Decade Milestone Advancement of Defect-Engineered g-C3N4 for Solar Catalytic Applications
Corresponding Author: Dawei Su
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 70
Abstract
Over the past decade, graphitic carbon nitride (g-C3N4) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C3N4 is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultra-active coordinated environment (M–Nx, M–C2N2, M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra (fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C3N4 “customization”, motivating more profound thinking and flourishing research outputs on g-C3N4-based photocatalysis.
Highlights:
1 This review summarizes the decade milestone advancement of defect-engineered g-C3N4 and emphasizes the roles of crystallinity and defect traps toward a more precise defective g-C3N4 “customization” in the future.
2 A critical insight into the defect traps has been discussed in depth, probing the defect-induced states and photocarrier transfer kinetics of g-C3N4.
3 The prospect and outlooking for precise defective g-C3N4 “customization” is proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.D. Cortright, R.R. Davda, J.A. Dumesic, Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002). https://doi.org/10.1038/nature01009
- M. Suzuki, Identifying roles of international institutions in clean energy technology innovation and diffusion in the developing countries: matching barriers with roles of the institutions. J. Clean. Prod. 98, 229–240 (2015). https://doi.org/10.1016/j.jclepro.2014.08.070
- M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
- C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14, 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
- S. Seenivasan, H. Moon, D.-H. Kim, Multilayer strategy for photoelectrochemical hydrogen generation: new electrode architecture that alleviates multiple bottlenecks. Nano-Micro Lett. 14, 78 (2022). https://doi.org/10.1007/s40820-022-00822-8
- V. Bosetti, R. Lubowski, A. Golub, A. Markandya, Linking reduced deforestation and a global carbon market: implications for clean energy technology and policy flexibility. Envir. Dev. Econ. 16, 479–505 (2011). https://doi.org/10.1017/s1355770x10000549
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
- Z. Chen, J. Wang, M. Hao, Y. Xie, X. Liu et al., Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat. Commun. 14, 1106 (2023). https://doi.org/10.1038/s41467-023-36710-x
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
- S.E. Jun, S. Choi, S. Choi, T.H. Lee, C. Kim et al., Direct synthesis of molybdenum phosphide nanorods on silicon using graphene at the heterointerface for efficient photoelectrochemical water reduction. Nano-Micro Lett. 13, 81 (2021). https://doi.org/10.1007/s40820-021-00605-7
- Y. Luo, H. Lee, Present and future of phase-selectively disordered blue TiO2 for energy and society sustainability. Nano-Micro Lett. 13, 45 (2021). https://doi.org/10.1007/s40820-020-00569-0
- J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13, 24 (2020). https://doi.org/10.1007/s40820-020-00545-8
- S. Yue, L. Chen, M. Zhang, Z. Liu, T. Chen et al., Electrostatic field enhanced photocatalytic CO2 conversion on BiVO4 nanowires. Nano-Micro Lett. 14, 15 (2021). https://doi.org/10.1007/s40820-021-00749-6
- S. Liang, G. Sui, D. Guo, Z. Luo, R. Xu et al., G-C3N4-wrapped nickel doped zinc oxide/carbon core-double shell microspheres for high-performance photocatalytic hydrogen production. J. Colloid Interface Sci. 635, 83–93 (2023). https://doi.org/10.1016/j.jcis.2022.12.120
- C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanops as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018). https://doi.org/10.1016/j.rser.2017.08.020
- Y. Chen, X. Liu, L. Hou, X. Guo, R. Fu et al., Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chem. Eng. J. 383, 123132 (2020). https://doi.org/10.1016/j.cej.2019.123132
- Y. Zhang, Z. Huang, C.-L. Dong, J. Shi, C. Cheng et al., Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution. Chem. Eng. J. 431, 134101 (2022). https://doi.org/10.1016/j.cej.2021.134101
- J. Li, D. Wu, J. Iocozzia, H. Du, X. Liu et al., Achieving efficient incorporation of π-electrons into graphitic carbon nitride for markedly improved hydrogen generation. Angew. Chem. Int. Ed. 58, 1985–1989 (2019). https://doi.org/10.1002/anie.201813117
- B. Li, Q. Fang, Y. Si, T. Huang, W.-Q. Huang et al., Ultra-thin tubular graphitic carbon Nitride-Carbon Dot lateral heterostructures: one-Step synthesis and highly efficient catalytic hydrogen generation. Chem. Eng. J. 397, 125470 (2020). https://doi.org/10.1016/j.cej.2020.125470
- J. Fu, K. Liu, K. Jiang, H. Li, P. An et al., Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4. Adv. Sci. 6, 1900796 (2019). https://doi.org/10.1002/advs.201900796
- Q. Lu, K. Eid, W. Li, A.M. Abdullah, G. Xu et al., Engineering graphitic carbon nitride (g-C3N4) for catalytic reduction of CO2 to fuels and chemicals: strategy and mechanism. Green Chem. 23, 5394–5428 (2021). https://doi.org/10.1039/d1gc01303c
- T. Mahvelati-Shamsabadi, B.-K. Lee, Photocatalytic H2 evolution and CO2 reduction over phosphorus-doped g-C3N4 nanostructures: electronic, Optical, and Surface properties. Renew. Sustain. Energy Rev. 130, 109957 (2020). https://doi.org/10.1016/j.rser.2020.109957
- Y. Wang, Y. Qu, B. Qu, L. Bai, Y. Liu et al., Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 33, 2105482 (2021). https://doi.org/10.1002/adma.202105482
- L. Cheng, H. Yin, C. Cai, J. Fan, Q. Xiang, Single Ni atoms anchored on porous few-layer g-C3 N4 for photocatalytic CO2 reduction: the role of edge confinement. Small 16, e2002411 (2020). https://doi.org/10.1002/smll.202002411
- H. Wang, J. Li, Y. Wan, A. Nazir, X. Song et al., Fabrication of Zn vacancies-tunable ultrathin-g-C3N4@ZnIn2S4/SWNTs composites for enhancing photocatalytic CO2 reduction. Appl. Surf. Sci. 613, 155989 (2023). https://doi.org/10.1016/j.apsusc.2022.155989
- J. Li, C. He, N. Xu, K. Wu, Z. Huang et al., Interfacial bonding of hydroxyl-modified g-C3N4 and Bi2O2CO3 toward boosted CO2 photoreduction: insights into the key role of OH groups. Chem. Eng. J. 452, 139191 (2023). https://doi.org/10.1016/j.cej.2022.139191
- K. Wang, G. Gu, S. Hu, J. Zhang, X. Sun et al., Molten salt assistant synthesis of three-dimensional cobalt doped graphitic carbon nitride for photocatalytic N2 fixation: experiment and DFT simulation analysis. Chem. Eng. J. 368, 896–904 (2019). https://doi.org/10.1016/j.cej.2019.03.037
- Z. Li, G. Gu, S. Hu, X. Zou, G. Wu, Promotion of activation ability of N vacancies to N2 molecules on sulfur-doped graphitic carbon nitride with outstanding photocatalytic nitrogen fixation ability. Chin. J. Catal. 40, 1178–1186 (2019). https://doi.org/10.1016/S1872-2067(19)63364-4
- G. Gu, K. Wang, N. Xiong, Z. Li, Z. Fan et al., Template free synthesis of lithium doped three-dimensional macroporous graphitic carbon nitride for photocatalytic N2 fixation: the effect of Li-N active sites. Dalton Trans. 48, 5083–5089 (2019). https://doi.org/10.1039/c9dt00013e
- L. Yu, Z. Mo, X. Zhu, J. Deng, F. Xu et al., Construction of 2D/2D Z-scheme MnO2-x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia. Green Energy Environ. 6, 538–545 (2021). https://doi.org/10.1016/j.gee.2020.05.011
- V.-H. Nguyen, M. Mousavi, J.B. Ghasemi, Q. Van Le, S. Ali Delbari et al., In situ preparation of g-C3N4 nanosheet/FeOCl: achievement and promoted photocatalytic nitrogen fixation activity. J. Colloid Interface Sci. 587, 538–549 (2021). https://doi.org/10.1016/j.jcis.2020.11.011
- S. Cao, B. Fan, Y. Feng, H. Chen, F. Jiang et al., Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. Chem. Eng. J. 353, 147–156 (2018). https://doi.org/10.1016/j.cej.2018.07.116
- C. Kong, D. Qing, X. Su, Y. Zhao, J. Wang et al., Improved photoelectrochemical cathodic protection properties of a flower-like SrTiO3 photoanode decorated With g-C3N4. J. Alloy. Compd. 924, 166629 (2022). https://doi.org/10.1016/j.jallcom.2022.166629
- A. Helal, J. Yu, A.I. Eid, S.A. El-Hakam, S.E. Samra et al., A novel g-C3N4/In2O3/BiVO4 heterojunction photoanode for improved the photoelectrochemical cathodic protection of 304 SS stainless steel under solar light. J. Alloy. Compd. 911, 165047 (2022). https://doi.org/10.1016/j.jallcom.2022.165047
- Y. Ma, H. Wang, L. Sun, E. Liu, G. Fei et al., Unidirectional electron transport from graphitic-C3N4 for novel remote and long-term photocatalytic anti-corrosion on Q235 carbon steel. Chem. Eng. J. 429, 132520 (2022). https://doi.org/10.1016/j.cej.2021.132520
- J. Jing, Z. Chen, C. Feng, M. Sun, J. Hou, Transforming g-C3N4 from amphoteric to n-type semiconductor: the important role of p/n type on photoelectrochemical cathodic protection. J. Alloy. Compd. 851, 156820 (2021). https://doi.org/10.1016/j.jallcom.2020.156820
- H. Piao, G. Choi, X. Jin, S.J. Hwang, Y.J. Song et al., Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 14, 55 (2022). https://doi.org/10.1007/s40820-022-00794-9
- Z. Dai, Y. Zhen, Y. Sun, L. Li, D. Ding, ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem. Eng. J. 415, 129002 (2021). https://doi.org/10.1016/j.cej.2021.129002
- Z. Wang, Y. Huang, M. Chen, X. Shi, Y. Zhang et al., Roles of N-vacancies over porous g-C3N4 microtubes during photocatalytic NOx removal. ACS Appl. Mater. Interfaces 11, 10651–10662 (2019). https://doi.org/10.1021/acsami.8b21987
- J. Liao, W. Cui, J. Li, J. Sheng, H. Wang et al., Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chem. Eng. J. 379, 122282 (2020). https://doi.org/10.1016/j.cej.2019.122282
- H. Guo, C.-G. Niu, C.-Y. Feng, C. Liang, L. Zhang et al., Steering exciton dissociation and charge migration in green synthetic oxygen-substituted ultrathin porous graphitic carbon nitride for boosted photocatalytic reactive oxygen species generation. Chem. Eng. J. 385, 123919 (2020). https://doi.org/10.1016/j.cej.2019.123919
- E.-X. Han, Y.-Y. Li, Q.-H. Wang, W.-Q. Huang, L. Luo et al., Chlorine doped graphitic carbon nitride nanorings as an efficient photoresponsive catalyst for water oxidation and organic decomposition. J. Mater. Sci. Technol. 35, 2288–2296 (2019). https://doi.org/10.1016/j.jmst.2019.05.057
- H.-W. Zhang, Y.-X. Lu, B. Li, G.-F. Huang, F. Zeng et al., Acid-induced topological morphology modulation of graphitic carbon nitride homojunctions as advanced metal-free catalysts for OER and pollutant degradation. J. Mater. Sci. Technol. 86, 210–218 (2021). https://doi.org/10.1016/j.jmst.2021.01.030
- D. Zhao, C.-L. Dong, B. Wang, C. Chen, Y.-C. Huang et al., Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 31, 1903545 (2019). https://doi.org/10.1002/adma.201903545
- J. Chen, P. Cui, G. Zhao, K. Rui, M. Lao et al., Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. Angew. Chem. Int. Ed. 58, 12540–12544 (2019). https://doi.org/10.1002/anie.201907017
- Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15, 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
- J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu et al., Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ. Sci. 4, 675–678 (2011). https://doi.org/10.1039/C0EE00418A
- C. Zhao, Z. Chen, J. Xu, Q. Liu, H. Xu et al., Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Appl. Catal. B Environ. 256, 117867 (2019). https://doi.org/10.1016/j.apcatb.2019.117867
- Y. Chen, W. Lu, H. Shen, Y. Gu, T. Xu et al., Solar-driven efficient degradation of emerging contaminants by g-C3N4-shielding polyester fiber/TiO2 composites. Appl. Catal. B Environ. 258, 117960 (2019). https://doi.org/10.1016/j.apcatb.2019.117960
- Z. Mo, H. Xu, Z. Chen, X. She, Y. Song et al., Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl. Catal. B Environ. 225, 154–161 (2018). https://doi.org/10.1016/j.apcatb.2017.11.041
- B.-X. Zhou, S.-S. Ding, B.-J. Zhang, L. Xu, R.-S. Chen et al., Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures. Appl. Catal. B Environ. 254, 321–328 (2019). https://doi.org/10.1016/j.apcatb.2019.05.015
- R. Malik, V.K. Tomer, State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renew. Sustain. Energy Rev. 135, 110235 (2021). https://doi.org/10.1016/j.rser.2020.110235
- H. Wang, Y. Wu, M. Feng, W. Tu, T. Xiao et al., Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res. 144, 215–225 (2018). https://doi.org/10.1016/j.watres.2018.07.025
- Y. Wu, P. Xiong, J. Wu, Z. Huang, J. Sun et al., Band engineering and morphology control of oxygen-incorporated graphitic carbon nitride porous nanosheets for highly efficient photocatalytic hydrogen evolution. Nano-Micro Lett. 13, 48 (2021). https://doi.org/10.1007/s40820-020-00571-6
- Y. Wang, Y. Tian, L. Yan, Z. Su, DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction. J. Phys. Chem. C 122, 7712–7719 (2018). https://doi.org/10.1021/acs.jpcc.8b00098
- H. Liu, S. Ma, L. Shao, H. Liu, Q. Gao et al., Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection. Appl. Catal. B Environ. 261, 118201 (2020). https://doi.org/10.1016/j.apcatb.2019.118201
- C. Wan, L. Zhou, S. Xu, B. Jin, X. Ge et al., Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanops for enhanced photocatalytic hydrogen evolution from formic acid. Chem. Eng. J. 429, 132388 (2022). https://doi.org/10.1016/j.cej.2021.132388
- Z. Zhang, L. Cui, Y. Zhang, L.H. Klausen, M. Chen et al., Regulation of carboxyl groups and structural defects of graphitic carbon nitride via environmental-friendly glucose oxidase ring-opening modulation. Appl. Catal. B Environ. 297, 120441 (2021). https://doi.org/10.1016/j.apcatb.2021.120441
- M. Luo, Q. Yang, W. Yang, J. Wang, F. He et al., Defects engineering leads to enhanced photocatalytic H2 evolution on graphitic carbon nitride–covalent organic framework nanosheet composite. Small 16, 2001100 (2020). https://doi.org/10.1002/smll.202001100
- Z. Tong, L. Huang, H. Liu, W. Lei, H. Zhang et al., Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry. Adv. Funct. Mater. 31, 2010455 (2021). https://doi.org/10.1002/adfm.202010455
