Dual-Doped Nickel Sulfide for Electro-Upgrading Polyethylene Terephthalate into Valuable Chemicals and Hydrogen Fuel
Corresponding Author: Bing‑Jie Ni
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 210
Abstract
Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management. Recently, electrocatalytically converting polyethylene terephthalate (PET) into formate and hydrogen has aroused great interest, while developing low-cost catalysts with high efficiency and selectivity for the central ethylene glycol (PET monomer) oxidation reaction (EGOR) remains a challenge. Herein, a high-performance nickel sulfide catalyst for plastic waste electro-upcycling is designed by a cobalt and chloride co-doping strategy. Benefiting from the interconnected ultrathin nanosheet architecture, dual dopants induced up-shifting d band centre and facilitated in situ structural reconstruction, the Co and Cl co-doped Ni3S2 (Co, Cl-NiS) outperforms the single-doped and undoped analogues for EGOR. The self-evolved sulfide@oxyhydroxide heterostructure catalyzes EG-to-formate conversion with high Faradic efficiency (> 92%) and selectivity (> 91%) at high current densities (> 400 mA cm−2). Besides producing formate, the bifunctional Co, Cl-NiS-assisted PET hydrolysate electrolyzer can achieve a high hydrogen production rate of 50.26 mmol h−1 in 2 M KOH, at 1.7 V. This study not only demonstrates a dual-doping strategy to engineer cost-effective bifunctional catalysts for electrochemical conversion processes, but also provides a green and sustainable way for plastic waste upcycling and simultaneous energy-saving hydrogen production.
Highlights:
1 Co and Cl co-doped NiS is an efficient bifunctional electrocatalyst for converting plastic waste into formate and hydrogen with high efficiency and selectivity
2 Dopants regulate the electronic property and accelerate structural reconstruction of NiS for the core ethylene glycol (PET monomer) oxidation reaction
3 PET hydrolysate electrolysis can produce hydrogen gas at an average rate of 50.26 mmol h−1 at 1.7 V
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Chu, Y. Cai, C. Li, X. Wang, Q. Liu et al., Dynamic flows of polyethylene terephthalate (PET) plastic in China. Waste Manag. 124, 273–282 (2021). https://doi.org/10.1016/j.wasman.2021.01.035
- M. MacLeod, H.P.H. Arp, M.B. Tekman, A. Jahnke, The global threat from plastic pollution. Science 373, 61–65 (2021). https://doi.org/10.1126/science.abg5433
- V. Tournier, C.M. Topham, A. Gilles, B. David, C. Folgoas et al., An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020). https://doi.org/10.1038/s41586-020-2149-4
- J. Chen, J. Wu, P.C. Sherrell, J. Chen, H. Wang et al., How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling. Adv. Sci. 9, 2103764 (2022). https://doi.org/10.1002/advs.202103764
- J. Ma, P.A. Tominac, H.A. Aguirre-Villegas, O.O. Olafasakin, M.M. Wright et al., Economic evaluation of infrastructures for thermochemical upcycling of post-consumer plastic waste. Green Chem. 25, 1032–1044 (2023). https://doi.org/10.1039/D2GC04005K
- U. Arena, F. Ardolino, Technical and environmental performances of alternative treatments for challenging plastics waste. Resour. Conserv. Recycl. 183, 106379 (2022). https://doi.org/10.1016/j.resconrec.2022.106379
- D. Civancik-Uslu, T.T. Nhu, B. Van Gorp, U. Kresovic, M. Larrain et al., Moving from linear to circular household plastic packaging in Belgium: Prospective life cycle assessment of mechanical and thermochemical recycling. Resour. Conserv. Recycl. 171, 105633 (2021). https://doi.org/10.1016/j.resconrec.2021.105633
- V.K. Soni, G. Singh, B.K. Vijayan, A. Chopra, G.S. Kapur et al., Thermochemical recycling of waste plastics by pyrolysis: a review. Energy Fuels 35(16), 12763–12808 (2021). https://doi.org/10.1021/acs.energyfuels.1c01292
- C. Jia, S. Xie, W. Zhang, N.N. Intan, J. Sampath et al., Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst. Chem. Catal. 1, 437–455 (2021). https://doi.org/10.1016/j.checat.2021.04.002
- Z. Chen, W. Wei, B.-J. Ni, H. Chen, Plastic wastes derived carbon materials for green energy and sustainable environmental applications. Environ. Funct. Mater. 1, 34–48 (2022). https://doi.org/10.1016/j.efmat.2022.05.005
