883 (2020). https://doi.org/10.1002/adfm.202000883
Q. Yang, J. Yang, L. Tang, H. Zhang, D. Wei et al., Superhydrophobic graphene nanowalls for electromagnetic interference shielding and infrared photodetection via a two-step transfer method. Chem. Eng. J. 454, 140159 (2023). https://doi.org/10.1016/j.cej.2022.140159
Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu et al., Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38, 101204 (2021). https://doi.org/10.1016/j.nantod.2021.101204
H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang et al., Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Opt. Mater. 7(8), 1801318 (2019). https://doi.org/10.1002/adom.201801318
Z. Zeng, W. Li, N. Wu, S. Zhao, X. Lu, Polymer-assisted fabrication of silver nanowire cellular monoliths: Toward hydrophobic and ultraflexible high-performance electromagnetic interference shielding materials. ACS Appl. Mater. Intefaces 12(34), 38584–38592 (2020). https://doi.org/10.1021/acsami.0c10492
Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira et al., Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano 14(3), 2927–2938 (2020). https://doi.org/10.1021/acsnano.9b07452
Y. Xu, Z. Lin, Y. Yang, H. Duan, G. Zhao et al., Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design. Mater. Horizons. 9(2), 708–719 (2022). https://doi.org/10.1039/D1MH01346G
B. Fu, P. Ren, Z. Guo, Y. Du, Y. Jin et al., Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Compos. Pt. B-Eng. 215, 108813 (2021). https://doi.org/10.1016/j.compositesb.2021.108813
M. Han, X. Yin, K. Hantanasirisakul, X. Li, A. Iqbal et al., Anisotropic mxene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7(10), 1900267 (2019). https://doi.org/10.1002/adom.201900267
N. Zhang, Z. Wang, R. Song, Q. Wang, H. Chen et al., Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci. Bull. 64(8), 540–546 (2019). /https://doi.org/10.1016/j.scib.2019.03.028
Z. Wang, B. Jiao, Y. Qing, H. Nan, L. Huang et al., Flexible and transparent ferroferric oxide-modified silver nanowire film for efficient electromagnetic interference shielding. ACS Appl. Mater. Intefaces 12(2), 2826–2834 (2020). https://doi.org/10.1021/acsami.9b17513
J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Intefaces 9(51), 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
R.F. Landel, L.E. Nielsen, Mechanical properties of polymers and composites. (Mechanical Properties of Polymers and Composites; 1993).
B. Wang, A. Facchetti, Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices. Adv. Mater. 31(28), 1901408 (2019). https://doi.org/10.1002/adma.201901408
B.R. Donovan, H.E. Fowler, V.M. Matavulj, T.J. White, Mechanotropic elastomers. Angew. Chem. Int. Ed. 58(39), 13744–13748 (2019). https://doi.org/10.1002/anie.201905176
S.M. Sapuan, A. Leenie, M. Harimi, Y.K. Beng, Mechanical properties of woven banana fibre reinforced epoxy composites. Mater. Des. 27(8), 689–693 (2006). https://doi.org/10.1016/j.matdes.2004.12.016
C. Majidi, R. Kramer, R.J. Wood, A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater. Struct. 20(10), 105017 (2011). https://doi.org/10.1088/0964-1726/20/10/105017
B. Liu, T. Yin, J. Zhu, D. Zhao, H. Yu et al., Tough and fatigue-resistant polymer networks by crack tip softening. Proc. Natl. Acad. Sci. USA 120(6), e2217781120 (2023). https://doi.org/10.1073/pnas.2217781120
M. Touron, C. Celle, L. Orgéas, J.-P. Simonato, Hybrid silver nanowire–CMC aerogels: From 1D nanomaterials to 3D electrically conductive and mechanically resistant lightweight architectures. ACS Nano 16(9), 14188–14197 (2022). https://doi.org/10.1021/acsnano.2c04288
Y. Hu, Z. Chen, H. Zhuo, L. Zhong, X. Peng et al., Advanced compressible and elastic 3d monoliths beyond hydrogels. Adv. Funct. Mater. 29(44), 1904472 (2019). https://doi.org/10.1002/adfm.201904472
Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2022). https://doi.org/10.1002/adma.202107538
K. Raagulan, B.M. Kim, K.Y. Chai, Recent advancement of electromagnetic interference (EMI) shielding of two dimensional (2D) MXene and graphene aerogel composites. Nanomaterials 10(4), 702 (2020). https://doi.org/10.3390/nano10040702
Y. Kim, J. Zhu, B. Yeom, M. Di Prima, X. Su et al., Stretchable nanop conductors with self-organized conductive pathways. Nature 500(7460), 59–63 (2013). https://doi.org/10.1038/nature12401
Y.F. Xu, K.P. Qian, D.M. Deng, L.Q. Luo, J.H. Ye et al., Electroless deposition of silver nanops on cellulose nanofibrils for electromagnetic interference shielding films. Carbohydrate Polym. 250, 116915 (2020). https://doi.org/10.1016/j.carbpol.2020.116915
Y. Yu, L. Wu, S. Gao, K. Jia, W. Zeng et al., Fabrication of multi-nanocavity and multi-reflection interface in rgo for enhanced EMI absorption and reduced EMI reflection. Appl. Surf. Sci. 562, 150034 (2021). https://doi.org/10.1016/j.apsusc.2021.150034
G.H. Hong, H.T. Cheng, K.Q. Zhang, Z.H. Chen, S.B. Zhang, Cleaner production strategy tailored versatile biocomposites for antibacterial application and electromagnetic interference shielding. J. Clean Prod. 366, 132835 (2022). https://doi.org/10.1016/j.jclepro.2022.132835
M. Zhou, J.W. Wang, G.H. Wang, Y. Zhao, J.M. Tang et al., Lotus leaf-inspired and multifunctional janus carbon felt@Ag composites enabled by in situ asymmetric modification for electromagnetic protection and low-voltage joule heating. Compos. Pt. B-Eng. 242, 110110 (2022). https://doi.org/10.1016/j.compositesb.2022.110110
Y. Sun, Y. Xia, Gold and silver nanops: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 128(6), 686–691 (2003). https://doi.org/10.1039/B212437H
J. Park, V. Privman, E. Matijević, Model of formation of monodispersed colloids. J. Phys. Chem. B 105(47), 11630–11635 (2001). https://doi.org/10.1021/jp011306a
D.V. Goia, E. Matijević, Preparation of monodispersed metal ps. New J. Chem. 22(11), 1203–1215 (1998). https://doi.org/10.1039/A709236I
L.M. Liz-Marzán, Nanometals: Formation and color. Mater. Today 7(2), 26–31 (2004). https://doi.org/10.1016/S1369-7021(04)00080-X
C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao et al., Anisotropic metal nanops: Synthesis, assembly, and optical applications. J. Phys. Chem. B 109(29), 13857–13870 (2005). https://doi.org/10.1021/jp0516846