- J. Zhang, J. Chen, Y. Wan, H. Liu, W. Chen et al., Defect engineering in atomic-layered graphitic carbon nitride for greatly extended visible-light photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 12, 13805–13812 (2020). https://doi.org/10.1021/acsami.9b21115
- Y. Li, Z. He, L. Liu, Y. Jiang, W.-J. Ong et al., Inside-and-out modification of graphitic carbon nitride (g-C3N4) photocatalysts via defect engineering for energy and environmental science. Nano Energy 105, 108032 (2023). https://doi.org/10.1016/j.nanoen.2022.108032
- D. Huang, Z. Li, G. Zeng, C. Zhou, W. Xue et al., Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance. Appl. Catal. B Environ. 240, 153–173 (2019). https://doi.org/10.1016/j.apcatb.2018.08.071
- W. Lei, Y. Mi, R. Feng, P. Liu, S. Hu et al., Hybrid 0D–2D black phosphorus quantum dots–graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy 50, 552–561 (2018). https://doi.org/10.1016/j.nanoen.2018.06.001
- Z. Bao, M. Xing, Y. Zhou, J. Lv, D. Lei et al., Z-scheme flower-like SnO2/g-C3N4 composite with Sn2+ active center for enhanced visible-light photocatalytic activity. Adv. Sustain. Syst. 5, 2100087 (2021). https://doi.org/10.1002/adsu.202100087
- J. Zou, G. Liao, J. Jiang, Z. Xiong, S. Bai et al., In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 41, 2201025–2201033 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2021-0039
- J. Zhang, M. Zhang, R.-Q. Sun, X. Wang, A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. Int. Ed. 51, 10145–10149 (2012). https://doi.org/10.1002/anie.201205333
- D. Huang, S. Chen, G. Zeng, X. Gong, C. Zhou et al., Artificial Z-scheme photocatalytic system: what have been done and where to go? Coord. Chem. Rev. 385, 44–80 (2019). https://doi.org/10.1016/j.ccr.2018.12.013
- Z. Wang, R. Liu, J. Zhang, K. Dai, S-scheme porous g-C3N4/Ag2MoO4 heterojunction composite for CO2 photoreduction. Chin. J. Struct. Chem. 41(6), 15–22 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0108
- X. Liu, H. Qin, W. Fan, Enhanced visible-light photocatalytic activity of a g-C3N4/m-LaVO4 heterojunction: band offset determination. Sci. Bull. 61, 645–655 (2016). https://doi.org/10.1007/s11434-016-1053-7
- L. Shi, Z. Zhou, Y. Zhang, C. Ling, Q. Li et al., Photocatalytic conversion of CO to fuels with water by B-doped graphene/g-C3N4 heterostructure. Sci. Bull. 66, 1186–1193 (2021). https://doi.org/10.1016/j.scib.2021.02.025
- M.K. Kesarla, M.O. Fuentez-Torres, M.A. Alcudia-Ramos, F. Ortiz-Chi, C.G. Espinosa-González et al., Synthesis of g-C3N4/N-doped CeO2 composite for photocatalytic degradation of an herbicide. J. Mater. Res. Technol. 8, 1628–1635 (2019). https://doi.org/10.1016/j.jmrt.2018.11.008
- L. Bao, J. Han, H. Wang, R. Liu, M. Qiu et al., High efficient photoreduction of U(VI) by a new synergistic photocatalyst of Fe3O4 nanop on GO/g-C3N4 composites. J. Mater. Res. Technol. 18, 4248–4255 (2022). https://doi.org/10.1016/j.jmrt.2022.04.102
- Q.-W. Gui, F. Teng, P. Yu, Y.-F. Wu, Z.-B. Nong et al., Visible light-induced Z-scheme V2O5/g-C3N4 heterojunction catalyzed cascade reaction of unactivated alkenes. Chin. J. Catal. 44, 111–116 (2023). https://doi.org/10.1016/S1872-2067(22)64162-7
- Z.-F. Huang, J. Song, L. Pan, Z. Wang, X. Zhang et al., Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 12, 646–656 (2015). https://doi.org/10.1016/j.nanoen.2015.01.043
- L. Ge, C. Han, J. Liu, Y. Li, Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanops. Appl. Catal. A Gen. 409–410, 215–222 (2011). https://doi.org/10.1016/j.apcata.2011.10.006
- J. Hong, X. Xia, Y. Wang, R. Xu, Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. 22, 15006–15012 (2012). https://doi.org/10.1039/C2JM32053C
- J. Liang, Y. Zheng, J. Chen, J. Liu, D. Hulicova-Jurcakova et al., Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem. Int. Ed. 51, 3892–3896 (2012). https://doi.org/10.1002/anie.201107981
- X.-H. Li, X. Wang, M. Antonietti, Mesoporous g-C3N4nanorods as multifunctional supports of ultrafine metal nanops: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 3, 2170–2174 (2012). https://doi.org/10.1039/C2SC20289A
- S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma et al., Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
- K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker et al., Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136, 1730–1733 (2014). https://doi.org/10.1021/ja411321s
- J. Di, J. Xia, X. Li, M. Ji, H. Xu et al., Constructing confined surface carbon defects in ultrathin graphitic carbon nitride for photocatalytic free radical manipulation. Carbon 107, 1–10 (2016). https://doi.org/10.1016/j.carbon.2016.05.028
- H. Ou, L. Lin, Y. Zheng, P. Yang, Y. Fang et al., Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 29, 1700008 (2017). https://doi.org/10.1002/adma.201700008
- L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin et al., Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 14, 1703142 (2018). https://doi.org/10.1002/smll.201703142
- Z. Ge, A. Yu, R. Lu, Preparation of Li-doped graphitic carbon nitride with enhanced visible-light photoactivity. Mater. Lett. 250, 9–11 (2019). https://doi.org/10.1016/j.matlet.2019.04.099
- W. Zhang, Z. Zhao, F. Dong, Y. Zhang, Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal. Chin. J. Catal. 38, 372–378 (2017). https://doi.org/10.1016/S1872-2067(16)62585-8
- Z. Teng, N. Yang, H. Lv, S. Wang, M. Hu et al., Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. Chem 5, 664–680 (2019). https://doi.org/10.1016/j.chempr.2018.12.009
- L.F. Villalobos, M.T. Vahdat, M. Dakhchoune, Z. Nadizadeh, M. Mensi et al., Large-scale synthesis of crystalline g-C3N4 nanosheets and high-temperature H2 sieving from assembled films. Sci. Adv. 6, eaay9851 (2020). https://doi.org/10.1126/sciadv.aay9851
- X. Hu, P. Lu, R. Pan, Y. Li, J. Bai et al., Metal-ion-assisted construction of cyano group defects in g-C3N4 to simultaneously degrade wastewater and produce hydrogen. Chem. Eng. J. 423, 130278 (2021). https://doi.org/10.1016/j.cej.2021.130278
- L. Chen, Y. Wang, S. Cheng, X. Zhao, J. Zhang et al., Nitrogen defects/boron dopants engineered tubular carbon nitride for efficient tetracycline hydrochloride photodegradation and hydrogen evolution. Appl. Catal. B Environ. 303, 120932 (2022). https://doi.org/10.1016/j.apcatb.2021.120932
- S. Hou, X. Gao, S. Wang, X. Yu, J. Liao et al., Precise defect engineering on graphitic carbon nitrides for boosted solar H2 production. Small (2023). https://doi.org/10.1002/smll.202302500
- W. Zhou, B.-H. Wang, L. Tang, L. Chen, J.-K. Guo et al., Photocatalytic dry reforming of methane enhanced by “dual-path” strategy with excellent low-temperature catalytic performance. Adv. Funct. Mater. 33, 2214068 (2023). https://doi.org/10.1002/adfm.202214068
- N. Tian, Y. Zhang, X. Li, K. Xiao, X. Du et al., Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 38, 72–81 (2017). https://doi.org/10.1016/j.nanoen.2017.05.038
- X. Feng, H. Chen, F. Jiang, X. Wang, In-situ self-sacrificial fabrication of lanthanide hydroxycarbonates/graphitic carbon nitride heterojunctions: nitrogen photofixation under simulated solar light irradiation. Chem. Eng. J. 347, 849–859 (2018). https://doi.org/10.1016/j.cej.2018.04.157
- Y. Wang, S. Zhao, Y. Zhang, J. Fang, Y. Zhou et al., One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci. 440, 258–265 (2018). https://doi.org/10.1016/j.apsusc.2018.01.091
- X. Rong, S. Liu, M. Xie, Z. Liu, Z. Wu et al., N2 photofixation by Z-scheme single-layer g-C3N4/ZnFe2O4 for cleaner ammonia production. Mater. Res. Bull. 127, 110853 (2020). https://doi.org/10.1016/j.materresbull.2020.110853
- G. Liu, Y. Huang, H. Lv, H. Wang, Y. Zeng et al., Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Appl. Catal. B Environ. 284, 119683 (2021). https://doi.org/10.1016/j.apcatb.2020.119683
- X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131, 11658–11659 (2009). https://doi.org/10.1021/ja903923s
- Y. Zhang, T. Mori, J. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132, 6294–6295 (2010). https://doi.org/10.1021/ja101749y
- S. Li, G. Dong, R. Hailili, L. Yang, Y. Li et al., Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B Environ. 190, 26–35 (2016). https://doi.org/10.1016/j.apcatb.2016.03.004
- W. Tu, Y. Xu, J. Wang, B. Zhang, T. Zhou et al., Investigating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H2 evolution and CO2 reduction. ACS Sustain. Chem. Eng. 5, 7260–7268 (2017). https://doi.org/10.1021/acssuschemeng.7b01477
- H.-B. Fang, X.-H. Zhang, J. Wu, N. Li, Y.-Z. Zheng et al., Fragmented phosphorus-doped graphitic carbon nitride nanoflakes with broad sub-bandgap absorption for highly efficient visible-light photocatalytic hydrogen evolution. Appl. Catal. B Environ. Int. J. Devoted Catal. Sci. Appl. 225, 397–405 (2018). https://doi.org/10.1016/j.apcatb.2017.11.080
- B. Kim, D. Kwon, J.-O. Baeg, M.P. Austeria, G.H. Gu et al., Dual-atom-site Sn-Cu/C3N4 photocatalyst selectively produces formaldehyde from CO2 reduction. Adv. Funct. Mater. 33, 2212453 (2023). https://doi.org/10.1002/adfm.202212453
- X. Gao, J. Feng, D. Su, Y. Ma, G. Wang et al., In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution. Nano Energy 59, 598–609 (2019). https://doi.org/10.1016/j.nanoen.2019.03.016
- W. Che, W. Cheng, T. Yao, F. Tang, W. Liu et al., Fast photoelectron transfer in (Cring)–C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 139, 3021–3026 (2017). https://doi.org/10.1021/jacs.6b11878
- W. Ren, J. Cheng, H. Ou, C. Huang, M.-M. Titirici et al., Enhancing visible-light hydrogen evolution performance of crystalline carbon nitride by defect engineering. Chemsuschem 12, 3257–3262 (2019). https://doi.org/10.1002/cssc.201901011
- J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030
- L. Wang, W. Si, Y. Tong, F. Hou, D. Pergolesi et al., Graphitic carbon nitride (g-C3N4)-based nanosized heteroarrays: promising materials for photoelectrochemical water splitting. Carbon Energy 2, 223–250 (2020). https://doi.org/10.1002/cey2.48
- B. Zhu, J. Zhang, C. Jiang, B. Cheng, J. Yu, First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Appl. Catal. B Environ. 207, 27–34 (2017). https://doi.org/10.1016/j.apcatb.2017.02.020
- J. Ran, T.Y. Ma, G. Gao, X.-W. Du, S.Z. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015). https://doi.org/10.1039/C5EE02650D
- X.-H. Jiang, L.-S. Zhang, H.-Y. Liu, D.-S. Wu, F.-Y. Wu et al., Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 59, 23112–23116 (2020). https://doi.org/10.1002/anie.202011495
- F. Gao, H. Xiao, J. Yang, X. Luan, D. Fang et al., Modulation of electronic density in ultrathin g-C3N4 for enhanced photocatalytic hydrogen evolution through an efficient hydrogen spillover pathway. Appl. Catal. B Environ. 341, 123334 (2024). https://doi.org/10.1016/j.apcatb.2023.123334
- H. Wang, W. He, X.-A. Dong, H. Wang, F. Dong, In situ FT-IR investigation on the reaction mechanism of visible light photocatalytic NO oxidation with defective g-C3N4. Sci. Bull. 63, 117–125 (2018). https://doi.org/10.1016/j.scib.2017.12.013
- P. Niu, G. Liu, H.-M. Cheng, Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C 116, 11013–11018 (2012). https://doi.org/10.1021/jp301026y
- Q. Liang, Z. Li, Z.-H. Huang, F. Kang, Q.-H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25, 6885–6892 (2015). https://doi.org/10.1002/adfm.201503221
- Y. Li, M. Gu, T. Shi, W. Cui, X. Zhang et al., Carbon vacancy in C3N4 nanotube: electronic structure, photocatalysis mechanism and highly enhanced activity. Appl. Catal. B Environ. 262, 118281 (2020). https://doi.org/10.1016/j.apcatb.2019.118281
- X. Wang, Q. Li, L. Gan, X. Ji, F. Chen et al., 3D macropore carbon-vacancy g-C3N4 constructed using polymethylmethacrylate spheres for enhanced photocatalytic H2 evolution and CO2 reduction. J. Energy Chem. 53, 139–146 (2021). https://doi.org/10.1016/j.jechem.2020.05.001
- D.C. Cronemeyer, Infrared absorption of reduced rutile TiO2 single crystals. Phys. Rev. 113, 1222–1226 (1959). https://doi.org/10.1103/physrev.113.1222
- M. Kantcheva, Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts. J. Catal. 204, 479–494 (2001). https://doi.org/10.1006/jcat.2001.3413
- Q. Tay, P. Kanhere, C.F. Ng, S. Chen, S. Chakraborty et al., Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production. Chem. Mater. 27, 4930–4933 (2015). https://doi.org/10.1021/acs.chemmater.5b02344
- Y. Li, M. Gu, M. Zhang, X. Zhang, K. Lv et al., C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for Efficient and stable NO photo-oxidation. Chem. Eng. J. 389, 124421 (2020). https://doi.org/10.1016/j.cej.2020.124421
- Y. Xue, C. Ma, Q. Yang, X. Wang, S. An et al., Construction of g-C3N4 with three coordinated nitrogen (N3C) vacancies for excellent photocatalytic activities of N2 fixation and H2O2 production. Chem. Eng. J. 457, 141146 (2023). https://doi.org/10.1016/j.cej.2022.141146
- X. Wang, L. Wu, Z. Wang, H. Wu, X. Zhou et al., C/N vacancy co-enhanced visible-light-driven hydrogen evolution of g-C3N4 nanosheets through controlled He+ ion irradiation (solar RRL 4∕2019). Sol. RRL 3, 1970043 (2019). https://doi.org/10.1002/solr.201970043
- N. Sun, Y. Liang, X. Ma, F. Chen, Reduced oxygenated g-C3N4 with abundant nitrogen vacancies for visible-light photocatalytic applications. Chem 23, 15466–15473 (2017). https://doi.org/10.1002/chem.201703168
- J. Liu, W. Fang, Z. Wei, Z. Qin, Z. Jiang et al., Efficient photocatalytic hydrogen evolution on N-deficient g-C3N4 achieved by a molten salt post-treatment approach. Appl. Catal. B Environ. 238, 465–470 (2018). https://doi.org/10.1016/j.apcatb.2018.07.021
- Z. Xu, Y. Chen, B. Wang, Y. Ran, J. Zhong et al., Highly selective photocatalytic CO2 reduction and hydrogen evolution facilitated by oxidation induced nitrogen vacancies on g-C3N4. J. Colloid Interface Sci. 651, 645–658 (2023). https://doi.org/10.1016/j.jcis.2023.08.012
- L. Kong, X. Mu, X. Fan, R. Li, Y. Zhang et al., Site-selected N vacancy of g-C3N4 for photocatalysis and physical mechanism. Appl. Mater. Today 13, 329–338 (2018). https://doi.org/10.1016/j.apmt.2018.10.003