- F. Liu, X. Gao, R. Shi, C. Edmund, Y. Chen, A general electrochemical strategy for upcycling polyester plastics into added-value chemicals by a CuCo2O4 catalyst. Green Chem. 24, 6571–6577 (2022). https://doi.org/10.1039/D2GC02049A
- C. Li, Y. Sun, Q. Li, L. Zhang, S. Zhang et al., Effects of volatiles on properties of char during sequential pyrolysis of PET and cellulose. Renew. Energy 189, 139–151 (2022). https://doi.org/10.1016/j.renene.2022.02.091
- N. Evode, S.A. Qamar, M. Bilal, D. Barceló, H.M.N. Iqbal, Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 4, 100142 (2021). https://doi.org/10.1016/j.cscee.2021.100142
- S. Behera, S. Dinda, R. Saha, B. Mondal, Quantitative electrocatalytic upcycling of polyethylene terephthalate plastic and its oligomer with a cobalt-based one-dimensional coordination polymer having open metal sites along with coproduction of Hydrogen. ACS Catal. 13(1), 469–474 (2022). https://doi.org/10.1021/acscatal.2c05270
- B. Zhang, H. Zhang, Y. Pan, J. Shao, X. Wang et al., Photoelectrochemical conversion of plastic waste into high-value chemicals coupling hydrogen production. Chem. Eng. J. 462, 142247 (2023). https://doi.org/10.1016/j.cej.2023.142247
- J. Su, T. Li, W. Xie, C. Wang, L. Yin et al., Emerging technologies for waste plastic treatment. ACS Sustain. Chem. Eng. 11(22), 8176–8192 (2023). https://doi.org/10.1021/acssuschemeng.2c07462
- T. Uekert, H. Kasap, E. Reisner, Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 141(38), 15201–15210 (2019). https://doi.org/10.1021/jacs.9b06872
- S. Chu, B. Zhang, X. Zhao, H.S. Soo, F. Wang et al., Photocatalytic conversion of plastic waste: from photodegradation to photosynthesis. Adv. Energy Mater. 12, 2200435 (2022). https://doi.org/10.1002/aenm.202200435
- M. Du, Y. Zhang, S. Kang, C. Xu, Y. Ma et al., Electrochemical production of glycolate fuelled by polyethylene terephthalate plastics with improved techno-economics. Small (2023). https://doi.org/10.1002/smll.202303693
- Y. Yan, H. Zhou, S.-M. Xu, J. Yang, P. Hao et al., Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities. J. Am. Chem. Soc. 145(11), 6144–6155 (2023). https://doi.org/10.1021/jacs.2c11861
- J. Wang, X. Li, T. Zhang, X. Qian, T. Wang et al., Rational design of photo-/electro-catalytic systems for the transformation of plastic wastes. Appl. Catal. B Environ. 332, 122744 (2023). https://doi.org/10.1016/j.apcatb.2023.122744
- J. Wang, X. Li, T. Zhang, Y. Chen, T. Wang et al., Electro-reforming polyethylene terephthalate plastic to co-produce valued chemicals and green hydrogen. J. Phys. Chem. Lett. 13, 622–627 (2022). https://doi.org/10.1021/acs.jpclett.1c03658
- J. Wang, X. Li, M. Wang, T. Zhang, X. Chai et al., Electrocatalytic valorization of poly (ethylene terephthalate) plastic and CO2 for simultaneous production of formic acid. ACS Catal. 12, 6722–6728 (2022). https://doi.org/10.1021/acscatal.2c01128
- X. Liu, Z. Fang, D. Xiong, S. Gong, Y. Niu et al., Upcycling PET in parallel with energy-saving H2 production via bifunctional nickel-cobalt nitride nanosheets. Nano Res. 16, 4625–4633 (2023). https://doi.org/10.1007/s12274-022-5085-9
- H. Zhou, Y. Ren, Z. Li, M. Xu, Y. Wang et al., Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 12, 4679 (2021). https://doi.org/10.1038/s41467-021-25048-x
- Y. Li, L.Q. Lee, Z.G. Yu, H. Zhao, Y.-W. Zhang et al., Coupling of PET waste electroreforming with green hydrogen generation using bifunctional catalyst. Sustainable Energy Fuels 6, 4916–4924 (2022). https://doi.org/10.1039/D2SE01007K
- R. Zheng, J. Li, R. Zhu, R. Wang, X. Feng et al., Enhanced Cr(VI) reduction on natural chalcopyrite mineral modulated by degradation intermediates of RhB. J. Hazard. Mater. 423, 127206 (2021). https://doi.org/10.1016/j.jhazmat.2021.127206
- R. Wang, S. Luo, R. Zheng, Y. Shangguan, X. Feng et al., Interfacial coordination bonding-assisted redox mechanism-driven highly selective precious metal recovery on covalent-functionalized ultrathin 1T-MoS2. ACS Appl. Mater. Interfaces 15, 9331–9340 (2023). https://doi.org/10.1021/acsami.2c20802
- Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2023). https://doi.org/10.1007/s40820-022-00974-7
- Y. Kuang, M.J. Kenney, Y. Meng, W.H. Hung, Y. Liu et al., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. U.S.A. 116, 6624–6629 (2019). https://doi.org/10.1073/pnas.190055611
- P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