D.C. Kim, H.J. Shim, W. Lee, J.H. Koo, D.-H. Kim, Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 32(15), 1902743 (2020). https://doi.org/10.1002/adma.201902743
C. Liang, Y. Liu, Y. Ruan, H. Qiu, P. Song et al., Multifunctional sponges with flexible motion sensing and outstanding thermal insulation for superior electromagnetic interference shielding. Compos. Pt. A-Appl. Sci. Manuf. 139, 106143 (2020). https://doi.org/10.1016/j.compositesa.2020.106143
S. Zhang, X. Huang, W. Xiao, L. Zhang, H. Yao et al., Polyvinylpyrrolidone assisted preparation of highly conductive, antioxidation, and durable nanofiber composite with an extremely high electromagnetic interference shielding effectiveness. ACS Appl. Mater. Intefaces 13(18), 21865–21875 (2021). https://doi.org/10.1021/acsami.1c05319
L. Zhang, J. Luo, S. Zhang, J. Yan, X. Huang et al., Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding. J. Mater. Sci. Technol. 98, 62–71 (2022). https://doi.org/10.1016/j.jmst.2021.05.014
Y. Sun, S. Luo, H. Sun, W. Zeng, C. Ling et al., Engineering closed-cell structure in lightweight and flexible carbon foam composite for high-efficient electromagnetic interference shielding. Carbon 136, 299–308 (2018). https://doi.org/10.1016/j.carbon.2018.04.084
X. Lei, X. Zhang, A. Song, S. Gong, Y. Wang et al., Investigation of electrical conductivity and electromagnetic interference shielding performance of Au@CNT/sodium alginate/polydimethylsiloxane flexible composite. Compos. Pt. A-Appl. Sci. Manuf. 130, 105762 (2020). https://doi.org/10.1016/j.compositesa.2019.105762
E. Kim, D.Y. Lim, Y. Kang, E. Yoo, Fabrication of a stretchable electromagnetic interference shielding silver nanop/elastomeric polymer composite. RSC Adv. 6(57), 52250–52254 (2016). https://doi.org/10.1039/C6RA04765C
Z. Liu, F. Wan, L. Mou, M. Jung de Andrade, D. Qian et al., A general approach for buckled bulk composites by combined biaxial stretch and layer-by-layer deposition and their electrical and electromagnetic applications. Adv. Electron. Mater. 5(4), 1800817 (2019). https://doi.org/10.1002/aelm.201800817
L.-P. Wu, Y.-Z. Li, B.-J. Wang, Z.-P. Mao, H. Xu et al., Electroless ag-plated sponges by tunable deposition onto cellulose-derived templates for ultra-high electromagnetic interference shielding. Mater. Des. 159, 47–56 (2018). https://doi.org/10.1016/j.matdes.2018.08.037
S.-Y. Liao, G. Li, X.-Y. Wang, Y.-J. Wan, P.-L. Zhu et al., Metallized skeleton of polymer foam based on metal–organic decomposition for high-performance EMI shielding. ACS Appl. Mater. Intefaces 14(2), 3302–3314 (2022). https://doi.org/10.1021/acsami.1c21836
Z. Ma, S. Kang, J. Ma, L. Shao, Y. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber–Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3C2Tx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61(15), e202200705 (2022). https://doi.org/10.1002/anie.202200705
L. Lin, L. Wang, B. Li, J. Luo, X. Huang et al., Dual conductive network enabled superhydrophobic and high performance strain sensors with outstanding electro-thermal performance and extremely high gauge factors. Chem. Eng. J. 385, 123391 (2020). https://doi.org/10.1016/j.cej.2019.123391
B. Li, Y. Yang, N. Wu, S. Zhao, H. Jin et al., Bicontinuous, high-strength, and multifunctional chemical-cross-linked mxene/superaligned carbon nanotube film. ACS Nano 16(11), 19293–19304 (2022). https://doi.org/10.1021/acsnano.2c08678
Y. Shen, Z. Lin, X. Liu, T. Zhao, P. Zhu et al., Robust and flexible silver-embedded elastomeric polymer/carbon black foams with outstanding electromagnetic interference shielding performance. Compos. Sci. Technol. 213(108942 (2021). https://doi.org/10.1016/j.compscitech.2021.108942
D. Tian, Y. Xu, Y. Wang, Z. Lei, Z. Lin et al., In-situ metallized carbon nanotubes/poly(styrene-butadiene-styrene) (CNTs/SBS) foam for electromagnetic interference shielding. Chem. Eng. J. 420, 130482 (2021). https://doi.org/10.1016/j.cej.2021.130482
R. Aepuru, M. Ramalinga Viswanathan, B.V.B. Rao, H.S. Panda, S. Sahu et al., Tailoring the performance of mechanically robust highly conducting silver/3d graphene aerogels with superior electromagnetic shielding effectiveness. Diam. Relat. Mat. 109, 108043 (2020). https://doi.org/10.1016/j.diamond.2020.108043
M. Xiang, S.-Q. Zhu, S. Qin, J. Yang, W. Fan et al., Flexible composites by ionic liquid/silver/graphene in towel-gourd sponge fibers: Synergistic effect and dual-band electromagnetic interference shielding in x-band and terahertz-band. J. Appl. Polym. Sci. 139(28), e52511 (2022). https://doi.org/10.1002/app.52511
W. Zhai, C. Wang, S. Wang, J. Li, Y. Zhao et al., Ultra-stretchable and multifunctional wearable electronics for superior electromagnetic interference shielding, electrical therapy and biomotion monitoring. J. Mater. Chem. A 9(11), 7238–7247 (2021). https://doi.org/10.1039/D0TA10991F
P. Feng, Z. Ye, Q. Wang, Z. Chen, G. Wang et al., Stretchable and conductive composites film with efficient electromagnetic interference shielding and absorptivity. J. Mater. Sci. 55(20), 8576–8590 (2020). https://doi.org/10.1007/s10853-019-04172-6
R. Ravindren, S. Mondal, P. Bhawal, S.M.N. Ali, N.C. Das, Superior electromagnetic interference shielding effectiveness and low percolation threshold through the preferential distribution of carbon black in the highly flexible polymer blend composites. Polym. Compos. 40(4), 1404–1418 (2019). https://doi.org/10.1002/pc.24874
C.-H. Cui, D.-X. Yan, H. Pang, L.-C. Jia, Y. Bao et al., Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks. Chin. J. Polym. Sci. 34(12), 1490–1499 (2016). https://doi.org/10.1007/s10118-016-1849-6
D. Sethi, R. Ram, D. Khastgir, Electrical conductivity and dynamic mechanical properties of silicon rubber-based conducting composites: Effect of cyclic deformation, pressure and temperature. Polym. Int. 66(9), 1295–1305 (2017). https://doi.org/10.1002/pi.5385
J. Zhang, F. Chen, Y. Zhao, M. Liu, Improving elasticity of conductive silicone rubber by hollow carbon black. Chem. Res. Chin. Univ. 35(6), 1124–1132 (2019). https://doi.org/10.1007/s40242-019-9057-x
H. Zou, L. Zhang, M. Tian, S. Wu, S. Zhao, Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite. J. Appl. Polym. Sci. 115(5), 2710–2717 (2010). https://doi.org/10.1002/app.29901