- R. Mo, J. Li, Y. Tang, H. Li, J. Zhong, Introduction of nitrogen defects into a graphitic carbon nitride framework by selenium vapor treatment for enhanced photocatalytic hydrogen production. Appl. Surf. Sci. 476, 552–559 (2019). https://doi.org/10.1016/j.apsusc.2019.01.085
- P. Deng, Y. Liu, L. Shi, L. Cui, W. Si et al., Enhanced visible-light H2 evolution performance of nitrogen vacancy carbon nitride by improving crystallinity. Opt. Mater. 120, 111407 (2021). https://doi.org/10.1016/j.optmat.2021.111407
- F. Guo, L. Wang, H. Sun, M. Li, W. Shi et al., A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen. Int. J. Hydrog. Energy 45, 30521–30532 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.080
- Y. Wang, L. Rao, P. Wang, Y. Guo, Z. Shi et al., Synthesis of nitrogen vacancies g-C3N4 with increased crystallinity under the controlling of oxalyl dihydrazide: visible-light-driven photocatalytic activity. Appl. Surf. Sci. 505, 144576 (2020). https://doi.org/10.1016/j.apsusc.2019.144576
- P. Xing, F. Zhou, S. Zhan, Catalytic conversion of seawater to fuels: eliminating N vacancies in g-C3N4 to promote photocatalytic hydrogen production. Environ. Res. 197, 111167 (2021). https://doi.org/10.1016/j.envres.2021.111167
- J. Shen, C. Luo, S. Qiao, Y. Chen, Y. Tang et al., Single-atom Cu channel and N-vacancy engineering enables efficient charge separation and transfer between C3N4 interlayers for boosting photocatalytic hydrogen production. ACS Catal. 13, 6280–6288 (2023). https://doi.org/10.1021/acscatal.2c05789
- Y. Liao, G. Wang, J. Wang, K. Wang, S. Yan et al., Nitrogen vacancy induced in situ g-C3N4 p-n homojunction for boosting visible light-driven hydrogen evolution. J. Colloid Interface Sci. 587, 110–120 (2021). https://doi.org/10.1016/j.jcis.2020.12.009
- X. Li, G. Wang, C. Lan, X. Dong, X. Zhang, New insight into enhanced photocatalytic selectivity of g-C3N4 by nitrogen vacancy introduction: experimental study and theoretical calculation. Environ. Res. 212, 113390 (2022). https://doi.org/10.1016/j.envres.2022.113390
- J. Lei, B. Chen, W. Lv, L. Zhou, L. Wang et al., Robust photocatalytic H2O2 production over inverse opal g-C3N4 with carbon vacancy under visible light. ACS Sustain. Chem. Eng. 7, 16467–16473 (2019). https://doi.org/10.1021/acssuschemeng.9b03678
- Y. Zhang, J. Di, P. Ding, J. Zhao, K. Gu et al., Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation. J. Colloid Interface Sci. 553, 530–539 (2019). https://doi.org/10.1016/j.jcis.2019.06.012
- Z. Ya, X. Jiang, P. Wang, J. Cai, Q. Wang et al., Template-free synthesis of phosphorus-doped g-C3N4 micro-tubes with hierarchical core–shell structure for high-efficient visible light responsive catalysis. Small 19, 2208254 (2023). https://doi.org/10.1002/smll.202208254
- J. Li, W. Ma, J. Chen, N. An, Y. Zhao et al., Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching. Int. J. Hydrog. Energy 45, 13939–13946 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.067
- J. Ge, L. Zhang, J. Xu, Y. Liu, D. Jiang et al., Nitrogen photofixation on holey g-C3N4 nanosheets with carbon vacancies under visible-light irradiation. Chin. Chem. Lett. 31, 792–796 (2020). https://doi.org/10.1016/j.cclet.2019.05.030
- M. Wu, X. He, B. Jing, T. Wang, C. Wang et al., Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light. J. Hazard. Mater. 384, 121323 (2020). https://doi.org/10.1016/j.jhazmat.2019.121323
- S. Gao, X. Wang, C. Song, S. Zhou, F. Yang et al., Engineering carbon-defects on ultrathin g-C3N4 allows one-pot output and dramatically boosts photoredox catalytic activity. Appl. Catal. B Environ. 295, 120272 (2021). https://doi.org/10.1016/j.apcatb.2021.120272
- F. Rao, J. Zhong, J. Li, Improved visible light responsive photocatalytic hydrogen production over g-C3N4 with rich carbon vacancies. Ceram. Int. 48, 1439–1445 (2022). https://doi.org/10.1016/j.ceramint.2021.09.130
- W. Li, Z. Wei, K. Zhu, W. Wei, J. Yang et al., Nitrogen-defect induced trap states steering electron-hole migration in graphite carbon nitride. Appl. Catal. B Environ. 306, 121142 (2022). https://doi.org/10.1016/j.apcatb.2022.121142
- C. Zhao, C. Shi, Q. Li, X. Wang, G. Zeng et al., Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production. Mater. Today Energy 24, 100926 (2022). https://doi.org/10.1016/j.mtener.2021.100926
- X. Zhang, Y. Liu, C. Li, L. Tian, F. Yuan et al., Fast and lasting electron transfer between γ-FeOOH and g-C3N4/kaolinite containing N vacancies for enhanced visible-light-assisted peroxymonosulfate activation. Chem. Eng. J. 429, 132374 (2022). https://doi.org/10.1016/j.cej.2021.132374
- T. Liu, W. Zhu, N. Wang, K. Zhang, X. Wen et al., Preparation of structure vacancy defect modified diatomic-layered g-C3N4 nanosheet with enhanced photocatalytic performance. Adv. Sci. 10, 2302503 (2023). https://doi.org/10.1002/advs.202302503
- J. Zhao, R. Mu, Y. Zhang, Z. Yang, H. Zhang et al., A general acetic acid vapour etching strategy to synthesize layered carbon nitride with carbon vacancies for efficient photoredox catalysis. J. Mater. Chem. A 10, 16873–16882 (2022). https://doi.org/10.1039/D2TA04279G
- Y. Wu, J. Chen, H. Che, X. Gao, Y. Ao et al., Boosting 2e–oxygen reduction reaction in garland carbon nitride with carbon defects for high-efficient photocatalysis-self-Fenton degradation of 2, 4-dichlorophenol. Appl. Catal. B Environ. 307, 121185 (2022). https://doi.org/10.1016/j.apcatb.2022.121185
- Q. Song, J. Hu, Y. Zhou, Q. Ye, X. Shi et al., Carbon vacancy-mediated exciton dissociation in Ti3C2Tx/g-C3N4 Schottky junctions for efficient photoreduction of CO2. J. Colloid Interface Sci. 623, 487–499 (2022). https://doi.org/10.1016/j.jcis.2022.05.064
- Q. Zhang, X. Chen, Z. Yang, T. Yu, L. Liu et al., Precisely tailoring nitrogen defects in carbon nitride for efficient photocatalytic overall water splitting. ACS Appl. Mater. Interfaces 14, 3970–3979 (2022). https://doi.org/10.1021/acsami.1c19638
- X. Zhang, Y. Liu, M. Ren, G. Yang, L. Qin et al., Precise carbon doping regulation of porous graphitic carbon nitride nanosheets enables elevated photocatalytic oxidation performance towards emerging organic pollutants. Chem. Eng. J. 433, 134551 (2022). https://doi.org/10.1016/j.cej.2022.134551
- L. Tao, H. Zhang, G. Li, C. Liao, G. Jiang, Photocatalytic degradation of pharmaceuticals by pore-structured graphitic carbon nitride with carbon vacancy in water: identification of intermediate degradants and effects of active species. Sci. Total. Environ. 824, 153845 (2022). https://doi.org/10.1016/j.scitotenv.2022.153845
- C. Feng, X. Ouyang, Y. Deng, J. Wang, L. Tang, A novel g-C3N4/g-C3N4−x homojunction with efficient interfacial charge transfer for photocatalytic degradation of atrazine and tetracycline. J. Hazard. Mater. 441, 129845 (2023). https://doi.org/10.1016/j.jhazmat.2022.129845
- G.-Q. Zhao, J. Zou, X. Long, Y.-J. Zheng, J. Hu et al., Fabrication of sulfuretted NiFe-layered double hydroxides/nitrogen self-doped g-C3N4 Z-scheme heterojunction for hexavalent chromium reduction under visible light irradiation. J. Alloy. Compd. 936, 168199 (2023). https://doi.org/10.1016/j.jallcom.2022.168199
- R.S. Roy, S. Mondal, S. Mishra, M. Banoo, L. Sahoo et al., Covalently interconnected layers in g-C3N4: toward high mechanical stability, catalytic efficiency and sustainability. Appl. Catal. B Environ. 322, 122069 (2023). https://doi.org/10.1016/j.apcatb.2022.122069
- B. Yang, J. Han, Q. Zhang, G. Liao, W. Cheng et al., Carbon defective g-C3N4 thin-wall tubes for drastic improvement of photocatalytic H2 production. Carbon 202, 348–357 (2023). https://doi.org/10.1016/j.carbon.2022.10.074
- L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng et al., Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B Environ. 217, 388–406 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003
- Z. Zhao, Y. Sun, F. Dong, Y. Zhang, H. Zhao, Template synthesis of carbon self-doped g-C3N4 with enhanced visible to near-infrared absorption and photocatalytic performance. RSC Adv. 5, 39549–39556 (2015). https://doi.org/10.1039/C5RA03433G
- P. Zhang, X. Li, C. Shao, Y. Liu, Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis. J. Mater. Chem. A 3, 3281–3284 (2015). https://doi.org/10.1039/C5TA00202H
- Z. Chen, T.-T. Fan, X. Yu, Q.-L. Wu, Q.-H. Zhu et al., Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution. J. Mater. Chem. A 6, 15310–15319 (2018). https://doi.org/10.1039/C8TA03303J
- J. Xing, X. Huang, X. Yong, X. Li, J. Li et al., N-doped synergistic porous thin-walled g-C3N4 nanotubes for efficient tetracycline photodegradation. Chem. Eng. J. 455, 140570 (2023). https://doi.org/10.1016/j.cej.2022.140570
- T. Bhoyar, D.J. Kim, B.M. Abraham, A. Gupta, N. Maile et al., Accelerating NADH oxidation and hydrogen production with mid-gap states of nitrogen-rich carbon nitride photocatalyst. iScience 25, 105567 (2022). https://doi.org/10.1016/j.isci.2022.105567
- S. Hu, L. Ma, J. You, F. Li, Z. Fan et al., A simple and efficient method to prepare a phosphorus modified g-C3N4 visible light photocatalyst. RSC Adv. 4, 21657–21663 (2014). https://doi.org/10.1039/C4RA02284J
- X. Wu, S. Jiang, S. Song, C. Sun, Applied Surface Science Constructing effective photocatalytic purification system with. Appl. Surface Sci. 430, 371–379 (2018). https://doi.org/10.1016/j.apsusc.2017.06.065
- G. Chen, S.-P. Gao, Structure and electronic structure of S-doped graphitic C3N4 investigated by density functional theory. Chin. Phys. B 21, 107101 (2012). https://doi.org/10.1088/1674-1056/21/10/107101
- G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen et al., Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132, 11642–11648 (2010). https://doi.org/10.1021/ja103798k
- K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho et al., Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B Environ. 176–177, 44–52 (2015). https://doi.org/10.1016/j.apcatb.2015.03.045
- L. Ge, C. Han, X. Xiao, L. Guo, Y. Li, Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts. Mater. Res. Bull. 48, 3919–3925 (2013). https://doi.org/10.1016/j.materresbull.2013.06.002
- C. Lu, P. Zhang, S. Jiang, X. Wu, S. Song et al., Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl. Catal. B Environ. 200, 378–385 (2017). https://doi.org/10.1016/j.apcatb.2016.07.036
- L. Ke, P. Li, X. Wu, S. Jiang, M. Luo et al., Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible Light. Appl. Catal. B Environ. 205, 319–326 (2017). https://doi.org/10.1016/j.apcatb.2016.12.043
- C. Sun, H. Zhang, H. Liu, X. Zheng, W. Zou et al., Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanop metal Ni as cocatalyst. Appl. Catal. B Environ. 235, 66–74 (2018). https://doi.org/10.1016/j.apcatb.2018.04.050
- J. Li, B. Shen, Z. Hong, B. Lin, B. Gao et al., A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 48, 12017–12019 (2012). https://doi.org/10.1039/C2CC35862J
- J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You et al., Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13, 1603938 (2017). https://doi.org/10.1002/smll.201603938
- C. Liu, H. Huang, W. Cui, F. Dong, Y. Zhang, Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Appl. Catal. B Environ. 230, 115–124 (2018). https://doi.org/10.1016/j.apcatb.2018.02.038
- Z. Wang, M. Chen, Y. Huang, X. Shi, Y. Zhang et al., Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light. Appl. Catal. B Environ. 239, 352–361 (2018). https://doi.org/10.1016/j.apcatb.2018.08.030
- Y. Wang, Y.-Q. Di, M. Antonietti, H. Li, X. Chen et al., Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater. 22, 5119–5121 (2010). https://doi.org/10.1021/CM1019102
- K. Ding, L. Wen, M. Huang, Y. Zhang, Y. Lu et al., How does the B, F-monodoping and B/F-codoping affect the photocatalytic water-splitting performance of g-C3N4? Phys. Chem. Chem. Phys. 18, 19217–19226 (2016). https://doi.org/10.1039/c6cp02169g
- Y. Tan, W. Chen, G. Liao, X. Li, J. Wang et al., Strategy for improving photocatalytic ozonation activity of g-C3N4 by halogen doping for water purification. Appl. Catal. B Environ. 306, 121133 (2022). https://doi.org/10.1016/j.apcatb.2022.121133
- Q. Han, C. Hu, F. Zhao, Z. Zhang, N. Chen et al., One-step preparation of iodine-doped graphitic carbon nitride nanosheets as efficient photocatalysts for visible light water splitting. J. Mater. Chem. A 3, 4612–4619 (2015). https://doi.org/10.1039/C4TA06093H
- G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin et al., Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26, 805–809 (2014). https://doi.org/10.1002/adma.201303611
- J. Hong, D.K. Hwang, R. Selvaraj, Y. Kim, Facile synthesis of Br-doped g-C3N4 nanosheets via one-step exfoliation using ammonium bromide for photodegradation of oxytetracycline antibiotics. J. Ind. Eng. Chem. 79, 473–481 (2019). https://doi.org/10.1016/j.jiec.2019.07.024
- Y. Hu, X. Li, W. Wang, F. Deng, L. Han et al., Bi and S co-doping g-C3N4 to enhance internal electric field for robust photocatalytic degradation and H2 production. Chin. J. Struct. Chem. 41, 2206069–2206078 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0103
- T. Liu, Y. Li, H. Sun, M. Zhang, Z. Xia et al., Asymmetric structure awakened n-π* electron transition in sulfur and selenium Co-doped g-C3N4 with efficient photocatalytic performance. Chin. J. Struct. Chem. 41, 2206055–2206061 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0152
- H. Ma, Y. Li, S. Li, N. Liu, Novel PO codoped g-C3N4 with large specific surface area: hydrothermal synthesis assisted by dissolution–precipitation process and their visible light activity under anoxic conditions. Appl. Surf. Sci. 357, 131–138 (2015). https://doi.org/10.1016/j.apsusc.2015.09.009
- Z. Lin, X. Wang, Ionic liquid promoted synthesis of conjugated carbon nitride photocatalysts from urea. Chemsuschem 7, 1547–1550 (2014). https://doi.org/10.1002/cssc.201400016