- Z. Chen, R. Zheng, W. Wei, W. Wei, B.-J. Ni et al., Unlocking the electrocatalytic activity of natural chalcopyrite using mechanochemistry. J. Energy Chem. 68, 275–283 (2022). https://doi.org/10.1016/j.jechem.2021.11.005
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- M.-X. Shi, M. Wu, S.-S. Xiao, S.-P. Liu, R.-Q. Yao et al., Amorphous NiMo3S13/nickel foam integrated anode for lithium-ion batteries. Tungsten (2023). https://doi.org/10.1007/s42864-022-00201-1
- Y.-Y. Zhou, Z.-Y. Zhang, H.-Z. Zhang, Y. Li, Y. Weng, Progress and perspective of vanadium-based cathode materials for lithium ion batteries. Tungsten 3, 279–288 (2021). https://doi.org/10.1007/s42864-021-00101-w
- Z. Jing, Q. Zhao, D. Zheng, L. Sun, J. Geng et al., Nickel-doped pyrrhotite iron sulfide nanosheets as a highly efficient electrocatalyst for water splitting. J. Mater. Chem. A 8, 20323–20330 (2020). https://doi.org/10.1039/D0TA07624D
- Z. Chen, W. Wei, B.-J. Ni, Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis. Curr. Opin. Electrochem. 31, 100888 (2022). https://doi.org/10.1016/j.coelec.2021.100888
- X. Yu, Q. Lv, L. She, L. Hou, Y. Fautrelle et al., Controlled moderative sulfidation-fabricated hierarchical heterogeneous nickel sulfides-based electrocatalyst with tripartite Mo doping for efficient oxygen evolution. J. Energy Chem. 68, 780–788 (2022). https://doi.org/10.1016/j.jechem.2021.12.010
- H. Song, J. Wang, Z. Zhang, X. Shai, Y. Guo, Synergistic balancing hydrogen and hydroxyl adsorption/desorption of nickel sulfide via cation and anion dual-doping for boosting alkaline hydrogen evolution. Chem. Eng. J. 420, 129842 (2021). https://doi.org/10.1016/j.cej.2021.129842
- Z. Chen, W. Wei, W. Zou, J. Li, R. Zheng et al., Integrating electrodeposition with electrolysis for closing loop resource utilization of battery industrial wastewater. Green Chem. 44, 3208–3217 (2022). https://doi.org/10.1039/D1GC04891K
- N. Wang, X. Li, M.-K. Hu, W. Wei, S.-H. Zhou et al., Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Appl. Catal. B Environ. 316, 121667 (2022). https://doi.org/10.1016/j.apcatb.2022.121667
- Z. Chen, R. Zheng, M. Graś, W. Wei, G. Lota et al., Tuning electronic property and surface reconstruction of amorphous iron borides via W-P co-doping for highly efficient oxygen evolution. Appl. Catal. B Environ. 288, 120037 (2021). https://doi.org/10.1016/j.apcatb.2021.120037
- C. Kou, J. Han, H. Wang, M. Han, H. Liang, Unveiling the role of Zn dopants in NiFe phosphide nanosheet for oxygen evolution reaction. Prog. Nat. Sci. Mater. Int. 33, 74–82 (2023). https://doi.org/10.1016/j.pnsc.2023.03.001
- X. Zhao, B. Boruah, K.F. Chin, M. Đokić, J.M. Modak et al., Upcycling to sustainably reuse plastics. Adv. Mater. 34, 2100843 (2022). https://doi.org/10.1002/adma.202100843
- J. Du, D. Xiang, K. Zhou, L. Wang, J. Yu et al., Electrochemical hydrogen production coupled with oxygen evolution, organic synthesis, and waste reforming. Nano Energy 104, 107875 (2022). https://doi.org/10.1016/j.nanoen.2022.107875
- Z. Chen, N. Han, R. Zheng, Z. Ren, W. Wei et al., Design of earth-abundant amorphous transition metal-based catalysts for electrooxidation of small molecules: advances and perspectives. SusMat 3, 290–319 (2023). https://doi.org/10.1002/sus2.131
- D. Si, B. Xiong, L. Chen, J. Shi, Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem Catal. 1, 941–955 (2021). https://doi.org/10.1016/j.checat.2021.08.001
- H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 12, 322–333 (2019). https://doi.org/10.1039/C8EE03276A
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- Z. Chen, R. Zheng, W. Zou, W. Wei, J. Li et al., Integrating high-efficiency oxygen evolution catalysts featuring accelerated surface reconstruction from waste printed circuit boards via a boriding recycling strategy. Appl. Catal. B Environ. 298, 120583 (2021). https://doi.org/10.1016/j.apcatb.2021.120583
- X. Yin, X. Dai, F. Nie, Z. Ren, Z. Yang et al., Electronic modulation and proton transfer by iron and borate co-doping for synergistically triggering the oxygen evolution reaction on a hollow NiO bipyramidal prism. Nanoscale 13, 14156–14165 (2021). https://doi.org/10.1039/D1NR03500B
- W. He, L. Han, Q. Hao, X. Zheng, Y. Li et al., Fluorine-anion-modulated electron structure of nickel sulfide nanosheet arrays for alkaline hydrogen evolution. ACS Energy Lett. 4(12), 2905–2912 (2019). https://doi.org/10.1021/acsenergylett.9b02316