P. Cong, P. Xu, S. Chen, Effects of carbon black on the anti aging, rheological and conductive properties of SBS/asphalt/carbon black composites. Constr. Build. Mater. 52, 306–313 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.061
A. Houbi, Z.A. Aldashevich, Y. Atassi, Z. Bagasharova Telmanovna, M. Saule et al., Microwave absorbing properties of ferrites and their composites: A review. J. Magn. Magn. Mater. 529, 167839 (2021). https://doi.org/10.1016/j.jmmm.2021.167839
X. Xie, B. Wang, Y. Wang, C. Ni, X. Sun et al., Spinel structured mFe2O4 (m = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review. Chem. Eng. J. 428, 131160 (2022). https://doi.org/10.1016/j.cej.2021.131160
H. Liang, H. Xing, M. Qin, H. Wu, Bamboo-like short carbon fibers@Fe3O4@phenolic resin and honeycomb-like short carbon fibers@Fe3O4@FeO composites as high-performance electromagnetic wave absorbing materials. Compos. Pt. A-Appl. Sci. Manuf. 135, 105959 (2020). https://doi.org/10.1016/j.compositesa.2020.105959
Z. Li, D. Feng, B. Li, D. Xie, Y. Mei, Fdm printed MXene/MnFe2O4/MWCNTs reinforced tpu composites with 3D voronoi structure for sensor and electromagnetic shielding applications. Compos. Sci. Technol. 231, 109803 (2023). https://doi.org/10.1016/j.compscitech.2022.109803
F. Ren, D. Song, Z. Li, L. Jia, Y. Zhao et al., Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. J. Mater. Chem. C 6(6), 1476–1486 (2018). https://doi.org/10.1039/C7TC05213H
Y. Wang, Q. Qi, G. Yin, W. Wang, D. Yu, Flexible, ultralight, and mechanically robust waterborne polyurethane/Ti3C2Tx mxene/nickel ferrite hybrid aerogels for high-performance electromagnetic interference shielding. ACS Appl. Mater. Intefaces 13(18), 21831–21843 (2021). https://doi.org/10.1021/acsami.1c04962
X.-X. Wang, Q. Zheng, Y.-J. Zheng, M.-S. Cao, Green emi shielding: Dielectric/magnetic “genes” and design philosophy. Carbon 206, 124–141 (2023). https://doi.org/10.1016/j.carbon.2023.02.012
H.-G. Shi, H.-B. Zhao, B.-W. Liu, Y.-Z. Wang, Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Intefaces 13(22), 26505–26514 (2021). https://doi.org/10.1021/acsami.1c07363
M. Ma, W. Tao, X. Liao, S. Chen, Y. Shi et al., Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding. Chem. Eng. J. 452, 139471 (2023). https://doi.org/10.1016/j.cej.2022.139471
M. Ma, X. Liao, Q. Chu, S. Chen, Y. Shi et al., Construction of gradient conductivity cellulose nanofiber/MXene composites with efficient electromagnetic interference shielding and excellent mechanical properties. Compos. Sci. Technol. 226, 109540 (2022). https://doi.org/10.1016/j.compscitech.2022.109540
Z. Lei, D. Tian, X. Liu, J. Wei, K. Rajavel et al., Electrically conductive gradient structure design of thermoplastic polyurethane composite foams for efficient electromagnetic interference shielding and ultra-low microwave reflectivity. Chem. Eng. J. 424, 130365 (2021). https://doi.org/10.1016/j.cej.2021.130365
M. Hao, Y. Wang, L. Li, Q. Lu, F. Sun et al., Stretchable multifunctional hydrogels for sensing electronics with effective EMI shielding properties. Soft Matter 17(40), 9057–9065 (2021). https://doi.org/10.1039/D1SM01027A
Q. Ze, X. Kuang, S. Wu, J. Wong, S.M. Montgomery et al., Shape memory polymers: Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv. Mater. 32(4), 2070025 (2020). https://doi.org/10.1002/adma.202070025
R.T. Olsson, M.A.S. Azizi Samir, G. Salazar-Alvarez, L. Belova, V. Ström et al., Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 5(8), 584–588 (2010). https://doi.org/10.1038/nnano.2010.155
Y. Li, G. Huang, X. Zhang, B. Li, Y. Chen et al., Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 23(6), 660–672 (2013). https://doi.org/10.1002/adfm.201201708
X. Xu, H. Li, Q. Zhang, H. Hu, Z. Zhao et al., Self-sensing, ultralight, and conductive 3d graphene/iron oxide aerogel elastomer deformable in a magnetic field. ACS Nano 9(4), 3969–3977 (2015). https://doi.org/10.1021/nn507426u
Q. Liu, X. Liu, H. Feng, H. Shui, R. Yu, Metal organic framework-derived fe/carbon porous composite with low fe content for lightweight and highly efficient electromagnetic wave absorber. Chem. Eng. J. 314, 320–327 (2017). https://doi.org/10.1016/j.cej.2016.11.089
Q. Liu, C. Yi, J. Chen, M. Xia, Y. Lu et al., Flexible, breathable, and highly environmental-stable Ni/PPY/PET conductive fabrics for efficient electromagnetic interference shielding and wearable textile antennas. Compos. Pt. B-Eng. 215, 108752 (2021). https://doi.org/10.1016/j.compositesb.2021.108752
Y. Lin, G. Hou, X. Su, S. Bi, J. Tang, Compressible Ni and reduced graphene oxide (Ni-rGO) coated polymer foams for electromagnetic interference (EMI) shielding. IOP Conf. Ser. Earth Environ. Sci. 186, 012031 (2018). https://doi.org/10.1088/1755-1315/186/2/012031
J. Zhang, D. Zhu, S. Zhang, H. Cheng, S. Chen et al., Asymmetric electromagnetic shielding performance based on spatially controlled deposition of nickel nanops on carbon nanotube sponge. Carbon 194, 290–296 (2022). https://doi.org/10.1016/j.carbon.2022.04.012
R. Kumar, S. Kumari, S.R. Dhakate, Nickel nanops embedded in carbon foam for improving electromagnetic shielding effectiveness. Appl. Nanosci. 5(5), 553–561 (2015). https://doi.org/10.1007/s13204-014-0349-7
Y. Zhan, X. Hao, L. Wang, X. Jiang, Y. Cheng et al., Superhydrophobic and flexible silver nanowire-coated cellulose filter papers with sputter-deposited nickel nanops for ultrahigh electromagnetic interference shielding. ACS Appl. Mater. Intefaces 13(12), 14623–14633 (2021). https://doi.org/10.1021/acsami.1c03692
Z. Xiang, Y. Shi, X. Zhu, L. Cai, W. Lu, Flexible and waterproof 2d/1d/0d construction of MXene-based nanocomposites for electromagnetic wave absorption, EMI shielding, and photothermal conversion. Nano-Micro Lett. 13(1), 150 (2021). https://doi.org/10.1007/s40820-021-00673-9
M. Zhang, M. Wang, M. Zhang, Q. Gao, X. Feng et al., Stretchable conductive Ni@ Fe3O4@polyester fabric strain sensor with negative resistance variation and electromagnetic interference shielding. Org. Electron. 81, 105677 (2020). https://doi.org/10.1016/j.orgel.2020.105677
Y. Chen, H. Luo, H. Guo, K. Liu, C. Mei et al., Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydrate Polym. 276, 118799 (2022). https://doi.org/10.1016/j.carbpol.2021.118799