- G. Fu, X. Song, S. Zhao, J. Zhang, Synergistic effects of B-F/B-S and nitrogen vacancy co-doping on g-C3N4 and photocatalytic CO2 reduction mechanisms: a DFT study. Molecules 27, 7611 (2022). https://doi.org/10.3390/molecules27217611
- L.-L. Feng, Y. Zou, C. Li, S. Gao, L.-J. Zhou et al., Nanoporous sulfur-doped graphitic carbon nitride microrods: a durable catalyst for visible-light-driven H2 evolution. Int. J. Hydrog. Energy 39, 15373–15379 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.160
- M. Jing, H. Zhao, L. Jian, C. Pan, Y. Dong et al., Coral-like B-doped g-C3N4 with enhanced molecular dipole to boost photocatalysis-self-Fenton removal of persistent organic pollutants. J. Hazard. Mater. 449, 131017 (2023). https://doi.org/10.1016/j.jhazmat.2023.131017
- S. Zhao, Y. Zhang, Y. Wang, Y. Zhou, K. Qiu et al., Ionic liquid-assisted synthesis of Br-modified g-C3N4 semiconductors with high surface area and highly porous structure for photoredox water splitting. J. Power Sources 370, 106–113 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.023
- L. Yang, J. Huang, L. Shi, L. Cao, Q. Yu et al., A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 204, 335–345 (2017). https://doi.org/10.1016/j.apcatb.2016.11.047
- S. Zhang, Y. Liu, P. Gu, R. Ma, T. Wen et al., Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Appl. Catal. B Environ. 248, 1–10 (2019). https://doi.org/10.1016/j.apcatb.2019.02.008
- H. Xie, Y. Zheng, X. Guo, Y. Liu, Z. Zhang et al., Rapid microwave synthesis of mesoporous oxygen-doped g-C3N4 with carbon vacancies for efficient photocatalytic H2O2 production. ACS Sustain. Chem. Eng. 9, 6788–6798 (2021). https://doi.org/10.1021/acssuschemeng.1c01012
- C. Saka, Surface modification with oxygen doping of g-C3N4 nanops by carbon vacancy for efficient dehydrogenation of sodium borohydride in methanol. Fuel 310, 122444 (2022). https://doi.org/10.1016/j.fuel.2021.122444
- P. Wei, J. Gao, H. Cai, L. Zheng, Y. Wang et al., 2D heterojunction of C, N, S Co-doped TiO2/g-C3N4 nanosheet with high-speed charge transport toward highly efficient photocatalytic activity. Res. Chem. Intermed. 49, 3747–3764 (2023). https://doi.org/10.1007/s11164-023-05051-1
- H.-B. Fang, X.-H. Zhang, J. Wu, N. Li, Y.-Z. Zheng et al., Fragmented phosphorus-doped graphitic carbon nitride nanoflakes with broad sub-bandgap absorption for highly efficient visible-light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 225, 397–405 (2018). https://doi.org/10.1016/j.apcatb.2017.11.080
- X. Wu, S. Jiang, S. Song, C. Sun, Constructing effective photocatalytic purification system with P-introduced g-C3N4 for elimination of UO22+. Appl. Surf. Sci. 430, 371–379 (2018). https://doi.org/10.1016/j.apsusc.2017.06.065
- S. Guo, Y. Tang, Y. Xie, C. Tian, Q. Feng et al., P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl. Catal. B Environ. 218, 664–671 (2017). https://doi.org/10.1016/j.apcatb.2017.07.022
- F. Wang, J. Xu, Z. Wang, Y. Lou, C. Pan et al., Unprecedentedly efficient mineralization performance of photocatalysis-self-Fenton system towards organic pollutants over oxygen-doped porous g-C3N4 nanosheets. Appl. Catal. B Environ. 312, 121438 (2022). https://doi.org/10.1016/j.apcatb.2022.121438
- C. Lu, R. Chen, X. Wu, M. Fan, Y. Liu et al., Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance. Appl. Surf. Sci. 360, 1016–1022 (2016). https://doi.org/10.1016/j.apsusc.2015.11.112
- Z. Zhao, Y. Long, Y. Chen, F. Zhang, J. Ma, Phosphorus doped carbon nitride with rich nitrogen vacancy to enhance the electrocatalytic activity for nitrogen reduction reaction. Chem. Eng. J. 430, 132682 (2022). https://doi.org/10.1016/j.cej.2021.132682
- X. Xia, C. Xie, B. Xu, X. Ji, G. Gao et al., Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. J. Ind. Eng. Chem. 105, 303–312 (2022). https://doi.org/10.1016/j.jiec.2021.09.033
- J. Cui, F. Yu, J. Zhang, X. Tang, Y. Liu, Doping mechanism of S, O Co-doped in nitrogen vacancy defect rich g-C3N4 nanosheet photocatalyst. Opt. Mater. 139, 113777 (2023). https://doi.org/10.1016/j.optmat.2023.113777
- J. Jiang, Z. Xiong, H. Wang, G. Liao, S. Bai et al., Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 118, 15–24 (2022). https://doi.org/10.1016/j.jmst.2021.12.018
- S. Lv, Y.H. Ng, R. Zhu, S. Li, C. Wu et al., Phosphorus vapor assisted preparation of P-doped ultrathin hollow g-C3N4 sphere for efficient solar-to-hydrogen conversion. Appl. Catal. B Environ. 297, 120438 (2021). https://doi.org/10.1016/j.apcatb.2021.120438
- H. Han, X. Wang, Y. Qiao, Y. Lai, B. Liu et al., Construction of S-scheme heterojunction for enhanced photocatalytic conversation of NO over dual-defect CeO2−x/g-C3N4−x. J. Alloy. Compd. 933, 167819 (2023). https://doi.org/10.1016/j.jallcom.2022.167819
- Y. Liu, H. Zhao, H. Li, T. Cai, One-step synthesis and photocatalytic degradation performance of sulfur-doped porous g-C3N4 nanosheets. China Pet. Process. Petrochem. Technol. 24(1), 81–89 (2022)
- Z. Zhang, R. Ji, Q. Sun, J. He, D. Chen et al., Enhanced photocatalytic degradation of 2-chlorophenol over Z-scheme heterojunction of CdS-decorated oxygen-doped g-C3N4 under visible-light. Appl. Catal. B Environ. 324, 122276 (2023). https://doi.org/10.1016/j.apcatb.2022.122276
- L. Zhou, H. Zhang, H. Sun, S. Liu, M.O. Tade et al., Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal. Sci. Technol. 6, 7002–7023 (2016). https://doi.org/10.1039/C6CY01195K
- T. Xiong, W. Cen, Y. Zhang, F. Dong, Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 6, 2462–2472 (2016). https://doi.org/10.1021/acscatal.5b02922
- J. Zhang, S. Hu, Y. Wang, A convenient method to prepare a novel alkali metal sodium doped carbon nitride photocatalyst with a tunable band structure. RSC Adv. 4, 62912–62919 (2014). https://doi.org/10.1039/C4RA11377B
- S. Hu, F. Li, Z. Fan, F. Wang, Y. Zhao et al., Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability. Dalton Trans. 44, 1084–1092 (2015). https://doi.org/10.1039/c4dt02658f
- H. Zhang, Y. Tang, Z. Liu, Z. Zhu, X. Tang et al., Study on optical properties of alkali metal doped g-C3N4 and their photocatalytic activity for reduction of CO2. Chem. Phys. Lett. 751, 137467 (2020). https://doi.org/10.1016/j.cplett.2020.137467
- P. Deng, J. Xiong, S. Lei, W. Wang, X. Ou et al., Nickel formate induced high-level in situ Ni-doping of g-C3N4 for a tunable band structure and enhanced photocatalytic performance. J. Mater. Chem. A 7, 22385–22397 (2019). https://doi.org/10.1039/C9TA04559G
- M. Gao, F. Tian, X. Zhang, Z. Chen, W. Yang et al., Improved plasmonic hot-electron capture in Au nanop/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 15, 129 (2023). https://doi.org/10.1007/s40820-023-01098-2
- D. Zhao, Y. Wang, C.-L. Dong, F. Meng, Y.-C. Huang et al., Electron-deficient Zn-N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 14, 223 (2022). https://doi.org/10.1007/s40820-022-00962-x
- S. Sultan, J.N. Tiwari, A.N. Singh, S. Zhumagali, M. Ha et al., Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 9, 1900624 (2019). https://doi.org/10.1002/aenm.201900624
- C. Zhu, Q. Shi, S. Feng, D. Du, Y. Lin, Single-atom catalysts for electrochemical water splitting. ACS Energy Lett. 3, 1713–1721 (2018). https://doi.org/10.1021/acsenergylett.8b00640
- E. Zhang, T. Wang, K. Yu, J. Liu, W. Chen et al., Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16569–16573 (2019). https://doi.org/10.1021/jacs.9b08259
- Y. Wang, Y. Liu, W. Liu, J. Wu, Q. Li et al., Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 13, 4609–4624 (2020). https://doi.org/10.1039/D0EE02833A
- P. Wang, D. Zhao, L. Yin, Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy Environ. Sci. 14, 1794–1834 (2021). https://doi.org/10.1039/D0EE02651D
- J. Yang, H. Qi, A. Li, X. Liu, X. Yang et al., Potential-driven restructuring of Cu single atoms to nanops for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 144, 12062–12071 (2022). https://doi.org/10.1021/jacs.2c02262
- F. Zhang, J. Zhang, H. Wang, J. Li, H. Liu et al., Single tungsten atom steered band-gap engineering for graphitic carbon nitride ultrathin nanosheets boosts visible-light photocatalytic H2 evolution. Chem. Eng. J. 424, 130004 (2021). https://doi.org/10.1016/j.cej.2021.130004
- F. Yu, Q. Deng, H. Li, Y. Xia, W. Hou, A general strategy to synthesize single-atom metal-oxygen doped polymeric carbon nitride with highly enhanced photocatalytic water splitting activity. Appl. Catal. B Environ. 323, 122180 (2023). https://doi.org/10.1016/j.apcatb.2022.122180
- Y. Ying, X. Luo, J. Qiao, H. Huang, “more is different:” synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 31, 2007423 (2021). https://doi.org/10.1002/adfm.202007423
- H. Liu, L. Jiang, J. Khan, X. Wang, J. Xiao et al., Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem. Int. Ed. 62, e202214988 (2023). https://doi.org/10.1002/anie.202214988
- P. Huang, J. Huang, S.A. Pantovich, A.D. Carl, T.G. Fenton et al., Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 140, 16042–16047 (2018). https://doi.org/10.1021/jacs.8b10380
- P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu et al., Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 56, 127–137 (2019). https://doi.org/10.1016/j.nanoen.2018.11.033
- G. Gao, Y. Jiao, E.R. Waclawik, A. Du, Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 138, 6292–6297 (2016). https://doi.org/10.1021/jacs.6b02692
- Y. Yang, J. Evans, J.A. Rodriguez, M.G. White, P. Liu, Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Phys. Chem. Chem. Phys. 12, 9909–9917 (2010). https://doi.org/10.1039/c001484b
- Q. Li, Q. Tang, P. Xiong, D. Chen, J. Chen et al., Effect of palladium chemical states on CO2 photocatalytic reduction over g-C3N4: distinct role of single-atomic state in boosting CH4 production. Chin. J. Catal. 46, 177–190 (2023). https://doi.org/10.1016/S1872-2067(22)64199-8
- H. Ou, S. Ning, P. Zhu, S. Chen, A. Han et al., Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew. Chem. Int. Ed. 61, e202206579 (2022). https://doi.org/10.1002/anie.202206579
- S. Wu, Y. Yu, K. Qiao, J. Meng, N. Jiang et al., A simple synthesis route of sodium-doped g-C3N4 nanotubes with enhanced photocatalytic performance. J. Photochem. Photobiol. A Chem. 406, 112999 (2021). https://doi.org/10.1016/j.jphotochem.2020.112999
- H. Liyanaarachchi, C. Thambiliyagodage, C. Liyanaarachchi, U. Samarakoon, Efficient photocatalysis of Cu doped TiO2/g-C3N4 for the photodegradation of methylene blue. Arab. J. Chem. 16, 104749 (2023). https://doi.org/10.1016/j.arabjc.2023.104749
- Y. Xu, F. Ge, Z. Chen, S. Huang, W. Wei et al., One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance. Appl. Surf. Sci. 469, 739–746 (2019). https://doi.org/10.1016/j.apsusc.2018.11.062
- Y.J. Lee, Y.J. Jeong, I.S. Cho, S.J. Park, C.G. Lee et al., Facile synthesis of N vacancy g-C3N4 using Mg-induced defect on the amine groups for enhanced photocatalytic ·OH generation. J. Hazard. Mater. 449, 131046 (2023). https://doi.org/10.1016/j.jhazmat.2023.131046
- L. Wang, Y. Zhu, D. Yang, L. Zhao, H. Ding et al., The mixed marriage of copper and carbon ring-g-C3N4 nanosheet: a visible-light-driven heterogeneous Fenton-like catalyst. Appl. Surf. Sci. 488, 728–738 (2019). https://doi.org/10.1016/j.apsusc.2019.05.288
- S. Ji, Y. Yang, Z. Zhou, X. Li, Y. Liu, Photocatalysis-Fenton of Fe-doped g-C3N4 catalyst and its excellent degradation performance towards RhB. J. Water Process. Eng. 40, 101804 (2021). https://doi.org/10.1016/j.jwpe.2020.101804
- Q. Dong, Y. Chen, L. Wang, S. Ai, H. Ding, Cu-modified alkalinized g-C3N4 as photocatalytically assisted heterogeneous Fenton-like catalyst. Appl. Surf. Sci. 426, 1133–1140 (2017). https://doi.org/10.1016/j.apsusc.2017.07.254
- X. Yan, Z. Jia, H. Che, S. Chen, P. Hu et al., A selective ion replacement strategy for the synthesis of copper doped carbon nitride nanotubes with improved photocatalytic hydrogen evolution. Appl. Catal. B Environ. 234, 19–25 (2018). https://doi.org/10.1016/j.apcatb.2018.04.020
- W. Li, C. Feng, S. Dai, J. Yue, F. Hua et al., Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. Appl. Catal. B Environ. 168–169, 465–471 (2015). https://doi.org/10.1016/j.apcatb.2015.01.012
- X. Yang, J. Ma, S. Sun, Z. Liu, R. Sun, K/O co-doping and introduction of cyano groups in polymeric carbon nitride towards efficient simultaneous solar photocatalytic water splitting and biorefineries. Green Chem. 24, 2104–2113 (2022). https://doi.org/10.1039/d1gc04323d
- M. Preeyanghaa, V. Vinesh, P. Sabarikirishwaran, A. Rajkamal, M. Ashokkumar et al., Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation. Carbon 192, 405–417 (2022). https://doi.org/10.1016/j.carbon.2022.03.011
- J. Wang, R. Pan, Q. Hao, Y. Gao, J. Ye et al., Constructing Defect-Mediated CdS/g-C3N4 by an In-situ interlocking strategy for Cocatalyst-free photocatalytic H2 production. Appl. Surf. Sci. 599, 153875 (2022). https://doi.org/10.1016/j.apsusc.2022.153875
- H. Shi, Y. He, Y. Li, P. Luo, Unraveling the synergy mechanism between photocatalysis and peroxymonosulfate activation on a Co/Fe bimetal-doped carbon nitride. ACS Catal. 13, 8973–8986 (2023). https://doi.org/10.1021/acscatal.3c01496
- R. Du, K. Xiao, B. Li, X. Han, C. Zhang et al., Controlled oxygen doping in highly dispersed Ni-loaded g-C3N4 nanotubes for efficient photocatalytic H2O2 production. Chem. Eng. J. 441, 135999 (2022). https://doi.org/10.1016/j.cej.2022.135999
- C. Zhang, D. Qin, Y. Zhou, F. Qin, H. Wang et al., Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: morphology and defect evolution. Appl. Catal. B Environ. 303, 120904 (2022). https://doi.org/10.1016/j.apcatb.2021.120904
- H. Mao, L. Wang, Q. Zhang, Chen F., Y. Song et al., via Iron-Doped g-C3N4/GO Hybrid for Complex Wastewater, pp.1–17 (2023)
- K. Liu, J. Ma, X. Yang, Z. Liu, X. Li et al., Phosphorus/oxygen co-doping in hollow-tube-shaped carbon nitride for efficient simultaneous visible-light-driven water splitting and biorefinery. Chem. Eng. J. 437, 135232 (2022). https://doi.org/10.1016/j.cej.2022.135232