- W. He, H. Liu, J. Cheng, Y. Li, C. Liu et al., Modulating the electronic structure of nickel sulfide electrocatalysts by chlorine doping toward highly efficient alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 14(5), 6869–6875 (2022). https://doi.org/10.1021/acsami.1c23251
- W. Li, M. Yue, H. Guo, Z. Yuan, Y. Liu et al., Rational design of MnS nanops anchored on N, S-codoped carbon matrix as anode for lithium-ion batteries. Prog. Nat. Sci. Mater. Int. 31, 649–655 (2021). https://doi.org/10.1016/j.pnsc.2021.09.002
- Z. Chen, R. Zheng, S. Deng, W. Wei, W. Wei et al., Modular design of an efficient heterostructured FeS2/TiO2 oxygen evolution electrocatalyst via sulfidation of natural ilmenites. J. Mater. Chem. A 9, 25032–25041 (2021). https://doi.org/10.1039/D1TA08168C
- Y. Xing, D. Li, L. Li, H. Tong, D. Jiang et al., Accelerating water dissociation kinetic in Co9S8 electrocatalyst by mn/N Co-doping toward efficient alkaline hydrogen evolution. Int. J. Hydrog. Energy 46, 7989–8001 (2021). https://doi.org/10.1016/j.ijhydene.2020.12.037
- J. Li, M. Guo, X. Yang, J. Wang, K. Wang et al., Dual elemental modulation in cationic and anionic sites of the multi-metal Prussian blue analogue pre-catalysts for promoted oxygen evolution reaction. Prog. Nat. Sci. Mater. Int. 32, 705–714 (2022). https://doi.org/10.1016/j.pnsc.2022.12.001
- S. Yang, N. Lei, L. Wang, Y. Gong, Controlled synthesis of Mn3O4/Co9S8-Ni3S2 on nickel foam as efficient electrocatalyst for oxygen evolution reaction. Int. J. Hydrog. Energy 48, 7737–7746 (2023). https://doi.org/10.1016/j.ijhydene.2022.11.161
- S. Song, Y. Wang, W. Li, P. Tian, S. Zhou et al., Amorphous MoS2 coated Ni3S2 nanosheets as bifunctional electrocatalysts for high-efficiency overall water splitting. Electrochim. Acta 332, 135454 (2020). https://doi.org/10.1016/j.electacta.2019.135454
- W. Liu, Y. Wang, K. Qi, Y. Wang, F. Wen et al., Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction. J. Alloys Compd. 933, 167789 (2023). https://doi.org/10.1016/j.jallcom.2022.167789
- Y. Mei, Y. Feng, C. Zhang, Y. Zhang, Q. Qi et al., High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction. ACS Catal. 12(17), 10808–10817 (2022). https://doi.org/10.1021/acscatal.2c02604
- T. Bao, Y. Xia, J. Lu, C. Zhang, J. Wang et al., A pacman-like titanium-doped cobalt sulfide hollow superstructure for electrocatalytic oxygen evolution. Small 18, 2103106 (2022). https://doi.org/10.1002/smll.202103106
- C.-Y. Lin, S.-C. Huang, Y.-G. Lin, L.-C. Hsu, C.-T. Yi, Electrosynthesized Ni-P nanospheres with high activity and selectivity towards photoelectrochemical plastics reforming. Appl. Catal. B: Environ. 296, 120351 (2021). https://doi.org/10.1016/j.apcatb.2021.120351
- Z. Cheng, H. Abernathy, M. Liu, Raman spectroscopy of nickel sulfide Ni3S2. J. Phys. Chem. C 111(49), 17997–18000 (2007). https://doi.org/10.1021/jp0770209
- Z. Wang, S. Shen, Z. Lin, W. Tao, Q. Zhang et al., Regulating the local spin state and band structure in Ni3S2 nanosheet for improved oxygen evolution activity. Adv. Funct. Mater. 32, 2112832 (2022). https://doi.org/10.1002/adfm.202112832
- Y. Jin, S. Huang, X. Yue, H. Du, P.K. Shen, Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 8(3), 2359–2363 (2018). https://doi.org/10.1021/acscatal.7b04226
- Z. Chen, R. Zheng, H. Zou, R. Wang, C. Huang et al., Amorphous iron-doped nickel boride with facilitated structural reconstruction and dual active sites for efficient urea electrooxidation. Chem. Eng. J. 465, 142684 (2023). https://doi.org/10.1016/j.cej.2023.142684
- Q. Zha, W. Xu, X. Li, Y. Ni, Chlorine-doped α-Co(OH)2 hollow nano-dodecahedrons prepared by a ZIF-67 self-sacrificing template route and enhanced OER catalytic activity. Dalton Trans. 48, 12127–12136 (2019). https://doi.org/10.1039/C9DT02141H
- P.F. Liu, S. Yang, L.R. Zheng, B. Zhang, H.G. Yang, Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction. J. Mater. Chem. A 4, 9578–9584 (2016). https://doi.org/10.1039/C6TA04078K
- W. Wei, X. Feng, Z. Chen, R. Wang, H. Chen, Salt concentration-regulated desalination mechanism evolution in battery deionization for freshwater. ACS Sustain. Chem. Eng. 10(29), 9295–9302 (2022). https://doi.org/10.1021/acssuschemeng.2c00815