M. Jaroszewski, S. Thomas, A.V. Rane, Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications. (2018).
X. Cui, X. Liang, J. Chen, W. Gu, G. Ji et al., Customized unique core-shell Fe2N@n-doped carbon with tunable void space for microwave response. Carbon 156, 49–57 (2020). https://doi.org/10.1016/j.carbon.2019.09.041
Y.-Y. Wang, Z.-H. Zhou, C.-G. Zhou, W.-J. Sun, J.-F. Gao et al., Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Intefaces 12(7), 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
Y. Xie, Z. Li, J. Tang, P. Li, W. Chen et al., Microwave-assisted foaming and sintering to prepare lightweight high-strength polystyrene/carbon nanotube composite foams with an ultralow percolation threshold. J. Mater. Chem. C 9(30), 9702–9711 (2021). https://doi.org/10.1039/D1TC01923F
Z. Xu, J. Chen, B. Shen, Y. Zhao, W. Zheng, A proof-of-concept study of auxetic composite foams with negative poisson’s ratio for enhanced strain-stable performance of electromagnetic shielding. ACS Mater. Lett. 421–428 (2023). https://doi.org/10.1021/acsmaterialslett.2c01177
M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: Present and future commercial applications. Science 339(6119), 535–539 (2013). https://doi.org/10.1126/science.1222453
W.S. Bao, S.A. Meguid, Z.H. Zhu, G.J. Weng, Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 111(9), 093726 (2012). https://doi.org/10.1063/1.4716010
W.A. de Heer, W.S. Bacsa, A. Châtelain, T. Gerfin, R. Humphrey-Baker et al., Aligned carbon nanotube films: Production and optical and electronic properties. Science 268(5212), 845–847 (1995). https://doi.org/10.1126/science.268.5212.845
X. Feng, X. Qin, D. Liu, Z. Huang, Y. Zhou et al., High electromagnetic interference shielding effectiveness of carbon nanotube–cellulose composite films with layered structures. Macromol. Mater. Eng. 303(11), 1800377 (2018). https://doi.org/10.1002/mame.201800377
Z.-J. Zhou, Z.-X. Wang, X.-S. Han, J.-W. Pu, Cnt@pdms/nw composite materials with superior electromagnetic shielding. Holzforschung 76(3), 299–304 (2022). https://doi.org/10.1515/hf-2021-0132
B. Hu, N. Hu, Y. Li, K. Akagi, W. Yuan et al., Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites. Nanoscale Res. Lett. 7(1), 402 (2012). https://doi.org/10.1186/1556-276X-7-402
I.V. Novikov, D.V. Krasnikov, A.M. Vorobei, Y.I. Zuev, H.A. Butt et al., Multifunctional elastic nanocomposites with extremely low concentrations of single-walled carbon nanotubes. ACS Appl. Mater. Intefaces 14(16), 18866–18876 (2022). https://doi.org/10.1021/acsami.2c01086
D. Lu, Z. Mo, B. Liang, L. Yang, Z. He et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018). https://doi.org/10.1016/j.carbon.2018.03.061
D. Feng, D. Xu, Q. Wang, P. Liu, Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. J. Mater. Chem. C 7(26), 7938–7946 (2019). https://doi.org/10.1039/C9TC02311A
K. Huang, M. Chen, G. He, X. Hu, W. He et al., Stretchable microwave absorbing and electromagnetic interference shielding foam with hierarchical buckling induced by solvent swelling. Carbon 157, 466–477 (2020). https://doi.org/10.1016/j.carbon.2019.10.059
Y.-Y. Wang, W.-J. Sun, D.-X. Yan, K. Dai, Z.-M. Li, Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon 176, 118–125 (2021). https://doi.org/10.1016/j.carbon.2020.12.028
Z. Sun, B. Shen, Y. Li, J. Chen, W. Zheng, High-performance porous carbon foams via catalytic pyrolysis of modified isocyanate-based polyimide foams for electromagnetic shielding. Nano Res. 15(8), 6851–6859 (2022). https://doi.org/10.1007/s12274-022-4572-3
Y. Chen, Y. Liu, Y. Li, H. Qi, Highly sensitive, flexible, stable, and hydrophobic biofoam based on wheat flour for multifunctional sensor and adjustable emi shielding applications. ACS Appl. Mater. Intefaces 13(25), 30020–30029 (2021). https://doi.org/10.1021/acsami.1c05803
G. Wang, D. Yi, X. Jia, J. Chen, B. Shen et al., Structural design of compressible shape-memory foams for smart self-fixable electromagnetic shielding with reduced reflection. Mater. Today Phys. 22, 100612 (2022). https://doi.org/10.1016/j.mtphys.2022.100612
Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou et al., Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 13(34), 1701388 (2017). https://doi.org/10.1002/smll.201701388
M. Zhang, C. Han, W.-Q. Cao, M.-S. Cao, H.-J. Yang et al., A nano-micro engineering nanofiber for electromagnetic absorber, green shielding and sensor. Nano-Micro Lett. 13(1), 27 (2020). https://doi.org/10.1007/s40820-020-00552-9
S. Choi, S.I. Han, D. Kim, T. Hyeon, D.-H. Kim, High-performance stretchable conductive nanocomposites: Materials, processes, and device applications. Chem. Soc. Rev. 48(6), 1566–1595 (2019). https://doi.org/10.1039/C8CS00706C
Q. Zhai, Y. Liu, R. Wang, Y. Wang, Q. Lyu et al., Intrinsically stretchable fuel cell based on enokitake-like standing gold nanowires. Adv. Energy Mater. 10(2), 1903512 (2020). https://doi.org/10.1002/aenm.201903512
S. Takane, Y. Noda, N. Toyoshima, T. Sekitani, Effect of macroscale mesh design of metal nanowire networks on the conductive properties for stretchable electrodes. Appl. Phys. Lett. 118(24), 243102 (2021). https://doi.org/10.1063/5.0051935
M.D. Ho, Y. Ling, L.W. Yap, Y. Wang, D. Dong et al., Percolating network of ultrathin gold nanowires and silver nanowires toward “invisible” wearable sensors for detecting emotional expression and apexcardiogram. Adv. Funct. Mater. 27(25), 1700845 (2017). https://doi.org/10.1002/adfm.201700845
S. Gong, S. Du, J. Kong, Q. Zhai, F. Lin et al., Skin-like stretchable fuel cell based on gold-nanowire-impregnated porous polymer scaffolds. Small 16(39), 2003269 (2020). https://doi.org/10.1002/smll.202003269
H. Zhang, F. Lin, W. Cheng, Y. Chen, N. Gu, Hierarchically oriented jellyfish-like gold nanowires film for elastronics. Adv. Funct. Mater. 33(2), 2209760 (2023). https://doi.org/10.1002/adfm.202209760
D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373(6558), 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
S. Liu, S. Chen, W. Shi, Z. Peng, K. Luo et al., Self-healing, robust, and stretchable electrode by direct printing on dynamic polyurea surface at slightly elevated temperatureself-healing, robust, and stretchable electrode by direct printing on dynamic polyurea surface at slightly elevated temperature. Adv. Funct. Mater. 31(26), 2102225 (2021). https://doi.org/10.1002/adfm.202102225
H. Hu, S. Wang, S. Wang, G. Liu, T. Cao et al., Aligned silver nanowires enabled highly stretchable and transparent electrodes with unusual conductive property. Adv. Funct. Mater. 29(33), 1902922 (2019). https://doi.org/10.1002/adfm.201902922