- J. Ding, L. Wang, Q. Liu, Y. Chai, X. Liu et al., Remarkable enhancement in visible-light absorption and electron transfer of carbon nitride nanosheets with 1% tungstate dopant. Appl. Catal. B Environ. 176–177, 91–98 (2015). https://doi.org/10.1016/j.apcatb.2015.03.028
- B. Yue, Q. Li, H. Iwai, T. Kako, J. Ye, Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci. Technol. Adv. Mater. 12, 034401 (2011). https://doi.org/10.1088/1468-6996/12/3/034401
- S. Hu, L. Ma, J. You, F. Li, Z. Fan et al., Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts Co-doped with iron and phosphorus. Appl. Surf. Sci. 311, 164–171 (2014). https://doi.org/10.1016/j.apsusc.2014.05.036
- S. Le, T. Jiang, Q. Zhao, X. Liu, Y. Li et al., Cu-doped mesoporous graphitic carbon nitride for enhanced visible-light driven photocatalysis. RSC Adv. 6, 38811–38819 (2016). https://doi.org/10.1039/C6RA03982K
- M. Zhang, X. Bai, D. Liu, J. Wang, Y. Zhu, Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Appl. Catal. B Environ. 164, 77–81 (2015). https://doi.org/10.1016/j.apcatb.2014.09.020
- Y. Deng, Z. Zhou, H. Zeng, R. Tang, L. Li et al., Phosphorus and kalium Co-doped g-C3N4 with multiple-locus synergies to degrade atrazine: insights into the depth analysis of the generation and role of singlet oxygen. Appl. Catal. B Environ. 320, 121942 (2023). https://doi.org/10.1016/j.apcatb.2022.121942
- D.R. Paul, R. Sharma, S. Singh, P. Singh, P. Panchal et al., Mg/Li Co-doped g-C3N4: an excellent photocatalyst for wastewater remediation and hydrogen production applications towards sustainable development. Int. J. Hydrog. Energy 48, 37746–37761 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.178
- S. Tao, S. Wan, Q. Huang, C. Li, J. Yu et al., Molecular engineering of g-C3N4 with dibenzothiophene groups as electron donor for enhanced photocatalytic H2-production. Chin. J. Struct. Chem. 41, 2206048–2206054 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0068
- H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29, 1605148 (2017). https://doi.org/10.1002/adma.201605148
- C. Wu, Q. Han, L. Qu, Functional Group defect design in polymeric carbon nitride for photocatalytic application. APL Mater. 8, 120703 (2020). https://doi.org/10.1063/5.0029374
- J. Zhang, B. Xin, C. Shan, W. Zhang, D.D. Dionysiou et al., Roles of oxygen-containing functional groups of O-doped g-C3N4 in catalytic ozonation: quantitative relationship and first-principles investigation. Appl. Catal. B Environ. 292, 120155 (2021). https://doi.org/10.1016/j.apcatb.2021.120155
- T.K.A. Nguyen, T.-T. Pham, B. Gendensuren, E.-S. Oh
References
R.D. Cortright, R.R. Davda, J.A. Dumesic, Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418, 964–967 (2002). https://doi.org/10.1038/nature01009
M. Suzuki, Identifying roles of international institutions in clean energy technology innovation and diffusion in the developing countries: matching barriers with roles of the institutions. J. Clean. Prod. 98, 229–240 (2015). https://doi.org/10.1016/j.jclepro.2014.08.070
M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
C. Ban, Y. Duan, Y. Wang, J. Ma, K. Wang et al., Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 14, 74 (2022). https://doi.org/10.1007/s40820-022-00821-9
S. Seenivasan, H. Moon, D.-H. Kim, Multilayer strategy for photoelectrochemical hydrogen generation: new electrode architecture that alleviates multiple bottlenecks. Nano-Micro Lett. 14, 78 (2022). https://doi.org/10.1007/s40820-022-00822-8
V. Bosetti, R. Lubowski, A. Golub, A. Markandya, Linking reduced deforestation and a global carbon market: implications for clean energy technology and policy flexibility. Envir. Dev. Econ. 16, 479–505 (2011). https://doi.org/10.1017/s1355770x10000549
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317
Z. Chen, J. Wang, M. Hao, Y. Xie, X. Liu et al., Tuning excited state electronic structure and charge transport in covalent organic frameworks for enhanced photocatalytic performance. Nat. Commun. 14, 1106 (2023). https://doi.org/10.1038/s41467-023-36710-x
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
S.E. Jun, S. Choi, S. Choi, T.H. Lee, C. Kim et al., Direct synthesis of molybdenum phosphide nanorods on silicon using graphene at the heterointerface for efficient photoelectrochemical water reduction. Nano-Micro Lett. 13, 81 (2021). https://doi.org/10.1007/s40820-021-00605-7
Y. Luo, H. Lee, Present and future of phase-selectively disordered blue TiO2 for energy and society sustainability. Nano-Micro Lett. 13, 45 (2021). https://doi.org/10.1007/s40820-020-00569-0
J. Ke, F. He, H. Wu, S. Lyu, J. Liu et al., Nanocarbon-enhanced 2D photoelectrodes: a new paradigm in photoelectrochemical water splitting. Nano-Micro Lett. 13, 24 (2020). https://doi.org/10.1007/s40820-020-00545-8
S. Yue, L. Chen, M. Zhang, Z. Liu, T. Chen et al., Electrostatic field enhanced photocatalytic CO2 conversion on BiVO4 nanowires. Nano-Micro Lett. 14, 15 (2021). https://doi.org/10.1007/s40820-021-00749-6
S. Liang, G. Sui, D. Guo, Z. Luo, R. Xu et al., G-C3N4-wrapped nickel doped zinc oxide/carbon core-double shell microspheres for high-performance photocatalytic hydrogen production. J. Colloid Interface Sci. 635, 83–93 (2023). https://doi.org/10.1016/j.jcis.2022.12.120
C.B. Ong, L.Y. Ng, A.W. Mohammad, A review of ZnO nanops as solar photocatalysts: synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536–551 (2018). https://doi.org/10.1016/j.rser.2017.08.020
Y. Chen, X. Liu, L. Hou, X. Guo, R. Fu et al., Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride Z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chem. Eng. J. 383, 123132 (2020). https://doi.org/10.1016/j.cej.2019.123132
Y. Zhang, Z. Huang, C.-L. Dong, J. Shi, C. Cheng et al., Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution. Chem. Eng. J. 431, 134101 (2022). https://doi.org/10.1016/j.cej.2021.134101
J. Li, D. Wu, J. Iocozzia, H. Du, X. Liu et al., Achieving efficient incorporation of π-electrons into graphitic carbon nitride for markedly improved hydrogen generation. Angew. Chem. Int. Ed. 58, 1985–1989 (2019). https://doi.org/10.1002/anie.201813117
B. Li, Q. Fang, Y. Si, T. Huang, W.-Q. Huang et al., Ultra-thin tubular graphitic carbon Nitride-Carbon Dot lateral heterostructures: one-Step synthesis and highly efficient catalytic hydrogen generation. Chem. Eng. J. 397, 125470 (2020). https://doi.org/10.1016/j.cej.2020.125470
J. Fu, K. Liu, K. Jiang, H. Li, P. An et al., Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4. Adv. Sci. 6, 1900796 (2019). https://doi.org/10.1002/advs.201900796
Q. Lu, K. Eid, W. Li, A.M. Abdullah, G. Xu et al., Engineering graphitic carbon nitride (g-C3N4) for catalytic reduction of CO2 to fuels and chemicals: strategy and mechanism. Green Chem. 23, 5394–5428 (2021). https://doi.org/10.1039/d1gc01303c
T. Mahvelati-Shamsabadi, B.-K. Lee, Photocatalytic H2 evolution and CO2 reduction over phosphorus-doped g-C3N4 nanostructures: electronic, Optical, and Surface properties. Renew. Sustain. Energy Rev. 130, 109957 (2020). https://doi.org/10.1016/j.rser.2020.109957
Y. Wang, Y. Qu, B. Qu, L. Bai, Y. Liu et al., Construction of six-oxygen-coordinated single Ni sites on g-C3N4 with boron-oxo species for photocatalytic water-activation-induced CO2 reduction. Adv. Mater. 33, 2105482 (2021). https://doi.org/10.1002/adma.202105482
L. Cheng, H. Yin, C. Cai, J. Fan, Q. Xiang, Single Ni atoms anchored on porous few-layer g-C3 N4 for photocatalytic CO2 reduction: the role of edge confinement. Small 16, e2002411 (2020). https://doi.org/10.1002/smll.202002411
H. Wang, J. Li, Y. Wan, A. Nazir, X. Song et al., Fabrication of Zn vacancies-tunable ultrathin-g-C3N4@ZnIn2S4/SWNTs composites for enhancing photocatalytic CO2 reduction. Appl. Surf. Sci. 613, 155989 (2023). https://doi.org/10.1016/j.apsusc.2022.155989
J. Li, C. He, N. Xu, K. Wu, Z. Huang et al., Interfacial bonding of hydroxyl-modified g-C3N4 and Bi2O2CO3 toward boosted CO2 photoreduction: insights into the key role of OH groups. Chem. Eng. J. 452, 139191 (2023). https://doi.org/10.1016/j.cej.2022.139191
K. Wang, G. Gu, S. Hu, J. Zhang, X. Sun et al., Molten salt assistant synthesis of three-dimensional cobalt doped graphitic carbon nitride for photocatalytic N2 fixation: experiment and DFT simulation analysis. Chem. Eng. J. 368, 896–904 (2019). https://doi.org/10.1016/j.cej.2019.03.037
Z. Li, G. Gu, S. Hu, X. Zou, G. Wu, Promotion of activation ability of N vacancies to N2 molecules on sulfur-doped graphitic carbon nitride with outstanding photocatalytic nitrogen fixation ability. Chin. J. Catal. 40, 1178–1186 (2019). https://doi.org/10.1016/S1872-2067(19)63364-4
G. Gu, K. Wang, N. Xiong, Z. Li, Z. Fan et al., Template free synthesis of lithium doped three-dimensional macroporous graphitic carbon nitride for photocatalytic N2 fixation: the effect of Li-N active sites. Dalton Trans. 48, 5083–5089 (2019). https://doi.org/10.1039/c9dt00013e
L. Yu, Z. Mo, X. Zhu, J. Deng, F. Xu et al., Construction of 2D/2D Z-scheme MnO2-x/g-C3N4 photocatalyst for efficient nitrogen fixation to ammonia. Green Energy Environ. 6, 538–545 (2021). https://doi.org/10.1016/j.gee.2020.05.011
V.-H. Nguyen, M. Mousavi, J.B. Ghasemi, Q. Van Le, S. Ali Delbari et al., In situ preparation of g-C3N4 nanosheet/FeOCl: achievement and promoted photocatalytic nitrogen fixation activity. J. Colloid Interface Sci. 587, 538–549 (2021). https://doi.org/10.1016/j.jcis.2020.11.011
S. Cao, B. Fan, Y. Feng, H. Chen, F. Jiang et al., Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. Chem. Eng. J. 353, 147–156 (2018). https://doi.org/10.1016/j.cej.2018.07.116
C. Kong, D. Qing, X. Su, Y. Zhao, J. Wang et al., Improved photoelectrochemical cathodic protection properties of a flower-like SrTiO3 photoanode decorated With g-C3N4. J. Alloy. Compd. 924, 166629 (2022). https://doi.org/10.1016/j.jallcom.2022.166629
A. Helal, J. Yu, A.I. Eid, S.A. El-Hakam, S.E. Samra et al., A novel g-C3N4/In2O3/BiVO4 heterojunction photoanode for improved the photoelectrochemical cathodic protection of 304 SS stainless steel under solar light. J. Alloy. Compd. 911, 165047 (2022). https://doi.org/10.1016/j.jallcom.2022.165047
Y. Ma, H. Wang, L. Sun, E. Liu, G. Fei et al., Unidirectional electron transport from graphitic-C3N4 for novel remote and long-term photocatalytic anti-corrosion on Q235 carbon steel. Chem. Eng. J. 429, 132520 (2022). https://doi.org/10.1016/j.cej.2021.132520
J. Jing, Z. Chen, C. Feng, M. Sun, J. Hou, Transforming g-C3N4 from amphoteric to n-type semiconductor: the important role of p/n type on photoelectrochemical cathodic protection. J. Alloy. Compd. 851, 156820 (2021). https://doi.org/10.1016/j.jallcom.2020.156820
H. Piao, G. Choi, X. Jin, S.J. Hwang, Y.J. Song et al., Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 14, 55 (2022). https://doi.org/10.1007/s40820-022-00794-9
Z. Dai, Y. Zhen, Y. Sun, L. Li, D. Ding, ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem. Eng. J. 415, 129002 (2021). https://doi.org/10.1016/j.cej.2021.129002
Z. Wang, Y. Huang, M. Chen, X. Shi, Y. Zhang et al., Roles of N-vacancies over porous g-C3N4 microtubes during photocatalytic NOx removal. ACS Appl. Mater. Interfaces 11, 10651–10662 (2019). https://doi.org/10.1021/acsami.8b21987
J. Liao, W. Cui, J. Li, J. Sheng, H. Wang et al., Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chem. Eng. J. 379, 122282 (2020). https://doi.org/10.1016/j.cej.2019.122282
H. Guo, C.-G. Niu, C.-Y. Feng, C. Liang, L. Zhang et al., Steering exciton dissociation and charge migration in green synthetic oxygen-substituted ultrathin porous graphitic carbon nitride for boosted photocatalytic reactive oxygen species generation. Chem. Eng. J. 385, 123919 (2020). https://doi.org/10.1016/j.cej.2019.123919
E.-X. Han, Y.-Y. Li, Q.-H. Wang, W.-Q. Huang, L. Luo et al., Chlorine doped graphitic carbon nitride nanorings as an efficient photoresponsive catalyst for water oxidation and organic decomposition. J. Mater. Sci. Technol. 35, 2288–2296 (2019). https://doi.org/10.1016/j.jmst.2019.05.057
H.-W. Zhang, Y.-X. Lu, B. Li, G.-F. Huang, F. Zeng et al., Acid-induced topological morphology modulation of graphitic carbon nitride homojunctions as advanced metal-free catalysts for OER and pollutant degradation. J. Mater. Sci. Technol. 86, 210–218 (2021). https://doi.org/10.1016/j.jmst.2021.01.030
D. Zhao, C.-L. Dong, B. Wang, C. Chen, Y.-C. Huang et al., Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 31, 1903545 (2019). https://doi.org/10.1002/adma.201903545
J. Chen, P. Cui, G. Zhao, K. Rui, M. Lao et al., Low-coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. Angew. Chem. Int. Ed. 58, 12540–12544 (2019). https://doi.org/10.1002/anie.201907017
Y. Guo, X. Tong, N. Yang, Photocatalytic and electrocatalytic generation of hydrogen peroxide: principles, catalyst design and performance. Nano-Micro Lett. 15, 77 (2023). https://doi.org/10.1007/s40820-023-01052-2
J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu et al., Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ. Sci. 4, 675–678 (2011). https://doi.org/10.1039/C0EE00418A
C. Zhao, Z. Chen, J. Xu, Q. Liu, H. Xu et al., Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets. Appl. Catal. B Environ. 256, 117867 (2019). https://doi.org/10.1016/j.apcatb.2019.117867
Y. Chen, W. Lu, H. Shen, Y. Gu, T. Xu et al., Solar-driven efficient degradation of emerging contaminants by g-C3N4-shielding polyester fiber/TiO2 composites. Appl. Catal. B Environ. 258, 117960 (2019). https://doi.org/10.1016/j.apcatb.2019.117960
Z. Mo, H. Xu, Z. Chen, X. She, Y. Song et al., Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Appl. Catal. B Environ. 225, 154–161 (2018). https://doi.org/10.1016/j.apcatb.2017.11.041
B.-X. Zhou, S.-S. Ding, B.-J. Zhang, L. Xu, R.-S. Chen et al., Dimensional transformation and morphological control of graphitic carbon nitride from water-based supramolecular assembly for photocatalytic hydrogen evolution: from 3D to 2D and 1D nanostructures. Appl. Catal. B Environ. 254, 321–328 (2019). https://doi.org/10.1016/j.apcatb.2019.05.015