- Y. Qin, W. Zhang, F. Wang, J. Li, J. Ye et al., Extraordinary p-d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C-C bond cleavage of ethylene glycol electrooxidation. Angew. Chem. Int. Ed. 134, 202200899 (2022). https://doi.org/10.1002/anie.202200899
- K. Ohashi, K. Iwase, T. Harada, S. Nakanishi, K. Kamiya, Rational design of electrocatalysts comprising single-atom-modified covalent organic frameworks for the N2 reduction reaction: a first-principles study. J. Phys. Chem. C 125(20), 10983–10990 (2021). https://doi.org/10.1021/acs.jpcc.1c02832
- Y. Yang, L. Zhang, Z. Hu, Y. Zheng, C. Tang et al., The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 59, 4525–4531 (2020). https://doi.org/10.1002/anie.201915001
- S. Huang, S. Lu, H. Hu, F. Xu, H. Li et al., Hyper-dendritic PdZn nanocrystals as highly stable and efficient bifunctional electrocatalysts towards oxygen reduction and ethanol oxidation. Chem. Eng. J. 420, 130503 (2021). https://doi.org/10.1016/j.cej.2021.130503
References
J. Chu, Y. Cai, C. Li, X. Wang, Q. Liu et al., Dynamic flows of polyethylene terephthalate (PET) plastic in China. Waste Manag. 124, 273–282 (2021). https://doi.org/10.1016/j.wasman.2021.01.035
M. MacLeod, H.P.H. Arp, M.B. Tekman, A. Jahnke, The global threat from plastic pollution. Science 373, 61–65 (2021). https://doi.org/10.1126/science.abg5433
V. Tournier, C.M. Topham, A. Gilles, B. David, C. Folgoas et al., An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020). https://doi.org/10.1038/s41586-020-2149-4
J. Chen, J. Wu, P.C. Sherrell, J. Chen, H. Wang et al., How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling. Adv. Sci. 9, 2103764 (2022). https://doi.org/10.1002/advs.202103764
J. Ma, P.A. Tominac, H.A. Aguirre-Villegas, O.O. Olafasakin, M.M. Wright et al., Economic evaluation of infrastructures for thermochemical upcycling of post-consumer plastic waste. Green Chem. 25, 1032–1044 (2023). https://doi.org/10.1039/D2GC04005K
U. Arena, F. Ardolino, Technical and environmental performances of alternative treatments for challenging plastics waste. Resour. Conserv. Recycl. 183, 106379 (2022). https://doi.org/10.1016/j.resconrec.2022.106379
D. Civancik-Uslu, T.T. Nhu, B. Van Gorp, U. Kresovic, M. Larrain et al., Moving from linear to circular household plastic packaging in Belgium: Prospective life cycle assessment of mechanical and thermochemical recycling. Resour. Conserv. Recycl. 171, 105633 (2021). https://doi.org/10.1016/j.resconrec.2021.105633
V.K. Soni, G. Singh, B.K. Vijayan, A. Chopra, G.S. Kapur et al., Thermochemical recycling of waste plastics by pyrolysis: a review. Energy Fuels 35(16), 12763–12808 (2021). https://doi.org/10.1021/acs.energyfuels.1c01292
C. Jia, S. Xie, W. Zhang, N.N. Intan, J. Sampath et al., Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst. Chem. Catal. 1, 437–455 (2021). https://doi.org/10.1016/j.checat.2021.04.002
Z. Chen, W. Wei, B.-J. Ni, H. Chen, Plastic wastes derived carbon materials for green energy and sustainable environmental applications. Environ. Funct. Mater. 1, 34–48 (2022). https://doi.org/10.1016/j.efmat.2022.05.005
F. Liu, X. Gao, R. Shi, C. Edmund, Y. Chen, A general electrochemical strategy for upcycling polyester plastics into added-value chemicals by a CuCo2O4 catalyst. Green Chem. 24, 6571–6577 (2022). https://doi.org/10.1039/D2GC02049A
C. Li, Y. Sun, Q. Li, L. Zhang, S. Zhang et al., Effects of volatiles on properties of char during sequential pyrolysis of PET and cellulose. Renew. Energy 189, 139–151 (2022). https://doi.org/10.1016/j.renene.2022.02.091
N. Evode, S.A. Qamar, M. Bilal, D. Barceló, H.M.N. Iqbal, Plastic waste and its management strategies for environmental sustainability. Case Stud. Chem. Environ. Eng. 4, 100142 (2021). https://doi.org/10.1016/j.cscee.2021.100142
S. Behera, S. Dinda, R. Saha, B. Mondal, Quantitative electrocatalytic upcycling of polyethylene terephthalate plastic and its oligomer with a cobalt-based one-dimensional coordination polymer having open metal sites along with coproduction of Hydrogen. ACS Catal. 13(1), 469–474 (2022). https://doi.org/10.1021/acscatal.2c05270
B. Zhang, H. Zhang, Y. Pan, J. Shao, X. Wang et al., Photoelectrochemical conversion of plastic waste into high-value chemicals coupling hydrogen production. Chem. Eng. J. 462, 142247 (2023). https://doi.org/10.1016/j.cej.2023.142247