N.J. Schrenker, Z. Xie, P. Schweizer, M. Moninger, F. Werner et al., Microscopic deformation modes and impact of network anisotropy on the mechanical and electrical performance of five-fold twinned silver nanowire electrodes. ACS Nano 15(1), 362–376 (2020). https://doi.org/10.1021/acsnano.0c06480
Q. Zhou, J. Lyu, G. Wang, M. Robertson, Z. Qiang et al., Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv. Funct. Mater. 31(40), 2104536 (2021). https://doi.org/10.1002/adfm.202104536
D. Kim, J. Bang, W. Lee, I. Ha, J. Lee et al., Highly stretchable and oxidation-resistive Cu nanowire heater for replication of the feeling of heat in a virtual world. J. Mater. Chem. A 8(17), 8281–8291 (2020). https://doi.org/10.1039/D0TA00380H
Y. Li, C. Li, S. Zhao, J. Cui, G. Zhang et al., Facile fabrication of highly conductive and robust three-dimensional graphene/silver nanowires bicontinuous skeletons for electromagnetic interference shielding silicone rubber nanocomposites. Compos. Pt. A-Appl. Sci. Manuf. 119, 101–110 (2019). https://doi.org/10.1016/j.compositesa.2019.01.025
L.-C. Jia, K.-Q. Ding, R.-J. Ma, H.-L. Wang, W.-J. Sun et al., Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Adv. Mater. Technol. 4(2), 1800503 (2019). https://doi.org/10.1002/admt.201800503
F. Sun, J. Xu, T. Liu, F. Li, Y. Poo et al., An autonomously ultrafast self-healing, highly colourless, tear-resistant and compliant elastomer tailored for transparent electromagnetic interference shielding films integrated in flexible and optical electronics. Mater. Horizons. 8(12), 3356–3367 (2021). https://doi.org/10.1039/D1MH01199E
L.-C. Jia, L. Xu, F. Ren, P.-G. Ren, D.-X. Yan et al., Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 144, 101–108 (2019). https://doi.org/10.1016/j.carbon.2018.12.034
S. Wang, D. Li, W. Meng, L. Jiang, D. Fang, Scalable, superelastic, and superhydrophobic mxene/silver nanowire/melamine hybrid sponges for high-performance electromagnetic interference shielding. J. Mater. Chem. C 10(13), 5336–5344 (2022). https://doi.org/10.1039/D2TC00516F
S. Lin, J. Liu, Q. Wang, D. Zu, H. Wang et al., Highly robust, flexible, and large-scale 3D-metallized sponge for high-performance electromagnetic interference shielding. Adv. Mater. Technol. 5(2), 1900761 (2020). https://doi.org/10.1002/admt.201900761
Y. Chen, L. Zhang, C. Mei, Y. Li, G. Duan et al., Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications. ACS Appl. Mater. Intefaces 12(31), 35513–35522 (2020). https://doi.org/10.1021/acsami.0c10645
Z. Zeng, M. Chen, Y. Pei, S.I. Seyed Shahabadi, B. Che et al., Ultralight and flexible polyurethane/silver nanowire nanocomposites with unidirectional pores for highly effective electromagnetic shielding. ACS Appl. Mater. Intefaces 9(37), 32211–32219 (2017). https://doi.org/10.1021/acsami.7b07643
Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14(1), 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
H. Kang, G.-R. Yi, Y.J. Kim, J.H. Cho, Junction welding techniques for metal nanowire network electrodes. Macromol. Res. 26(12), 1066–1073 (2018). https://doi.org/10.1007/s13233-018-6150-9
X. Yu, X. Liang, T. Zhao, P. Zhu, R. Sun et al., Thermally welded honeycomb-like silver nanowires aerogel backfilled with polydimethylsiloxane for electromagnetic interference shielding. Mater. Lett. 285, 129065 (2021). https://doi.org/10.1016/j.matlet.2020.129065
H. Dong, Z. Wu, Y. Jiang, W. Liu, X. Li et al., A flexible and thin graphene/silver nanowires/polymer hybrid transparent electrode for optoelectronic devices. ACS Appl. Mater. Intefaces 8(45), 31212–31221 (2016). https://doi.org/10.1021/acsami.6b09056
Q. Gao, J. Qin, B. Guo, X. Fan, F. Wang et al., High-performance electromagnetic interference shielding epoxy/Ag nanowire/thermal annealed graphene aerogel composite with bicontinuous three-dimensional conductive skeleton. Compos. Pt. A-Appl. Sci. Manuf. 151, 106648 (2021). https://doi.org/10.1016/j.compositesa.2021.106648
Y. Yang, S. Chen, W. Li, P. Li, J. Ma et al., Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 14(7), 8754–8765 (2020). https://doi.org/10.1021/acsnano.0c03337
W.-H. Chung, S.-H. Kim, H.-S. Kim, Welding of silver nanowire networks via flash white light and UV-C irradiation for highly conductive and reliable transparent electrodes. Sci. Rep. 6(1), 32086 (2016). https://doi.org/10.1038/srep32086
T.-B. Song, Y. Chen, C.-H. Chung, Y. Yang, B. Bob et al., Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 8(3), 2804–2811 (2014). https://doi.org/10.1021/nn4065567
S.J. Lee, Y.-H. Kim, J.K. Kim, H. Baik, J.H. Park et al., A roll-to-roll welding process for planarized silver nanowire electrodes. Nanoscale 6(20), 11828–11834 (2014). https://doi.org/10.1039/C4NR03771E
Y. Liu, J. Zhang, H. Gao, Y. Wang, Q. Liu et al., Capillary-force-induced cold welding in silver-nanowire-based flexible transparent electrodes. Nano Lett. 17(2), 1090–1096 (2017). https://doi.org/10.1021/acs.nanolett.6b04613
W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Flexible, transparent, and conductive Ti3C2Tx MXene–silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14(12), 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
H. Kang, Y. Kim, S. Cheon, G.-R. Yi, J.H. Cho, Halide welding for silver nanowire network electrode. ACS Appl. Mater. Intefaces 9(36), 30779–30785 (2017). https://doi.org/10.1021/acsami.7b09839
J.J. Patil, W.H. Chae, A. Trebach, K.-J. Carter, E. Lee et al., Failing forward: Stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 33(5), 2004356 (2021). https://doi.org/10.1002/adma.202004356
D.P. Langley, M. Lagrange, G. Giusti, C. Jiménez, Y. Bréchet et al., Metallic nanowire networks: Effects of thermal annealing on electrical resistance. Nanoscale 6(22), 13535–13543 (2014). https://doi.org/10.1039/C4NR04151H
T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T.T. Nge et al., Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4(12), 1215–1222 (2011). https://doi.org/10.1007/s12274-011-0172-3
S.-S. Yoon, D.-Y. Khang, Facile patterning of ag nanowires network by micro-contact printing of siloxane. ACS Appl. Mater. Intefaces 8(35), 23236–23243 (2016). https://doi.org/10.1021/acsami.6b05909
X. Liang, T. Zhao, W. Jiang, X. Yu, Y. Hu et al., Highly transparent triboelectric nanogenerator utilizing in-situ chemically welded silver nanowire network as electrode for mechanical energy harvesting and body motion monitoring. Nano Energy 59, 508–516 (2019). https://doi.org/10.1016/j.nanoen.2019.02.071
G. Zeng, W. Chen, X. Chen, Y. Hu, Y. Chen et al., Realizing 17.5% efficiency flexible organic solar cells via atomic-level chemical welding of silver nanowire electrodes. J. Am. Chem. Soc. 144(19), 8658–8668 (2022). https://doi.org/10.1021/jacs.2c01503
J. Lee, P. Lee, H.B. Lee, S. Hong, I. Lee et al., Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 23(34), 4171–4176 (2013). https://doi.org/10.1002/adfm.201203802