R. Malik, V.K. Tomer, State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production. Renew. Sustain. Energy Rev. 135, 110235 (2021). https://doi.org/10.1016/j.rser.2020.110235
H. Wang, Y. Wu, M. Feng, W. Tu, T. Xiao et al., Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res. 144, 215–225 (2018). https://doi.org/10.1016/j.watres.2018.07.025
Y. Wu, P. Xiong, J. Wu, Z. Huang, J. Sun et al., Band engineering and morphology control of oxygen-incorporated graphitic carbon nitride porous nanosheets for highly efficient photocatalytic hydrogen evolution. Nano-Micro Lett. 13, 48 (2021). https://doi.org/10.1007/s40820-020-00571-6
Y. Wang, Y. Tian, L. Yan, Z. Su, DFT study on sulfur-doped g-C3N4 nanosheets as a photocatalyst for CO2 reduction reaction. J. Phys. Chem. C 122, 7712–7719 (2018). https://doi.org/10.1021/acs.jpcc.8b00098
H. Liu, S. Ma, L. Shao, H. Liu, Q. Gao et al., Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection. Appl. Catal. B Environ. 261, 118201 (2020). https://doi.org/10.1016/j.apcatb.2019.118201
C. Wan, L. Zhou, S. Xu, B. Jin, X. Ge et al., Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanops for enhanced photocatalytic hydrogen evolution from formic acid. Chem. Eng. J. 429, 132388 (2022). https://doi.org/10.1016/j.cej.2021.132388
Z. Zhang, L. Cui, Y. Zhang, L.H. Klausen, M. Chen et al., Regulation of carboxyl groups and structural defects of graphitic carbon nitride via environmental-friendly glucose oxidase ring-opening modulation. Appl. Catal. B Environ. 297, 120441 (2021). https://doi.org/10.1016/j.apcatb.2021.120441
M. Luo, Q. Yang, W. Yang, J. Wang, F. He et al., Defects engineering leads to enhanced photocatalytic H2 evolution on graphitic carbon nitride–covalent organic framework nanosheet composite. Small 16, 2001100 (2020). https://doi.org/10.1002/smll.202001100
Z. Tong, L. Huang, H. Liu, W. Lei, H. Zhang et al., Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry. Adv. Funct. Mater. 31, 2010455 (2021). https://doi.org/10.1002/adfm.202010455
J. Zhang, J. Chen, Y. Wan, H. Liu, W. Chen et al., Defect engineering in atomic-layered graphitic carbon nitride for greatly extended visible-light photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 12, 13805–13812 (2020). https://doi.org/10.1021/acsami.9b21115
Y. Li, Z. He, L. Liu, Y. Jiang, W.-J. Ong et al., Inside-and-out modification of graphitic carbon nitride (g-C3N4) photocatalysts via defect engineering for energy and environmental science. Nano Energy 105, 108032 (2023). https://doi.org/10.1016/j.nanoen.2022.108032
D. Huang, Z. Li, G. Zeng, C. Zhou, W. Xue et al., Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance. Appl. Catal. B Environ. 240, 153–173 (2019). https://doi.org/10.1016/j.apcatb.2018.08.071
W. Lei, Y. Mi, R. Feng, P. Liu, S. Hu et al., Hybrid 0D–2D black phosphorus quantum dots–graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy 50, 552–561 (2018). https://doi.org/10.1016/j.nanoen.2018.06.001
Z. Bao, M. Xing, Y. Zhou, J. Lv, D. Lei et al., Z-scheme flower-like SnO2/g-C3N4 composite with Sn2+ active center for enhanced visible-light photocatalytic activity. Adv. Sustain. Syst. 5, 2100087 (2021). https://doi.org/10.1002/adsu.202100087
J. Zou, G. Liao, J. Jiang, Z. Xiong, S. Bai et al., In-situ construction of sulfur-doped g-C3N4/defective g-C3N4 isotype step-scheme heterojunction for boosting photocatalytic H2 evolution. Chin. J. Struct. Chem. 41, 2201025–2201033 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2021-0039
J. Zhang, M. Zhang, R.-Q. Sun, X. Wang, A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. Int. Ed. 51, 10145–10149 (2012). https://doi.org/10.1002/anie.201205333
D. Huang, S. Chen, G. Zeng, X. Gong, C. Zhou et al., Artificial Z-scheme photocatalytic system: what have been done and where to go? Coord. Chem. Rev. 385, 44–80 (2019). https://doi.org/10.1016/j.ccr.2018.12.013
Z. Wang, R. Liu, J. Zhang, K. Dai, S-scheme porous g-C3N4/Ag2MoO4 heterojunction composite for CO2 photoreduction. Chin. J. Struct. Chem. 41(6), 15–22 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0108
X. Liu, H. Qin, W. Fan, Enhanced visible-light photocatalytic activity of a g-C3N4/m-LaVO4 heterojunction: band offset determination. Sci. Bull. 61, 645–655 (2016). https://doi.org/10.1007/s11434-016-1053-7
L. Shi, Z. Zhou, Y. Zhang, C. Ling, Q. Li et al., Photocatalytic conversion of CO to fuels with water by B-doped graphene/g-C3N4 heterostructure. Sci. Bull. 66, 1186–1193 (2021). https://doi.org/10.1016/j.scib.2021.02.025
M.K. Kesarla, M.O. Fuentez-Torres, M.A. Alcudia-Ramos, F. Ortiz-Chi, C.G. Espinosa-González et al., Synthesis of g-C3N4/N-doped CeO2 composite for photocatalytic degradation of an herbicide. J. Mater. Res. Technol. 8, 1628–1635 (2019). https://doi.org/10.1016/j.jmrt.2018.11.008
L. Bao, J. Han, H. Wang, R. Liu, M. Qiu et al., High efficient photoreduction of U(VI) by a new synergistic photocatalyst of Fe3O4 nanop on GO/g-C3N4 composites. J. Mater. Res. Technol. 18, 4248–4255 (2022). https://doi.org/10.1016/j.jmrt.2022.04.102
Q.-W. Gui, F. Teng, P. Yu, Y.-F. Wu, Z.-B. Nong et al., Visible light-induced Z-scheme V2O5/g-C3N4 heterojunction catalyzed cascade reaction of unactivated alkenes. Chin. J. Catal. 44, 111–116 (2023). https://doi.org/10.1016/S1872-2067(22)64162-7
Z.-F. Huang, J. Song, L. Pan, Z. Wang, X. Zhang et al., Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 12, 646–656 (2015). https://doi.org/10.1016/j.nanoen.2015.01.043
L. Ge, C. Han, J. Liu, Y. Li, Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanops. Appl. Catal. A Gen. 409–410, 215–222 (2011). https://doi.org/10.1016/j.apcata.2011.10.006
J. Hong, X. Xia, Y. Wang, R. Xu, Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light. J. Mater. Chem. 22, 15006–15012 (2012). https://doi.org/10.1039/C2JM32053C
J. Liang, Y. Zheng, J. Chen, J. Liu, D. Hulicova-Jurcakova et al., Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem. Int. Ed. 51, 3892–3896 (2012). https://doi.org/10.1002/anie.201107981
X.-H. Li, X. Wang, M. Antonietti, Mesoporous g-C3N4nanorods as multifunctional supports of ultrafine metal nanops: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 3, 2170–2174 (2012). https://doi.org/10.1039/C2SC20289A
S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma et al., Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
K. Schwinghammer, M.B. Mesch, V. Duppel, C. Ziegler, J. Senker et al., Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 136, 1730–1733 (2014). https://doi.org/10.1021/ja411321s
J. Di, J. Xia, X. Li, M. Ji, H. Xu et al., Constructing confined surface carbon defects in ultrathin graphitic carbon nitride for photocatalytic free radical manipulation. Carbon 107, 1–10 (2016). https://doi.org/10.1016/j.carbon.2016.05.028
H. Ou, L. Lin, Y. Zheng, P. Yang, Y. Fang et al., Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 29, 1700008 (2017). https://doi.org/10.1002/adma.201700008
L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin et al., Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 14, 1703142 (2018). https://doi.org/10.1002/smll.201703142
Z. Ge, A. Yu, R. Lu, Preparation of Li-doped graphitic carbon nitride with enhanced visible-light photoactivity. Mater. Lett. 250, 9–11 (2019). https://doi.org/10.1016/j.matlet.2019.04.099
W. Zhang, Z. Zhao, F. Dong, Y. Zhang, Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal. Chin. J. Catal. 38, 372–378 (2017). https://doi.org/10.1016/S1872-2067(16)62585-8
Z. Teng, N. Yang, H. Lv, S. Wang, M. Hu et al., Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. Chem 5, 664–680 (2019). https://doi.org/10.1016/j.chempr.2018.12.009
L.F. Villalobos, M.T. Vahdat, M. Dakhchoune, Z. Nadizadeh, M. Mensi et al., Large-scale synthesis of crystalline g-C3N4 nanosheets and high-temperature H2 sieving from assembled films. Sci. Adv. 6, eaay9851 (2020). https://doi.org/10.1126/sciadv.aay9851
X. Hu, P. Lu, R. Pan, Y. Li, J. Bai et al., Metal-ion-assisted construction of cyano group defects in g-C3N4 to simultaneously degrade wastewater and produce hydrogen. Chem. Eng. J. 423, 130278 (2021). https://doi.org/10.1016/j.cej.2021.130278
L. Chen, Y. Wang, S. Cheng, X. Zhao, J. Zhang et al., Nitrogen defects/boron dopants engineered tubular carbon nitride for efficient tetracycline hydrochloride photodegradation and hydrogen evolution. Appl. Catal. B Environ. 303, 120932 (2022). https://doi.org/10.1016/j.apcatb.2021.120932
S. Hou, X. Gao, S. Wang, X. Yu, J. Liao et al., Precise defect engineering on graphitic carbon nitrides for boosted solar H2 production. Small (2023). https://doi.org/10.1002/smll.202302500
W. Zhou, B.-H. Wang, L. Tang, L. Chen, J.-K. Guo et al., Photocatalytic dry reforming of methane enhanced by “dual-path” strategy with excellent low-temperature catalytic performance. Adv. Funct. Mater. 33, 2214068 (2023). https://doi.org/10.1002/adfm.202214068
N. Tian, Y. Zhang, X. Li, K. Xiao, X. Du et al., Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 38, 72–81 (2017). https://doi.org/10.1016/j.nanoen.2017.05.038
X. Feng, H. Chen, F. Jiang, X. Wang, In-situ self-sacrificial fabrication of lanthanide hydroxycarbonates/graphitic carbon nitride heterojunctions: nitrogen photofixation under simulated solar light irradiation. Chem. Eng. J. 347, 849–859 (2018). https://doi.org/10.1016/j.cej.2018.04.157
Y. Wang, S. Zhao, Y. Zhang, J. Fang, Y. Zhou et al., One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci. 440, 258–265 (2018). https://doi.org/10.1016/j.apsusc.2018.01.091
X. Rong, S. Liu, M. Xie, Z. Liu, Z. Wu et al., N2 photofixation by Z-scheme single-layer g-C3N4/ZnFe2O4 for cleaner ammonia production. Mater. Res. Bull. 127, 110853 (2020). https://doi.org/10.1016/j.materresbull.2020.110853
G. Liu, Y. Huang, H. Lv, H. Wang, Y. Zeng et al., Confining single-atom Pd on g-C3N4 with carbon vacancies towards enhanced photocatalytic NO conversion. Appl. Catal. B Environ. 284, 119683 (2021). https://doi.org/10.1016/j.apcatb.2020.119683
X. Chen, J. Zhang, X. Fu, M. Antonietti, X. Wang, Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J. Am. Chem. Soc. 131, 11658–11659 (2009). https://doi.org/10.1021/ja903923s
Y. Zhang, T. Mori, J. Ye, M. Antonietti, Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132, 6294–6295 (2010). https://doi.org/10.1021/ja101749y
S. Li, G. Dong, R. Hailili, L. Yang, Y. Li et al., Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B Environ. 190, 26–35 (2016). https://doi.org/10.1016/j.apcatb.2016.03.004
W. Tu, Y. Xu, J. Wang, B. Zhang, T. Zhou et al., Investigating the role of tunable nitrogen vacancies in graphitic carbon nitride nanosheets for efficient visible-light-driven H2 evolution and CO2 reduction. ACS Sustain. Chem. Eng. 5, 7260–7268 (2017). https://doi.org/10.1021/acssuschemeng.7b01477
H.-B. Fang, X.-H. Zhang, J. Wu, N. Li, Y.-Z. Zheng et al., Fragmented phosphorus-doped graphitic carbon nitride nanoflakes with broad sub-bandgap absorption for highly efficient visible-light photocatalytic hydrogen evolution. Appl. Catal. B Environ. Int. J. Devoted Catal. Sci. Appl. 225, 397–405 (2018). https://doi.org/10.1016/j.apcatb.2017.11.080
B. Kim, D. Kwon, J.-O. Baeg, M.P. Austeria, G.H. Gu et al., Dual-atom-site Sn-Cu/C3N4 photocatalyst selectively produces formaldehyde from CO2 reduction. Adv. Funct. Mater. 33, 2212453 (2023). https://doi.org/10.1002/adfm.202212453
X. Gao, J. Feng, D. Su, Y. Ma, G. Wang et al., In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution. Nano Energy 59, 598–609 (2019). https://doi.org/10.1016/j.nanoen.2019.03.016
W. Che, W. Cheng, T. Yao, F. Tang, W. Liu et al., Fast photoelectron transfer in (Cring)–C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 139, 3021–3026 (2017). https://doi.org/10.1021/jacs.6b11878
W. Ren, J. Cheng, H. Ou, C. Huang, M.-M. Titirici et al., Enhancing visible-light hydrogen evolution performance of crystalline carbon nitride by defect engineering. Chemsuschem 12, 3257–3262 (2019). https://doi.org/10.1002/cssc.201901011
J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030
L. Wang, W. Si, Y. Tong, F. Hou, D. Pergolesi et al., Graphitic carbon nitride (g-C3N4)-based nanosized heteroarrays: promising materials for photoelectrochemical water splitting. Carbon Energy 2, 223–250 (2020). https://doi.org/10.1002/cey2.48
B. Zhu, J. Zhang, C. Jiang, B. Cheng, J. Yu, First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst. Appl. Catal. B Environ. 207, 27–34 (2017). https://doi.org/10.1016/j.apcatb.2017.02.020
J. Ran, T.Y. Ma, G. Gao, X.-W. Du, S.Z. Qiao, Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 8, 3708–3717 (2015). https://doi.org/10.1039/C5EE02650D
X.-H. Jiang, L.-S. Zhang, H.-Y. Liu, D.-S. Wu, F.-Y. Wu et al., Silver single atom in carbon nitride catalyst for highly efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 59, 23112–23116 (2020). https://doi.org/10.1002/anie.202011495
F. Gao, H. Xiao, J. Yang, X. Luan, D. Fang et al., Modulation of electronic density in ultrathin g-C3N4 for enhanced photocatalytic hydrogen evolution through an efficient hydrogen spillover pathway. Appl. Catal. B Environ. 341, 123334 (2024). https://doi.org/10.1016/j.apcatb.2023.123334
H. Wang, W. He, X.-A. Dong, H. Wang, F. Dong, In situ FT-IR investigation on the reaction mechanism of visible light photocatalytic NO oxidation with defective g-C3N4. Sci. Bull. 63, 117–125 (2018). https://doi.org/10.1016/j.scib.2017.12.013
P. Niu, G. Liu, H.-M. Cheng, Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C 116, 11013–11018 (2012). https://doi.org/10.1021/jp301026y
Q. Liang, Z. Li, Z.-H. Huang, F. Kang, Q.-H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25, 6885–6892 (2015). https://doi.org/10.1002/adfm.201503221
Y. Li, M. Gu, T. Shi, W. Cui, X. Zhang et al., Carbon vacancy in C3N4 nanotube: electronic structure, photocatalysis mechanism and highly enhanced activity. Appl. Catal. B Environ. 262, 118281 (2020). https://doi.org/10.1016/j.apcatb.2019.118281