J. Su, T. Li, W. Xie, C. Wang, L. Yin et al., Emerging technologies for waste plastic treatment. ACS Sustain. Chem. Eng. 11(22), 8176–8192 (2023). https://doi.org/10.1021/acssuschemeng.2c07462
T. Uekert, H. Kasap, E. Reisner, Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst. J. Am. Chem. Soc. 141(38), 15201–15210 (2019). https://doi.org/10.1021/jacs.9b06872
S. Chu, B. Zhang, X. Zhao, H.S. Soo, F. Wang et al., Photocatalytic conversion of plastic waste: from photodegradation to photosynthesis. Adv. Energy Mater. 12, 2200435 (2022). https://doi.org/10.1002/aenm.202200435
M. Du, Y. Zhang, S. Kang, C. Xu, Y. Ma et al., Electrochemical production of glycolate fuelled by polyethylene terephthalate plastics with improved techno-economics. Small (2023). https://doi.org/10.1002/smll.202303693
Y. Yan, H. Zhou, S.-M. Xu, J. Yang, P. Hao et al., Electrocatalytic upcycling of biomass and plastic wastes to biodegradable polymer monomers and hydrogen fuel at high current densities. J. Am. Chem. Soc. 145(11), 6144–6155 (2023). https://doi.org/10.1021/jacs.2c11861
J. Wang, X. Li, T. Zhang, X. Qian, T. Wang et al., Rational design of photo-/electro-catalytic systems for the transformation of plastic wastes. Appl. Catal. B Environ. 332, 122744 (2023). https://doi.org/10.1016/j.apcatb.2023.122744
J. Wang, X. Li, T. Zhang, Y. Chen, T. Wang et al., Electro-reforming polyethylene terephthalate plastic to co-produce valued chemicals and green hydrogen. J. Phys. Chem. Lett. 13, 622–627 (2022). https://doi.org/10.1021/acs.jpclett.1c03658
J. Wang, X. Li, M. Wang, T. Zhang, X. Chai et al., Electrocatalytic valorization of poly (ethylene terephthalate) plastic and CO2 for simultaneous production of formic acid. ACS Catal. 12, 6722–6728 (2022). https://doi.org/10.1021/acscatal.2c01128
X. Liu, Z. Fang, D. Xiong, S. Gong, Y. Niu et al., Upcycling PET in parallel with energy-saving H2 production via bifunctional nickel-cobalt nitride nanosheets. Nano Res. 16, 4625–4633 (2023). https://doi.org/10.1007/s12274-022-5085-9
H. Zhou, Y. Ren, Z. Li, M. Xu, Y. Wang et al., Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 12, 4679 (2021). https://doi.org/10.1038/s41467-021-25048-x
Y. Li, L.Q. Lee, Z.G. Yu, H. Zhao, Y.-W. Zhang et al., Coupling of PET waste electroreforming with green hydrogen generation using bifunctional catalyst. Sustainable Energy Fuels 6, 4916–4924 (2022). https://doi.org/10.1039/D2SE01007K
R. Zheng, J. Li, R. Zhu, R. Wang, X. Feng et al., Enhanced Cr(VI) reduction on natural chalcopyrite mineral modulated by degradation intermediates of RhB. J. Hazard. Mater. 423, 127206 (2021). https://doi.org/10.1016/j.jhazmat.2021.127206
R. Wang, S. Luo, R. Zheng, Y. Shangguan, X. Feng et al., Interfacial coordination bonding-assisted redox mechanism-driven highly selective precious metal recovery on covalent-functionalized ultrathin 1T-MoS2. ACS Appl. Mater. Interfaces 15, 9331–9340 (2023). https://doi.org/10.1021/acsami.2c20802
Z. Chen, S. Yun, L. Wu, J. Zhang, X. Shi et al., Waste-derived catalysts for water electrolysis: circular economy-driven sustainable green hydrogen energy. Nano-Micro Lett. 15, 4 (2023). https://doi.org/10.1007/s40820-022-00974-7
Y. Kuang, M.J. Kenney, Y. Meng, W.H. Hung, Y. Liu et al., Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. U.S.A. 116, 6624–6629 (2019). https://doi.org/10.1073/pnas.190055611
P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
Z. Chen, R. Zheng, W. Wei, W. Wei, B.-J. Ni et al., Unlocking the electrocatalytic activity of natural chalcopyrite using mechanochemistry. J. Energy Chem. 68, 275–283 (2022). https://doi.org/10.1016/j.jechem.2021.11.005
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
M.-X. Shi, M. Wu, S.-S. Xiao, S.-P. Liu, R.-Q. Yao et al., Amorphous NiMo3S13/nickel foam integrated anode for lithium-ion batteries. Tungsten (2023). https://doi.org/10.1007/s42864-022-00201-1
Y.-Y. Zhou, Z.-Y. Zhang, H.-Z. Zhang, Y. Li, Y. Weng, Progress and perspective of vanadium-based cathode materials for lithium ion batteries. Tungsten 3, 279–288 (2021). https://doi.org/10.1007/s42864-021-00101-w
Z. Jing, Q. Zhao, D. Zheng, L. Sun, J. Geng et al., Nickel-doped pyrrhotite iron sulfide nanosheets as a highly efficient electrocatalyst for water splitting. J. Mater. Chem. A 8, 20323–20330 (2020). https://doi.org/10.1039/D0TA07624D