J. Liang, L. Li, K. Tong, Z. Ren, W. Hu et al., Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8(2), 1590–1600 (2014). https://doi.org/10.1021/nn405887k
D.G. Kim, J.H. Choi, D.-K. Choi, S.W. Kim, Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires. ACS Appl. Mater. Intefaces 10(35), 29730–29740 (2018). https://doi.org/10.1021/acsami.8b07054
F. Qian, P.C. Lan, M.C. Freyman, W. Chen, T. Kou et al., Ultralight conductive silver nanowire aerogels. Nano Lett. 17(12), 7171–7176 (2017). https://doi.org/10.1021/acs.nanolett.7b02790
X. Yang, S. Fan, Y. Li, Y. Guo, Y. Li et al., Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Pt. A-Appl. Sci. Manuf. 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
L. Zhao, G. Duan, G. Zhang, H. Yang, S. He et al., Electrospun functional materials toward food packaging applications: A review. Nanomaterials 10(1), 150 (2020). https://doi.org/10.3390/nano10010150
F. Jia, J. Dong, X. Dai, Y. Liu, H. Wang et al., Robust, flexible, and stable CuNWs/MXene/ANFs hybrid film constructed by structural assemble strategy for efficient EMI shielding. Chem. Eng. J. 452, 139395 (2023). https://doi.org/10.1016/j.cej.2022.139395
S. Yu, J. Li, L. Zhao, B. Wang, H. Zheng, Stretch-insensitive capacitive pressure sensor based on highly stretchable cunws electrode. Sens. Actuator A-Phys. 346, 113868 (2022). https://doi.org/10.1016/j.sna.2022.113868
S. Wu, M. Zou, Z. Li, D. Chen, H. Zhang et al., Robust and stable Cu nanowire@graphene core–shell aerogels for ultraeffective electromagnetic interference shielding. Small 14(23), 1800634 (2018). https://doi.org/10.1002/smll.201800634
L. Zhao, S. Yu, X. Li, M. Wu, L. Li. High-performance flexible transparent conductive films based on copper nanowires with electroplating welded junctions. Sol. Energy Mater. Sol. Cells 201, 110067 (2019). https://doi.org/10.1016/j.solmat.2019.110067
S. Ding, J. Jiu, Y. Gao, Y. Tian, T. Araki et al., One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices. ACS Appl. Mater. Intefaces 8(9), 6190–6199 (2016). https://doi.org/10.1021/acsami.5b10802
A.K. Geim, Graphene: Status and prospects. Science 324(5934), 1530–1534 (2009). https://doi.org/10.1126/science.1158877
K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab et al., A roadmap for graphene. Nature 490(7419), 192–200 (2012). https://doi.org/10.1038/nature11458
Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32(42), 2204591 (2022). https://doi.org/10.1002/adfm.202204591
H. Jia, Q.-Q. Kong, Z. Liu, X.-X. Wei, X.-M. Li et al., 3D graphene/ carbon nanotubes/ polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band. Compos. Pt. A-Appl. Sci. Manuf. 129, 105712 (2020). https://doi.org/10.1016/j.compositesa.2019.105712
S. Zhao, Y. Yan, A. Gao, S. Zhao, J. Cui et al., Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding. ACS Appl. Mater. Intefaces 10(31), 26723–26732 (2018). https://doi.org/10.1021/acsami.8b09275
Y. Li, X. Tian, S.-P. Gao, L. Jing, K. Li et al., Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Adv. Funct. Mater. 30(5), 1907451 (2020). https://doi.org/10.1002/adfm.201907451
D. Lai, X. Chen, G. Wang, X. Xu, Y. Wang, Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon 188, 513–522 (2022). https://doi.org/10.1016/j.carbon.2021.12.047
R. Bera, A. Maitra, S. Paria, S.K. Karan, A.K. Das et al., An approach to widen the electromagnetic shielding efficiency in PDMS/ferrous ferric oxide decorated rGO–SWCNH composite through pressure induced tunability. Chem. Eng. J. 335, 501–509 (2018). https://doi.org/10.1016/j.cej.2017.10.178
H. Liu, Y. Xu, J.-P. Cao, D. Han, Q. Yang et al., Skin structured silver/three-dimensional graphene/polydimethylsiloxane composites with exceptional electromagnetic interference shielding effectiveness. Compos. Pt. A-Appl. Sci. Manuf. 148, 106476 (2021). https://doi.org/10.1016/j.compositesa.2021.106476
J. Xu, R. Li, S. Ji, B. Zhao, T. Cui et al., Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 15(5), 8907–8918 (2021). https://doi.org/10.1021/acsnano.1c01552
H. Duan, H. Zhu, J. Gao, D.-X. Yan, K. Dai et al., Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J. Mater. Chem. A 8(18), 9146–9159 (2020). https://doi.org/10.1039/D0TA01393E
F. Xie, K. Gao, L. Zhuo, F. Jia, Q. Ma et al., Robust Ti3C2Tx /rGO/ANFs hybrid aerogel with outstanding electromagnetic shielding performance and compression resilience. Compos. Pt. A-Appl. Sci. Manuf. 160, 107049 (2022). https://doi.org/10.1016/j.compositesa.2022.107049
X. Liu, T. Chen, H. Liang, F. Qin, H. Yang et al., Facile approach for a robust graphene/silver nanowires aerogel with high-performance electromagnetic interference shielding. RSC Adv. 9(1), 27–33 (2019). https://doi.org/10.1039/C8RA08738E
R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan et al., Heteroatom doping of 2D graphene materials for electromagnetic interference shielding: A review of recent progress. Crit. Rev. Solid State Mat. Sci. 47(4), 570–619 (2022). https://doi.org/10.1080/10408436.2021.1965954
I.K. Moon, S. Yoon, K.-Y. Chun, J. Oh, Highly elastic and conductive n-doped monolithic graphene aerogels for multifunctional applications. Adv. Funct. Mater. 25(45), 6976–6984 (2015). https://doi.org/10.1002/adfm.201502395
X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu et al., Boron-doped graphene for electrocatalytic N2 reduction. Joule 2(8), 1610–1622 (2018). https://doi.org/10.1016/j.joule.2018.06.007
P. Błoński, J. Tuček, Z. Sofer, V. Mazánek, M. Petr et al., Doping with graphitic nitrogen triggers ferromagnetism in graphene. J. Am. Chem. Soc. 139(8), 3171–3180 (2017). https://doi.org/10.1021/jacs.6b12934
C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan et al., Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv. Mater. 33(9), 2003521 (2021). https://doi.org/10.1002/adma.202003521
R. Langer, P. Błoński, C. Hofer, P. Lazar, K. Mustonen et al., Tailoring electronic and magnetic properties of graphene by phosphorus doping. ACS Appl. Mater. Intefaces 12(30), 34074–34085 (2020). https://doi.org/10.1021/acsami.0c07564
F. Shahzad, P. Kumar, Y.-H. Kim, S.M. Hong, C.M. Koo, Biomass-derived thermally annealed interconnected sulfur-doped graphene as a shield against electromagnetic interference. ACS Appl. Mater. Intefaces 8(14), 9361–9369 (2016). https://doi.org/10.1021/acsami.6b00418
S. Lin, S. Ju, G. Shi, J. Zhang, Y. He et al., Ultrathin nitrogen-doping graphene films for flexible and stretchable emi shielding materials. J. Mater. Sci. 54(9), 7165–7179 (2019). https://doi.org/10.1007/s10853-019-03372-4
X. Jia, B. Dai, Z. Zhu, J. Wang, W. Qiao et al., Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying. Carbon 108, 551–560 (2016). https://doi.org/10.1016/j.carbon.2016.07.060