X. Wang, Q. Li, L. Gan, X. Ji, F. Chen et al., 3D macropore carbon-vacancy g-C3N4 constructed using polymethylmethacrylate spheres for enhanced photocatalytic H2 evolution and CO2 reduction. J. Energy Chem. 53, 139–146 (2021). https://doi.org/10.1016/j.jechem.2020.05.001
D.C. Cronemeyer, Infrared absorption of reduced rutile TiO2 single crystals. Phys. Rev. 113, 1222–1226 (1959). https://doi.org/10.1103/physrev.113.1222
M. Kantcheva, Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts. J. Catal. 204, 479–494 (2001). https://doi.org/10.1006/jcat.2001.3413
Q. Tay, P. Kanhere, C.F. Ng, S. Chen, S. Chakraborty et al., Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production. Chem. Mater. 27, 4930–4933 (2015). https://doi.org/10.1021/acs.chemmater.5b02344
Y. Li, M. Gu, M. Zhang, X. Zhang, K. Lv et al., C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for Efficient and stable NO photo-oxidation. Chem. Eng. J. 389, 124421 (2020). https://doi.org/10.1016/j.cej.2020.124421
Y. Xue, C. Ma, Q. Yang, X. Wang, S. An et al., Construction of g-C3N4 with three coordinated nitrogen (N3C) vacancies for excellent photocatalytic activities of N2 fixation and H2O2 production. Chem. Eng. J. 457, 141146 (2023). https://doi.org/10.1016/j.cej.2022.141146
X. Wang, L. Wu, Z. Wang, H. Wu, X. Zhou et al., C/N vacancy co-enhanced visible-light-driven hydrogen evolution of g-C3N4 nanosheets through controlled He+ ion irradiation (solar RRL 4∕2019). Sol. RRL 3, 1970043 (2019). https://doi.org/10.1002/solr.201970043
N. Sun, Y. Liang, X. Ma, F. Chen, Reduced oxygenated g-C3N4 with abundant nitrogen vacancies for visible-light photocatalytic applications. Chem 23, 15466–15473 (2017). https://doi.org/10.1002/chem.201703168
J. Liu, W. Fang, Z. Wei, Z. Qin, Z. Jiang et al., Efficient photocatalytic hydrogen evolution on N-deficient g-C3N4 achieved by a molten salt post-treatment approach. Appl. Catal. B Environ. 238, 465–470 (2018). https://doi.org/10.1016/j.apcatb.2018.07.021
Z. Xu, Y. Chen, B. Wang, Y. Ran, J. Zhong et al., Highly selective photocatalytic CO2 reduction and hydrogen evolution facilitated by oxidation induced nitrogen vacancies on g-C3N4. J. Colloid Interface Sci. 651, 645–658 (2023). https://doi.org/10.1016/j.jcis.2023.08.012
L. Kong, X. Mu, X. Fan, R. Li, Y. Zhang et al., Site-selected N vacancy of g-C3N4 for photocatalysis and physical mechanism. Appl. Mater. Today 13, 329–338 (2018). https://doi.org/10.1016/j.apmt.2018.10.003
R. Mo, J. Li, Y. Tang, H. Li, J. Zhong, Introduction of nitrogen defects into a graphitic carbon nitride framework by selenium vapor treatment for enhanced photocatalytic hydrogen production. Appl. Surf. Sci. 476, 552–559 (2019). https://doi.org/10.1016/j.apsusc.2019.01.085
P. Deng, Y. Liu, L. Shi, L. Cui, W. Si et al., Enhanced visible-light H2 evolution performance of nitrogen vacancy carbon nitride by improving crystallinity. Opt. Mater. 120, 111407 (2021). https://doi.org/10.1016/j.optmat.2021.111407
F. Guo, L. Wang, H. Sun, M. Li, W. Shi et al., A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen. Int. J. Hydrog. Energy 45, 30521–30532 (2020). https://doi.org/10.1016/j.ijhydene.2020.08.080
Y. Wang, L. Rao, P. Wang, Y. Guo, Z. Shi et al., Synthesis of nitrogen vacancies g-C3N4 with increased crystallinity under the controlling of oxalyl dihydrazide: visible-light-driven photocatalytic activity. Appl. Surf. Sci. 505, 144576 (2020). https://doi.org/10.1016/j.apsusc.2019.144576
P. Xing, F. Zhou, S. Zhan, Catalytic conversion of seawater to fuels: eliminating N vacancies in g-C3N4 to promote photocatalytic hydrogen production. Environ. Res. 197, 111167 (2021). https://doi.org/10.1016/j.envres.2021.111167
J. Shen, C. Luo, S. Qiao, Y. Chen, Y. Tang et al., Single-atom Cu channel and N-vacancy engineering enables efficient charge separation and transfer between C3N4 interlayers for boosting photocatalytic hydrogen production. ACS Catal. 13, 6280–6288 (2023). https://doi.org/10.1021/acscatal.2c05789
Y. Liao, G. Wang, J. Wang, K. Wang, S. Yan et al., Nitrogen vacancy induced in situ g-C3N4 p-n homojunction for boosting visible light-driven hydrogen evolution. J. Colloid Interface Sci. 587, 110–120 (2021). https://doi.org/10.1016/j.jcis.2020.12.009
X. Li, G. Wang, C. Lan, X. Dong, X. Zhang, New insight into enhanced photocatalytic selectivity of g-C3N4 by nitrogen vacancy introduction: experimental study and theoretical calculation. Environ. Res. 212, 113390 (2022). https://doi.org/10.1016/j.envres.2022.113390
J. Lei, B. Chen, W. Lv, L. Zhou, L. Wang et al., Robust photocatalytic H2O2 production over inverse opal g-C3N4 with carbon vacancy under visible light. ACS Sustain. Chem. Eng. 7, 16467–16473 (2019). https://doi.org/10.1021/acssuschemeng.9b03678
Y. Zhang, J. Di, P. Ding, J. Zhao, K. Gu et al., Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation. J. Colloid Interface Sci. 553, 530–539 (2019). https://doi.org/10.1016/j.jcis.2019.06.012
Z. Ya, X. Jiang, P. Wang, J. Cai, Q. Wang et al., Template-free synthesis of phosphorus-doped g-C3N4 micro-tubes with hierarchical core–shell structure for high-efficient visible light responsive catalysis. Small 19, 2208254 (2023). https://doi.org/10.1002/smll.202208254
J. Li, W. Ma, J. Chen, N. An, Y. Zhao et al., Carbon vacancies improved photocatalytic hydrogen generation of g-C3N4 photocatalyst via magnesium vapor etching. Int. J. Hydrog. Energy 45, 13939–13946 (2020). https://doi.org/10.1016/j.ijhydene.2020.03.067
J. Ge, L. Zhang, J. Xu, Y. Liu, D. Jiang et al., Nitrogen photofixation on holey g-C3N4 nanosheets with carbon vacancies under visible-light irradiation. Chin. Chem. Lett. 31, 792–796 (2020). https://doi.org/10.1016/j.cclet.2019.05.030
M. Wu, X. He, B. Jing, T. Wang, C. Wang et al., Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light. J. Hazard. Mater. 384, 121323 (2020). https://doi.org/10.1016/j.jhazmat.2019.121323
S. Gao, X. Wang, C. Song, S. Zhou, F. Yang et al., Engineering carbon-defects on ultrathin g-C3N4 allows one-pot output and dramatically boosts photoredox catalytic activity. Appl. Catal. B Environ. 295, 120272 (2021). https://doi.org/10.1016/j.apcatb.2021.120272
F. Rao, J. Zhong, J. Li, Improved visible light responsive photocatalytic hydrogen production over g-C3N4 with rich carbon vacancies. Ceram. Int. 48, 1439–1445 (2022). https://doi.org/10.1016/j.ceramint.2021.09.130
W. Li, Z. Wei, K. Zhu, W. Wei, J. Yang et al., Nitrogen-defect induced trap states steering electron-hole migration in graphite carbon nitride. Appl. Catal. B Environ. 306, 121142 (2022). https://doi.org/10.1016/j.apcatb.2022.121142
C. Zhao, C. Shi, Q. Li, X. Wang, G. Zeng et al., Nitrogen vacancy-rich porous carbon nitride nanosheets for efficient photocatalytic H2O2 production. Mater. Today Energy 24, 100926 (2022). https://doi.org/10.1016/j.mtener.2021.100926
X. Zhang, Y. Liu, C. Li, L. Tian, F. Yuan et al., Fast and lasting electron transfer between γ-FeOOH and g-C3N4/kaolinite containing N vacancies for enhanced visible-light-assisted peroxymonosulfate activation. Chem. Eng. J. 429, 132374 (2022). https://doi.org/10.1016/j.cej.2021.132374
T. Liu, W. Zhu, N. Wang, K. Zhang, X. Wen et al., Preparation of structure vacancy defect modified diatomic-layered g-C3N4 nanosheet with enhanced photocatalytic performance. Adv. Sci. 10, 2302503 (2023). https://doi.org/10.1002/advs.202302503
J. Zhao, R. Mu, Y. Zhang, Z. Yang, H. Zhang et al., A general acetic acid vapour etching strategy to synthesize layered carbon nitride with carbon vacancies for efficient photoredox catalysis. J. Mater. Chem. A 10, 16873–16882 (2022). https://doi.org/10.1039/D2TA04279G
Y. Wu, J. Chen, H. Che, X. Gao, Y. Ao et al., Boosting 2e–oxygen reduction reaction in garland carbon nitride with carbon defects for high-efficient photocatalysis-self-Fenton degradation of 2, 4-dichlorophenol. Appl. Catal. B Environ. 307, 121185 (2022). https://doi.org/10.1016/j.apcatb.2022.121185
Q. Song, J. Hu, Y. Zhou, Q. Ye, X. Shi et al., Carbon vacancy-mediated exciton dissociation in Ti3C2Tx/g-C3N4 Schottky junctions for efficient photoreduction of CO2. J. Colloid Interface Sci. 623, 487–499 (2022). https://doi.org/10.1016/j.jcis.2022.05.064
Q. Zhang, X. Chen, Z. Yang, T. Yu, L. Liu et al., Precisely tailoring nitrogen defects in carbon nitride for efficient photocatalytic overall water splitting. ACS Appl. Mater. Interfaces 14, 3970–3979 (2022). https://doi.org/10.1021/acsami.1c19638
X. Zhang, Y. Liu, M. Ren, G. Yang, L. Qin et al., Precise carbon doping regulation of porous graphitic carbon nitride nanosheets enables elevated photocatalytic oxidation performance towards emerging organic pollutants. Chem. Eng. J. 433, 134551 (2022). https://doi.org/10.1016/j.cej.2022.134551
L. Tao, H. Zhang, G. Li, C. Liao, G. Jiang, Photocatalytic degradation of pharmaceuticals by pore-structured graphitic carbon nitride with carbon vacancy in water: identification of intermediate degradants and effects of active species. Sci. Total. Environ. 824, 153845 (2022). https://doi.org/10.1016/j.scitotenv.2022.153845
C. Feng, X. Ouyang, Y. Deng, J. Wang, L. Tang, A novel g-C3N4/g-C3N4−x homojunction with efficient interfacial charge transfer for photocatalytic degradation of atrazine and tetracycline. J. Hazard. Mater. 441, 129845 (2023). https://doi.org/10.1016/j.jhazmat.2022.129845
G.-Q. Zhao, J. Zou, X. Long, Y.-J. Zheng, J. Hu et al., Fabrication of sulfuretted NiFe-layered double hydroxides/nitrogen self-doped g-C3N4 Z-scheme heterojunction for hexavalent chromium reduction under visible light irradiation. J. Alloy. Compd. 936, 168199 (2023). https://doi.org/10.1016/j.jallcom.2022.168199
R.S. Roy, S. Mondal, S. Mishra, M. Banoo, L. Sahoo et al., Covalently interconnected layers in g-C3N4: toward high mechanical stability, catalytic efficiency and sustainability. Appl. Catal. B Environ. 322, 122069 (2023). https://doi.org/10.1016/j.apcatb.2022.122069
B. Yang, J. Han, Q. Zhang, G. Liao, W. Cheng et al., Carbon defective g-C3N4 thin-wall tubes for drastic improvement of photocatalytic H2 production. Carbon 202, 348–357 (2023). https://doi.org/10.1016/j.carbon.2022.10.074
L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng et al., Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B Environ. 217, 388–406 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003
Z. Zhao, Y. Sun, F. Dong, Y. Zhang, H. Zhao, Template synthesis of carbon self-doped g-C3N4 with enhanced visible to near-infrared absorption and photocatalytic performance. RSC Adv. 5, 39549–39556 (2015). https://doi.org/10.1039/C5RA03433G
P. Zhang, X. Li, C. Shao, Y. Liu, Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis. J. Mater. Chem. A 3, 3281–3284 (2015). https://doi.org/10.1039/C5TA00202H
Z. Chen, T.-T. Fan, X. Yu, Q.-L. Wu, Q.-H. Zhu et al., Gradual carbon doping of graphitic carbon nitride towards metal-free visible light photocatalytic hydrogen evolution. J. Mater. Chem. A 6, 15310–15319 (2018). https://doi.org/10.1039/C8TA03303J
J. Xing, X. Huang, X. Yong, X. Li, J. Li et al., N-doped synergistic porous thin-walled g-C3N4 nanotubes for efficient tetracycline photodegradation. Chem. Eng. J. 455, 140570 (2023). https://doi.org/10.1016/j.cej.2022.140570
T. Bhoyar, D.J. Kim, B.M. Abraham, A. Gupta, N. Maile et al., Accelerating NADH oxidation and hydrogen production with mid-gap states of nitrogen-rich carbon nitride photocatalyst. iScience 25, 105567 (2022). https://doi.org/10.1016/j.isci.2022.105567
S. Hu, L. Ma, J. You, F. Li, Z. Fan et al., A simple and efficient method to prepare a phosphorus modified g-C3N4 visible light photocatalyst. RSC Adv. 4, 21657–21663 (2014). https://doi.org/10.1039/C4RA02284J
X. Wu, S. Jiang, S. Song, C. Sun, Applied Surface Science Constructing effective photocatalytic purification system with. Appl. Surface Sci. 430, 371–379 (2018). https://doi.org/10.1016/j.apsusc.2017.06.065
G. Chen, S.-P. Gao, Structure and electronic structure of S-doped graphitic C3N4 investigated by density functional theory. Chin. Phys. B 21, 107101 (2012). https://doi.org/10.1088/1674-1056/21/10/107101
G. Liu, P. Niu, C. Sun, S.C. Smith, Z. Chen et al., Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132, 11642–11648 (2010). https://doi.org/10.1021/ja103798k
K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho et al., Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B Environ. 176–177, 44–52 (2015). https://doi.org/10.1016/j.apcatb.2015.03.045
L. Ge, C. Han, X. Xiao, L. Guo, Y. Li, Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts. Mater. Res. Bull. 48, 3919–3925 (2013). https://doi.org/10.1016/j.materresbull.2013.06.002
C. Lu, P. Zhang, S. Jiang, X. Wu, S. Song et al., Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl. Catal. B Environ. 200, 378–385 (2017). https://doi.org/10.1016/j.apcatb.2016.07.036
L. Ke, P. Li, X. Wu, S. Jiang, M. Luo et al., Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible Light. Appl. Catal. B Environ. 205, 319–326 (2017). https://doi.org/10.1016/j.apcatb.2016.12.043
C. Sun, H. Zhang, H. Liu, X. Zheng, W. Zou et al., Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanop metal Ni as cocatalyst. Appl. Catal. B Environ. 235, 66–74 (2018). https://doi.org/10.1016/j.apcatb.2018.04.050
J. Li, B. Shen, Z. Hong, B. Lin, B. Gao et al., A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 48, 12017–12019 (2012). https://doi.org/10.1039/C2CC35862J
J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You et al., Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 13, 1603938 (2017). https://doi.org/10.1002/smll.201603938
C. Liu, H. Huang, W. Cui, F. Dong, Y. Zhang, Band structure engineering and efficient charge transport in oxygen substituted g-C3N4 for superior photocatalytic hydrogen evolution. Appl. Catal. B Environ. 230, 115–124 (2018). https://doi.org/10.1016/j.apcatb.2018.02.038
Z. Wang, M. Chen, Y. Huang, X. Shi, Y. Zhang et al., Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light. Appl. Catal. B Environ. 239, 352–361 (2018). https://doi.org/10.1016/j.apcatb.2018.08.030