Z. Chen, W. Wei, B.-J. Ni, Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis. Curr. Opin. Electrochem. 31, 100888 (2022). https://doi.org/10.1016/j.coelec.2021.100888
X. Yu, Q. Lv, L. She, L. Hou, Y. Fautrelle et al., Controlled moderative sulfidation-fabricated hierarchical heterogeneous nickel sulfides-based electrocatalyst with tripartite Mo doping for efficient oxygen evolution. J. Energy Chem. 68, 780–788 (2022). https://doi.org/10.1016/j.jechem.2021.12.010
H. Song, J. Wang, Z. Zhang, X. Shai, Y. Guo, Synergistic balancing hydrogen and hydroxyl adsorption/desorption of nickel sulfide via cation and anion dual-doping for boosting alkaline hydrogen evolution. Chem. Eng. J. 420, 129842 (2021). https://doi.org/10.1016/j.cej.2021.129842
Z. Chen, W. Wei, W. Zou, J. Li, R. Zheng et al., Integrating electrodeposition with electrolysis for closing loop resource utilization of battery industrial wastewater. Green Chem. 44, 3208–3217 (2022). https://doi.org/10.1039/D1GC04891K
N. Wang, X. Li, M.-K. Hu, W. Wei, S.-H. Zhou et al., Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling. Appl. Catal. B Environ. 316, 121667 (2022). https://doi.org/10.1016/j.apcatb.2022.121667
Z. Chen, R. Zheng, M. Graś, W. Wei, G. Lota et al., Tuning electronic property and surface reconstruction of amorphous iron borides via W-P co-doping for highly efficient oxygen evolution. Appl. Catal. B Environ. 288, 120037 (2021). https://doi.org/10.1016/j.apcatb.2021.120037
C. Kou, J. Han, H. Wang, M. Han, H. Liang, Unveiling the role of Zn dopants in NiFe phosphide nanosheet for oxygen evolution reaction. Prog. Nat. Sci. Mater. Int. 33, 74–82 (2023). https://doi.org/10.1016/j.pnsc.2023.03.001
X. Zhao, B. Boruah, K.F. Chin, M. Đokić, J.M. Modak et al., Upcycling to sustainably reuse plastics. Adv. Mater. 34, 2100843 (2022). https://doi.org/10.1002/adma.202100843
J. Du, D. Xiang, K. Zhou, L. Wang, J. Yu et al., Electrochemical hydrogen production coupled with oxygen evolution, organic synthesis, and waste reforming. Nano Energy 104, 107875 (2022). https://doi.org/10.1016/j.nanoen.2022.107875
Z. Chen, N. Han, R. Zheng, Z. Ren, W. Wei et al., Design of earth-abundant amorphous transition metal-based catalysts for electrooxidation of small molecules: advances and perspectives. SusMat 3, 290–319 (2023). https://doi.org/10.1002/sus2.131
D. Si, B. Xiong, L. Chen, J. Shi, Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution. Chem Catal. 1, 941–955 (2021). https://doi.org/10.1016/j.checat.2021.08.001
H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ. Sci. 12, 322–333 (2019). https://doi.org/10.1039/C8EE03276A
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
Z. Chen, R. Zheng, W. Zou, W. Wei, J. Li et al., Integrating high-efficiency oxygen evolution catalysts featuring accelerated surface reconstruction from waste printed circuit boards via a boriding recycling strategy. Appl. Catal. B Environ. 298, 120583 (2021). https://doi.org/10.1016/j.apcatb.2021.120583
X. Yin, X. Dai, F. Nie, Z. Ren, Z. Yang et al., Electronic modulation and proton transfer by iron and borate co-doping for synergistically triggering the oxygen evolution reaction on a hollow NiO bipyramidal prism. Nanoscale 13, 14156–14165 (2021). https://doi.org/10.1039/D1NR03500B
W. He, L. Han, Q. Hao, X. Zheng, Y. Li et al., Fluorine-anion-modulated electron structure of nickel sulfide nanosheet arrays for alkaline hydrogen evolution. ACS Energy Lett. 4(12), 2905–2912 (2019). https://doi.org/10.1021/acsenergylett.9b02316
W. He, H. Liu, J. Cheng, Y. Li, C. Liu et al., Modulating the electronic structure of nickel sulfide electrocatalysts by chlorine doping toward highly efficient alkaline hydrogen evolution. ACS Appl. Mater. Interfaces 14(5), 6869–6875 (2022). https://doi.org/10.1021/acsami.1c23251
W. Li, M. Yue, H. Guo, Z. Yuan, Y. Liu et al., Rational design of MnS nanops anchored on N, S-codoped carbon matrix as anode for lithium-ion batteries. Prog. Nat. Sci. Mater. Int. 31, 649–655 (2021). https://doi.org/10.1016/j.pnsc.2021.09.002
Z. Chen, R. Zheng, S. Deng, W. Wei, W. Wei et al., Modular design of an efficient heterostructured FeS2/TiO2 oxygen evolution electrocatalyst via sulfidation of natural ilmenites. J. Mater. Chem. A 9, 25032–25041 (2021). https://doi.org/10.1039/D1TA08168C
Y. Xing, D. Li, L. Li, H. Tong, D. Jiang et al., Accelerating water dissociation kinetic in Co9S8 electrocatalyst by mn/N Co-doping toward efficient alkaline hydrogen evolution. Int. J. Hydrog. Energy 46, 7989–8001 (2021). https://doi.org/10.1016/j.ijhydene.2020.12.037