L. Zhang, M. Liu, S. Bi, L. Yang, S. Roy et al., Polydopamine decoration on 3D graphene foam and its electromagnetic interference shielding properties. J. Colloid Interface Sci. 493, 327–333 (2017). https://doi.org/10.1016/j.jcis.2017.01.046
X. Shen, L. Jiang, Z. Ji, J. Wu, H. Zhou et al., Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. J. Colloid Interface Sci. 354(2), 493–497 (2011). https://doi.org/10.1016/j.jcis.2010.11.037
C. Chen, W. Kong, H.-M. Duan, J. Zhang, Theoretical simulation of reduction mechanism of graphene oxide in sodium hydroxide solution. Phys. Chem. Chem. Phys. 16(25), 12858 (2014). https://doi.org/10.1039/C4CP01031K
Z. Xing, Z. Ju, Y. Zhao, J. Wan, Y. Zhu et al., One-pot hydrothermal synthesis of nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Sci Rep. 6(1), 26146 (2016). https://doi.org/10.1038/srep26146
Q. Zheng, J.-H. Lee, X. Shen, X. Chen, J.-K. Kim, Graphene-based wearable piezoresistive physical sensors. Mater. Today 36, 158–179 (2020). https://doi.org/10.1016/j.mattod.2019.12.004
Z. Fan, D. Wang, Y. Yuan, Y. Wang, Z. Cheng et al., A lightweight and conductive mxene/graphene hybrid foam for superior electromagnetic interference shielding. Chem. Eng. J. 381, 122696 (2020). https://doi.org/10.1016/j.cej.2019.122696
M. Huang, C. Wang, L. Quan, T.H.-Y. Nguyen, H. Zhang et al., CVD growth of porous graphene foam in film form. Matter 3(2), 487–497 (2020). https://doi.org/10.1016/j.matt.2020.06.012
D. Liao, Y. Guan, Y. He, S. Li, Y. Wang et al., Pickering emulsion strategy for high compressive carbon aerogel as lightweight electromagnetic interference shielding material and flexible pressure sensor. Ceram. Int. 47(16), 23433–23443 (2021). https://doi.org/10.1016/j.ceramint.2021.05.059
J. Liu, Y. Liu, H.-B. Zhang, Y. Dai, Z. Liu et al., Superelastic and multifunctional graphene-based aerogels by interfacial reinforcement with graphitized carbon at high temperatures. Carbon 132, 95–103 (2018). https://doi.org/10.1016/j.carbon.2018.02.026
H. Zhang, G. Zhang, Q. Gao, M. Zong, M. Wang et al., Electrically electromagnetic interference shielding microcellular composite foams with 3d hierarchical graphene-carbon nanotube hybrids. Compos. Pt. A-Appl. Sci. Manuf. 130, 105773 (2020). https://doi.org/10.1016/j.compositesa.2020.105773
Y. Chen, P. Pötschke, J. Pionteck, B. Voit, H. Qi, Multifunctional cellulose/rgo/Fe3O4 composite aerogels for electromagnetic interference shielding. ACS Appl. Mater. Intefaces 12(19), 22088–22098 (2020). https://doi.org/10.1021/acsami.9b23052
Y.-J. Wan, P.-L. Zhu, S.-H. Yu, R. Sun, C.-P. Wong et al., Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115, 629–639 (2017). https://doi.org/10.1016/j.carbon.2017.01.054
B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Intefaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
T. Guo, X. Chen, L. Su, C. Li, X. Huang et al., Stretched graphene nanosheets formed the “obstacle walls” in melamine sponge towards effective electromagnetic interference shielding applications. Mater. Des. 182, 108029 (2019). https://doi.org/10.1016/j.matdes.2019.108029
Y.A. Samad, Y. Li, A. Schiffer, S.M. Alhassan, K. Liao, Graphene foam developed with a novel two-step technique for low and high strains and pressure-sensing applications. Small 11(20), 2380–2385 (2015). https://doi.org/10.1002/smll.201403532
M. Li, Y. Feng, Y. Zhong, M. Hou, J. Wang, Facile fabrication of novel high-performance electromagnetic interference shielding nickel foam. Colloid Surf. A-Physicochem. Eng. Asp. 656, 130352 (2023). https://doi.org/10.1016/j.colsurfa.2022.130352
D.-S. Li, S.-J. Wang, Y. Zhou, L. Jiang, Lightweight and hydrophobic Ni/GO/PVA composite aerogels for ultrahigh performance electromagnetic interference shielding. Nanotechnol. Rev. 11(1), 1722–1732 (2022). https://doi.org/10.1515/ntrev-2022-0088
R. Wang, H. Guo, J. Tang, J. Liu, X. Li et al., Electromagnetic interference shielding performances of graphene foam/pdms force-sensitive composites. ECS J. Solid State Sci. Technol. 11(2), 027003 (2022). https://doi.org/10.1149/2162-8777/ac5577
Q. Guo, Y. Luo, J. Liu, X. Zhang, C. Lu, A well-organized graphene nanostructure for versatile strain-sensing application constructed by a covalently bonded graphene/rubber interface. J. Mater. Chem. C 6(8), 2139–2147 (2018). https://doi.org/10.1039/C7TC05758J
Y.-J. Tan, J. Li, Y. Gao, J. Li, S. Guo et al., A facile approach to fabricating silver-coated cotton fiber non-woven fabrics for ultrahigh electromagnetic interference shielding. Appl. Surf. Sci. 458, 236–244 (2018). https://doi.org/10.1016/j.apsusc.2018.07.107
C. Liu, S. Ye, J. Feng, The preparation of compressible and fire-resistant sponge-supported reduced graphene oxide aerogel for electromagnetic interference shielding. Chem. Asian J. 11(18), 2586–2593 (2016). https://doi.org/10.1002/asia.201600905
J. Xu, H. Chang, B. Zhao, R. Li, T. Cui et al., Highly stretchable and conformal electromagnetic interference shielding armor with strain sensing ability. Chem. Eng. J. 431, 133908 (2022). https://doi.org/10.1016/j.cej.2021.133908
J. Wang, B. Liu, Y. Cheng, Z. Ma, Y. Zhan et al., Constructing a segregated magnetic graphene network in rubber composites for integrating electromagnetic interference shielding stability and multi-sensing performance. Polymers 13(19), 3277 (2021). https://doi.org/10.3390/polym13193277
Y. Chen, Z. Wang, R. Liu, J. Yang, J. Xu et al., A facile preparation of flexible and porous reduced graphene oxide woven fabric/polydimethylsiloxane composites for emi shielding. Mater. Res. Express 6(10), 1050d1054 (2019). https://doi.org/10.1088/2053-1591/ab422a
Z. Wang, W. Yang, R. Liu, X. Zhang, H. Nie et al., Highly stretchable graphene/polydimethylsiloxane composite lattices with tailored structure for strain-tolerant EMI shielding performance. Compos. Sci. Technol. 206, 108652 (2021). https://doi.org/10.1016/j.compscitech.2021.108652
S. Yan, P. Li, Z. Ju, H. Chen, J. Ma, Electromagnetic interference shielding performance enhancement of stretchable transparent conducting silver nanowire networks with graphene encapsulation. J. Mater. Sci.-Mater. Electron. 32(11), 15475–15483 (2021). https://doi.org/10.1007/s10854-021-06096-x
W. Sun, D. Ni, Q. Wang, Php-graphene nanoribbon-assembled porous metallic carbon for sodium-ion battery anode with high specific capacity. Carbon 202, 112–118 (2023). https://doi.org/10.1016/j.carbon.2022.10.050
Y. Cheng, X. Sun, S. Yang, D. Wang, L. Liang et al., Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth and heat insulation. Chem. Eng. J. 452, 139376 (2023). https://doi.org/10.1016/j.cej.2022.139376
Y.-S. Jun, S. Habibpour, M. Hamidinejad, M.G. Park, W. Ahn et al., Enhanced electrical and mechanical properties of graphene nano-ribbon/thermoplastic polyurethane composites. Carbon 174, 305–316 (2021). https://doi.org/10.1016/j.carbon.2020.12.023