J. Li, M. Guo, X. Yang, J. Wang, K. Wang et al., Dual elemental modulation in cationic and anionic sites of the multi-metal Prussian blue analogue pre-catalysts for promoted oxygen evolution reaction. Prog. Nat. Sci. Mater. Int. 32, 705–714 (2022). https://doi.org/10.1016/j.pnsc.2022.12.001
S. Yang, N. Lei, L. Wang, Y. Gong, Controlled synthesis of Mn3O4/Co9S8-Ni3S2 on nickel foam as efficient electrocatalyst for oxygen evolution reaction. Int. J. Hydrog. Energy 48, 7737–7746 (2023). https://doi.org/10.1016/j.ijhydene.2022.11.161
S. Song, Y. Wang, W. Li, P. Tian, S. Zhou et al., Amorphous MoS2 coated Ni3S2 nanosheets as bifunctional electrocatalysts for high-efficiency overall water splitting. Electrochim. Acta 332, 135454 (2020). https://doi.org/10.1016/j.electacta.2019.135454
W. Liu, Y. Wang, K. Qi, Y. Wang, F. Wen et al., Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction. J. Alloys Compd. 933, 167789 (2023). https://doi.org/10.1016/j.jallcom.2022.167789
Y. Mei, Y. Feng, C. Zhang, Y. Zhang, Q. Qi et al., High-entropy alloy with Mo-coordination as efficient electrocatalyst for oxygen evolution reaction. ACS Catal. 12(17), 10808–10817 (2022). https://doi.org/10.1021/acscatal.2c02604
T. Bao, Y. Xia, J. Lu, C. Zhang, J. Wang et al., A pacman-like titanium-doped cobalt sulfide hollow superstructure for electrocatalytic oxygen evolution. Small 18, 2103106 (2022). https://doi.org/10.1002/smll.202103106
C.-Y. Lin, S.-C. Huang, Y.-G. Lin, L.-C. Hsu, C.-T. Yi, Electrosynthesized Ni-P nanospheres with high activity and selectivity towards photoelectrochemical plastics reforming. Appl. Catal. B: Environ. 296, 120351 (2021). https://doi.org/10.1016/j.apcatb.2021.120351
Z. Cheng, H. Abernathy, M. Liu, Raman spectroscopy of nickel sulfide Ni3S2. J. Phys. Chem. C 111(49), 17997–18000 (2007). https://doi.org/10.1021/jp0770209
Z. Wang, S. Shen, Z. Lin, W. Tao, Q. Zhang et al., Regulating the local spin state and band structure in Ni3S2 nanosheet for improved oxygen evolution activity. Adv. Funct. Mater. 32, 2112832 (2022). https://doi.org/10.1002/adfm.202112832
Y. Jin, S. Huang, X. Yue, H. Du, P.K. Shen, Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 8(3), 2359–2363 (2018). https://doi.org/10.1021/acscatal.7b04226
Z. Chen, R. Zheng, H. Zou, R. Wang, C. Huang et al., Amorphous iron-doped nickel boride with facilitated structural reconstruction and dual active sites for efficient urea electrooxidation. Chem. Eng. J. 465, 142684 (2023). https://doi.org/10.1016/j.cej.2023.142684
Q. Zha, W. Xu, X. Li, Y. Ni, Chlorine-doped α-Co(OH)2 hollow nano-dodecahedrons prepared by a ZIF-67 self-sacrificing template route and enhanced OER catalytic activity. Dalton Trans. 48, 12127–12136 (2019). https://doi.org/10.1039/C9DT02141H
P.F. Liu, S. Yang, L.R. Zheng, B. Zhang, H.G. Yang, Electrochemical etching of α-cobalt hydroxide for improvement of oxygen evolution reaction. J. Mater. Chem. A 4, 9578–9584 (2016). https://doi.org/10.1039/C6TA04078K
W. Wei, X. Feng, Z. Chen, R. Wang, H. Chen, Salt concentration-regulated desalination mechanism evolution in battery deionization for freshwater. ACS Sustain. Chem. Eng. 10(29), 9295–9302 (2022). https://doi.org/10.1021/acssuschemeng.2c00815
Y. Qin, W. Zhang, F. Wang, J. Li, J. Ye et al., Extraordinary p-d hybridization interaction in heterostructural Pd-PdSe nanosheets boosts C-C bond cleavage of ethylene glycol electrooxidation. Angew. Chem. Int. Ed. 134, 202200899 (2022). https://doi.org/10.1002/anie.202200899
K. Ohashi, K. Iwase, T. Harada, S. Nakanishi, K. Kamiya, Rational design of electrocatalysts comprising single-atom-modified covalent organic frameworks for the N2 reduction reaction: a first-principles study. J. Phys. Chem. C 125(20), 10983–10990 (2021). https://doi.org/10.1021/acs.jpcc.1c02832
Y. Yang, L. Zhang, Z. Hu, Y. Zheng, C. Tang et al., The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 59, 4525–4531 (2020). https://doi.org/10.1002/anie.201915001
S. Huang, S. Lu, H. Hu, F. Xu, H. Li et al., Hyper-dendritic PdZn nanocrystals as highly stable and efficient bifunctional electrocatalysts towards oxygen reduction and ethanol oxidation. Chem. Eng. J. 420, 130503 (2021). https://doi.org/10.1016/j.cej.2021.130503