Q.-M. He, J.-R. Tao, D. Yang, Y. Yang, M. Wang. Surface wrinkles enhancing electromagnetic interference shielding of copper coated polydimethylsiloxane: A simulation and experimental study. Chem. Eng. J. 454, 140162 (2023). https://doi.org/10.1016/j.cej.2022.140162
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (mxenes). Science 353(6304), 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao et al., 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
Y. Yao, J. Zhao, X. Yang, C. Chai, Recent advance in electromagnetic shielding of mxenes. Chin. Chem. Lett. 32(2), 620–634 (2021). https://doi.org/10.1016/j.cclet.2020.07.029
L. Gao, C. Li, W. Huang, S. Mei, H. Lin et al., MXene/polymer membranes: Synthesis, properties, and emerging applications. Chem. Mat. 32(5), 1703–1747 (2020). https://doi.org/10.1021/acs.chemmater.9b04408
J. Liu, H.-B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight mxene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
L. Zhu, R. Mo, C.-G. Yin, W. Guo, J. Yu et al., Synergistically constructed electromagnetic network of magnetic p-decorated carbon nanotubes and MXene for efficient electromagnetic shielding. ACS Appl. Mater. Intefaces 14(50), 56120–56131 (2022). https://doi.org/10.1021/acsami.2c17696
Z. Deng, P. Tang, X. Wu, H.-B. Zhang, Z.-Z. Yu, Superelastic, ultralight, and conductive Ti3C2Tx MXene/acidified carbon nanotube anisotropic aerogels for electromagnetic interference shielding. ACS Appl. Mater. Intefaces 13(17), 20539–20547 (2021). https://doi.org/10.1021/acsami.1c02059
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-mxene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7(15), 2000979 (2020). https://doi.org/10.1002/advs.202000979
X. Wu, B. Han, H.-B. Zhang, X. Xie, T. Tu et al., Compressible, durable and conductive polydimethylsiloxane-coated mxene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 381, 122622 (2020). https://doi.org/10.1016/j.cej.2019.122622
D. Zhang, R. Yin, Y. Zheng, Q. Li, H. Liu et al., Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and joule heating performances. Chem. Eng. J. 438, 135587 (2022). https://doi.org/10.1016/j.cej.2022.135587
J. Dong, S. Luo, S. Ning, G. Yang, D. Pan et al., MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Intefaces 13(50), 60478–60488 (2021). https://doi.org/10.1021/acsami.1c19890
W. Yuan, J. Yang, F. Yin, Y. Li, Y. Yuan, Flexible and stretchable MXene/polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process. Compos. Commun. 19, 90–98 (2020). https://doi.org/10.1016/j.coco.2020.03.003
W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx mxene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
S.A. Mirkhani, A. Shayesteh Zeraati, E. Aliabadian, M. Naguib, U. Sundararaj, High dielectric constant and low dielectric loss via poly(vinyl alcohol)/ Ti3C2Tx MXene nanocomposites. ACS Appl. Mater. Intefaces 11(20), 18599–18608 (2019). https://doi.org/10.1021/acsami.9b00393
Y. Hu, C. Hou, Y. Shi, J. Wu, D. Yang et al., Freestanding Fe3O4/ Ti3C2Tx MXene/polyurethane composite film with efficient electromagnetic shielding and ultra-stretchable performance. Nanotechnology 33(16), 165603 (2022). https://doi.org/10.1088/1361-6528/ac4878
X. Zhou, J. Wen, Z. Wang, X. Ma, H. Wu, Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol. 115, 148–155 (2022). https://doi.org/10.1016/j.jmst.2021.11.029
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas et al., Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369(6506), 979–983 (2020). https://doi.org/10.1126/science.aba8311#core-collateral-purchase-access
X.C. Jia, B. Shen, L.H. Zhang, W.G. Zheng, Construction of shape-memory carbon foam composites for adjustable emi shielding under self-fixable mechanical deformation. Chem. Eng. J. 405, 126927 (2021). https://doi.org/10.1016/j.cej.2020.126927
H. Wang, R. Li, Y. Cao, S. Chen, B. Yuan et al., Liquid metal fibers. Adv. Fiber Mater. 4(5), 987–1004 (2022). https://doi.org/10.1007/s42765-022-00173-4
X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang et al., Pedot: Pss for flexible and stretchable electronics: Modifications, strategies, and applications. Adv. Sci. 6(19), 1900813 (2019). https://doi.org/10.1002/advs.201900813
L.C. Abbott, F. Nigussie, Mercury toxicity and neurogenesis in the mammalian brain. Int. J. Mol. Sci. 22(14), 7520 (2021). https://doi.org/10.3390/ijms22147520
L. Trasande, P.J. Landrigan, C. Schechter, Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ. Health Perspect. 113(5), 590–596 (2005). https://doi.org/10.1289/ehp.7743
S. Chen, H.-Z. Wang, R.-Q. Zhao, W. Rao, J. Liu, Liquid metal composites. Matter 2(6), 1446–1480 (2020). https://doi.org/10.1016/j.matt.2020.03.016
S. Veerapandian, W. Jang, J.B. Seol, H. Wang, M. Kong et al., Hydrogen-doped viscoplastic liquid metal microps for stretchable printed metal lines. Nat. Mater. 20(4), 533–540 (2021). https://doi.org/10.1038/s41563-020-00863-7
Y.-H. Wu, Z.-F. Deng, Z.-F. Peng, R.-M. Zheng, S.-Q. Liu et al., A novel strategy for preparing stretchable and reliable biphasic liquid metal. Adv. Funct. Mater. 29(36), 1903840 (2019). https://doi.org/10.1002/adfm.201903840
S.-Y. Liao, X.-Y. Wang, X.-M. Li, Y.-J. Wan, T. Zhao et al., Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband emi shielding. Chem. Eng. J. 422, 129962 (2021). https://doi.org/10.1016/j.cej.2021.129962
M.D. Dickey, Stretchable and soft electronics using liquid metals. Adv. Mater. 29(27), 1606425 (2017). https://doi.org/10.1002/adma.201606425
M. Zhang, P. Zhang, Q. Wang, L. Li, S. Dong et al., Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness. J. Mater. Chem. C 7(33), 10331–10337 (2019). https://doi.org/10.1039/C9TC02887K
X. Sun, J.-H. Fu, C. Teng, M. Zhang, T. Liu et al., Superhydrophobic e-textile with an ag-egain conductive layer for motion detection and electromagnetic interference shielding. ACS Appl. Mater. Intefaces 14(29), 33650–33661 (2022). https://doi.org/10.1021/acsami.2c09554
L.-C. Jia, X.-X. Jia, W.-J. Sun, Y.-P. Zhang, L. Xu et al., Stretchable liquid metal-based conductive textile for electromagnetic interference shielding. ACS Appl. Mater. Intefaces 12(47), 53230–53238 (2020). https://doi.org/10.1021/acsami.0c14397
Y. Xu, Z. Lin, K. Rajavel, T. Zhao, P. Zhu et al., Tailorable, lightweight and superelastic liquid metal monoliths for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14(1), 29 (2021). https://doi.org/10.1007/s40820-021-00766-5
B. Yao, X. Xu, H. Li, Z. Han, J. Hao et al., Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chem. Eng. J. 410, 128288 (2021). https://doi.org/10.1016/j.cej.2020.128288
L.V. Kayser, D.J. Lipomi, Stretch