Y. Wang, Y.-Q. Di, M. Antonietti, H. Li, X. Chen et al., Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem. Mater. 22, 5119–5121 (2010). https://doi.org/10.1021/CM1019102
K. Ding, L. Wen, M. Huang, Y. Zhang, Y. Lu et al., How does the B, F-monodoping and B/F-codoping affect the photocatalytic water-splitting performance of g-C3N4? Phys. Chem. Chem. Phys. 18, 19217–19226 (2016). https://doi.org/10.1039/c6cp02169g
Y. Tan, W. Chen, G. Liao, X. Li, J. Wang et al., Strategy for improving photocatalytic ozonation activity of g-C3N4 by halogen doping for water purification. Appl. Catal. B Environ. 306, 121133 (2022). https://doi.org/10.1016/j.apcatb.2022.121133
Q. Han, C. Hu, F. Zhao, Z. Zhang, N. Chen et al., One-step preparation of iodine-doped graphitic carbon nitride nanosheets as efficient photocatalysts for visible light water splitting. J. Mater. Chem. A 3, 4612–4619 (2015). https://doi.org/10.1039/C4TA06093H
G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin et al., Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26, 805–809 (2014). https://doi.org/10.1002/adma.201303611
J. Hong, D.K. Hwang, R. Selvaraj, Y. Kim, Facile synthesis of Br-doped g-C3N4 nanosheets via one-step exfoliation using ammonium bromide for photodegradation of oxytetracycline antibiotics. J. Ind. Eng. Chem. 79, 473–481 (2019). https://doi.org/10.1016/j.jiec.2019.07.024
Y. Hu, X. Li, W. Wang, F. Deng, L. Han et al., Bi and S co-doping g-C3N4 to enhance internal electric field for robust photocatalytic degradation and H2 production. Chin. J. Struct. Chem. 41, 2206069–2206078 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0103
T. Liu, Y. Li, H. Sun, M. Zhang, Z. Xia et al., Asymmetric structure awakened n-π* electron transition in sulfur and selenium Co-doped g-C3N4 with efficient photocatalytic performance. Chin. J. Struct. Chem. 41, 2206055–2206061 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0152
H. Ma, Y. Li, S. Li, N. Liu, Novel PO codoped g-C3N4 with large specific surface area: hydrothermal synthesis assisted by dissolution–precipitation process and their visible light activity under anoxic conditions. Appl. Surf. Sci. 357, 131–138 (2015). https://doi.org/10.1016/j.apsusc.2015.09.009
Z. Lin, X. Wang, Ionic liquid promoted synthesis of conjugated carbon nitride photocatalysts from urea. Chemsuschem 7, 1547–1550 (2014). https://doi.org/10.1002/cssc.201400016
G. Fu, X. Song, S. Zhao, J. Zhang, Synergistic effects of B-F/B-S and nitrogen vacancy co-doping on g-C3N4 and photocatalytic CO2 reduction mechanisms: a DFT study. Molecules 27, 7611 (2022). https://doi.org/10.3390/molecules27217611
L.-L. Feng, Y. Zou, C. Li, S. Gao, L.-J. Zhou et al., Nanoporous sulfur-doped graphitic carbon nitride microrods: a durable catalyst for visible-light-driven H2 evolution. Int. J. Hydrog. Energy 39, 15373–15379 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.160
M. Jing, H. Zhao, L. Jian, C. Pan, Y. Dong et al., Coral-like B-doped g-C3N4 with enhanced molecular dipole to boost photocatalysis-self-Fenton removal of persistent organic pollutants. J. Hazard. Mater. 449, 131017 (2023). https://doi.org/10.1016/j.jhazmat.2023.131017
S. Zhao, Y. Zhang, Y. Wang, Y. Zhou, K. Qiu et al., Ionic liquid-assisted synthesis of Br-modified g-C3N4 semiconductors with high surface area and highly porous structure for photoredox water splitting. J. Power Sources 370, 106–113 (2017). https://doi.org/10.1016/j.jpowsour.2017.10.023
L. Yang, J. Huang, L. Shi, L. Cao, Q. Yu et al., A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 204, 335–345 (2017). https://doi.org/10.1016/j.apcatb.2016.11.047
S. Zhang, Y. Liu, P. Gu, R. Ma, T. Wen et al., Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Appl. Catal. B Environ. 248, 1–10 (2019). https://doi.org/10.1016/j.apcatb.2019.02.008
H. Xie, Y. Zheng, X. Guo, Y. Liu, Z. Zhang et al., Rapid microwave synthesis of mesoporous oxygen-doped g-C3N4 with carbon vacancies for efficient photocatalytic H2O2 production. ACS Sustain. Chem. Eng. 9, 6788–6798 (2021). https://doi.org/10.1021/acssuschemeng.1c01012
C. Saka, Surface modification with oxygen doping of g-C3N4 nanops by carbon vacancy for efficient dehydrogenation of sodium borohydride in methanol. Fuel 310, 122444 (2022). https://doi.org/10.1016/j.fuel.2021.122444
P. Wei, J. Gao, H. Cai, L. Zheng, Y. Wang et al., 2D heterojunction of C, N, S Co-doped TiO2/g-C3N4 nanosheet with high-speed charge transport toward highly efficient photocatalytic activity. Res. Chem. Intermed. 49, 3747–3764 (2023). https://doi.org/10.1007/s11164-023-05051-1
H.-B. Fang, X.-H. Zhang, J. Wu, N. Li, Y.-Z. Zheng et al., Fragmented phosphorus-doped graphitic carbon nitride nanoflakes with broad sub-bandgap absorption for highly efficient visible-light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 225, 397–405 (2018). https://doi.org/10.1016/j.apcatb.2017.11.080
X. Wu, S. Jiang, S. Song, C. Sun, Constructing effective photocatalytic purification system with P-introduced g-C3N4 for elimination of UO22+. Appl. Surf. Sci. 430, 371–379 (2018). https://doi.org/10.1016/j.apsusc.2017.06.065
S. Guo, Y. Tang, Y. Xie, C. Tian, Q. Feng et al., P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl. Catal. B Environ. 218, 664–671 (2017). https://doi.org/10.1016/j.apcatb.2017.07.022
F. Wang, J. Xu, Z. Wang, Y. Lou, C. Pan et al., Unprecedentedly efficient mineralization performance of photocatalysis-self-Fenton system towards organic pollutants over oxygen-doped porous g-C3N4 nanosheets. Appl. Catal. B Environ. 312, 121438 (2022). https://doi.org/10.1016/j.apcatb.2022.121438
C. Lu, R. Chen, X. Wu, M. Fan, Y. Liu et al., Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance. Appl. Surf. Sci. 360, 1016–1022 (2016). https://doi.org/10.1016/j.apsusc.2015.11.112
Z. Zhao, Y. Long, Y. Chen, F. Zhang, J. Ma, Phosphorus doped carbon nitride with rich nitrogen vacancy to enhance the electrocatalytic activity for nitrogen reduction reaction. Chem. Eng. J. 430, 132682 (2022). https://doi.org/10.1016/j.cej.2021.132682
X. Xia, C. Xie, B. Xu, X. Ji, G. Gao et al., Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. J. Ind. Eng. Chem. 105, 303–312 (2022). https://doi.org/10.1016/j.jiec.2021.09.033
J. Cui, F. Yu, J. Zhang, X. Tang, Y. Liu, Doping mechanism of S, O Co-doped in nitrogen vacancy defect rich g-C3N4 nanosheet photocatalyst. Opt. Mater. 139, 113777 (2023). https://doi.org/10.1016/j.optmat.2023.113777
J. Jiang, Z. Xiong, H. Wang, G. Liao, S. Bai et al., Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J. Mater. Sci. Technol. 118, 15–24 (2022). https://doi.org/10.1016/j.jmst.2021.12.018
S. Lv, Y.H. Ng, R. Zhu, S. Li, C. Wu et al., Phosphorus vapor assisted preparation of P-doped ultrathin hollow g-C3N4 sphere for efficient solar-to-hydrogen conversion. Appl. Catal. B Environ. 297, 120438 (2021). https://doi.org/10.1016/j.apcatb.2021.120438
H. Han, X. Wang, Y. Qiao, Y. Lai, B. Liu et al., Construction of S-scheme heterojunction for enhanced photocatalytic conversation of NO over dual-defect CeO2−x/g-C3N4−x. J. Alloy. Compd. 933, 167819 (2023). https://doi.org/10.1016/j.jallcom.2022.167819
Y. Liu, H. Zhao, H. Li, T. Cai, One-step synthesis and photocatalytic degradation performance of sulfur-doped porous g-C3N4 nanosheets. China Pet. Process. Petrochem. Technol. 24(1), 81–89 (2022)
Z. Zhang, R. Ji, Q. Sun, J. He, D. Chen et al., Enhanced photocatalytic degradation of 2-chlorophenol over Z-scheme heterojunction of CdS-decorated oxygen-doped g-C3N4 under visible-light. Appl. Catal. B Environ. 324, 122276 (2023). https://doi.org/10.1016/j.apcatb.2022.122276
L. Zhou, H. Zhang, H. Sun, S. Liu, M.O. Tade et al., Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal. Sci. Technol. 6, 7002–7023 (2016). https://doi.org/10.1039/C6CY01195K
T. Xiong, W. Cen, Y. Zhang, F. Dong, Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 6, 2462–2472 (2016). https://doi.org/10.1021/acscatal.5b02922
J. Zhang, S. Hu, Y. Wang, A convenient method to prepare a novel alkali metal sodium doped carbon nitride photocatalyst with a tunable band structure. RSC Adv. 4, 62912–62919 (2014). https://doi.org/10.1039/C4RA11377B
S. Hu, F. Li, Z. Fan, F. Wang, Y. Zhao et al., Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability. Dalton Trans. 44, 1084–1092 (2015). https://doi.org/10.1039/c4dt02658f
H. Zhang, Y. Tang, Z. Liu, Z. Zhu, X. Tang et al., Study on optical properties of alkali metal doped g-C3N4 and their photocatalytic activity for reduction of CO2. Chem. Phys. Lett. 751, 137467 (2020). https://doi.org/10.1016/j.cplett.2020.137467
P. Deng, J. Xiong, S. Lei, W. Wang, X. Ou et al., Nickel formate induced high-level in situ Ni-doping of g-C3N4 for a tunable band structure and enhanced photocatalytic performance. J. Mater. Chem. A 7, 22385–22397 (2019). https://doi.org/10.1039/C9TA04559G
M. Gao, F. Tian, X. Zhang, Z. Chen, W. Yang et al., Improved plasmonic hot-electron capture in Au nanop/polymeric carbon nitride by Pt single atoms for broad-spectrum photocatalytic H2 evolution. Nano-Micro Lett. 15, 129 (2023). https://doi.org/10.1007/s40820-023-01098-2
D. Zhao, Y. Wang, C.-L. Dong, F. Meng, Y.-C. Huang et al., Electron-deficient Zn-N6 configuration enabling polymeric carbon nitride for visible-light photocatalytic overall water splitting. Nano-Micro Lett. 14, 223 (2022). https://doi.org/10.1007/s40820-022-00962-x
S. Sultan, J.N. Tiwari, A.N. Singh, S. Zhumagali, M. Ha et al., Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 9, 1900624 (2019). https://doi.org/10.1002/aenm.201900624
C. Zhu, Q. Shi, S. Feng, D. Du, Y. Lin, Single-atom catalysts for electrochemical water splitting. ACS Energy Lett. 3, 1713–1721 (2018). https://doi.org/10.1021/acsenergylett.8b00640
E. Zhang, T. Wang, K. Yu, J. Liu, W. Chen et al., Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 141, 16569–16573 (2019). https://doi.org/10.1021/jacs.9b08259
Y. Wang, Y. Liu, W. Liu, J. Wu, Q. Li et al., Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy Environ. Sci. 13, 4609–4624 (2020). https://doi.org/10.1039/D0EE02833A
P. Wang, D. Zhao, L. Yin, Two-dimensional matrices confining metal single atoms with enhanced electrochemical reaction kinetics for energy storage applications. Energy Environ. Sci. 14, 1794–1834 (2021). https://doi.org/10.1039/D0EE02651D
J. Yang, H. Qi, A. Li, X. Liu, X. Yang et al., Potential-driven restructuring of Cu single atoms to nanops for boosting the electrochemical reduction of nitrate to ammonia. J. Am. Chem. Soc. 144, 12062–12071 (2022). https://doi.org/10.1021/jacs.2c02262
F. Zhang, J. Zhang, H. Wang, J. Li, H. Liu et al., Single tungsten atom steered band-gap engineering for graphitic carbon nitride ultrathin nanosheets boosts visible-light photocatalytic H2 evolution. Chem. Eng. J. 424, 130004 (2021). https://doi.org/10.1016/j.cej.2021.130004
F. Yu, Q. Deng, H. Li, Y. Xia, W. Hou, A general strategy to synthesize single-atom metal-oxygen doped polymeric carbon nitride with highly enhanced photocatalytic water splitting activity. Appl. Catal. B Environ. 323, 122180 (2023). https://doi.org/10.1016/j.apcatb.2022.122180
Y. Ying, X. Luo, J. Qiao, H. Huang, “more is different:” synergistic effect and structural engineering in double-atom catalysts. Adv. Funct. Mater. 31, 2007423 (2021). https://doi.org/10.1002/adfm.202007423
H. Liu, L. Jiang, J. Khan, X. Wang, J. Xiao et al., Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem. Int. Ed. 62, e202214988 (2023). https://doi.org/10.1002/anie.202214988
P. Huang, J. Huang, S.A. Pantovich, A.D. Carl, T.G. Fenton et al., Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J. Am. Chem. Soc. 140, 16042–16047 (2018). https://doi.org/10.1021/jacs.8b10380
P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu et al., Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 56, 127–137 (2019). https://doi.org/10.1016/j.nanoen.2018.11.033
G. Gao, Y. Jiao, E.R. Waclawik, A. Du, Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 138, 6292–6297 (2016). https://doi.org/10.1021/jacs.6b02692
Y. Yang, J. Evans, J.A. Rodriguez, M.G. White, P. Liu, Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). Phys. Chem. Chem. Phys. 12, 9909–9917 (2010). https://doi.org/10.1039/c001484b
Q. Li, Q. Tang, P. Xiong, D. Chen, J. Chen et al., Effect of palladium chemical states on CO2 photocatalytic reduction over g-C3N4: distinct role of single-atomic state in boosting CH4 production. Chin. J. Catal. 46, 177–190 (2023). https://doi.org/10.1016/S1872-2067(22)64199-8
H. Ou, S. Ning, P. Zhu, S. Chen, A. Han et al., Carbon nitride photocatalysts with integrated oxidation and reduction atomic active centers for improved CO2 conversion. Angew. Chem. Int. Ed. 61, e202206579 (2022). https://doi.org/10.1002/anie.202206579
S. Wu, Y. Yu, K. Qiao, J. Meng, N. Jiang et al., A simple synthesis route of sodium-doped g-C3N4 nanotubes with enhanced photocatalytic performance. J. Photochem. Photobiol. A Chem. 406, 112999 (2021). https://doi.org/10.1016/j.jphotochem.2020.112999
H. Liyanaarachchi, C. Thambiliyagodage, C. Liyanaarachchi, U. Samarakoon, Efficient photocatalysis of Cu doped TiO2/g-C3N4 for the photodegradation of methylene blue. Arab. J. Chem. 16, 104749 (2023). https://doi.org/10.1016/j.arabjc.2023.104749
Y. Xu, F. Ge, Z. Chen, S. Huang, W. Wei et al., One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance. Appl. Surf. Sci. 469, 739–746 (2019). https://doi.org/10.1016/j.apsusc.2018.11.062
Y.J. Lee, Y.J. Jeong, I.S. Cho, S.J. Park, C.G. Lee et al., Facile synthesis of N vacancy g-C3N4 using Mg-induced defect on the amine groups for enhanced photocatalytic ·OH generation. J. Hazard. Mater. 449, 131046 (2023). https://doi.org/10.1016/j.jhazmat.2023.131046
L. Wang, Y. Zhu, D. Yang, L. Zhao, H. Ding et al., The mixed marriage of copper and carbon ring-g-C3N4 nanosheet: a visible-light-driven heterogeneous Fenton-like catalyst. Appl. Surf. Sci. 488, 728–738 (2019). https://doi.org/10.1016/j.apsusc.2019.05.288
S. Ji, Y. Yang, Z. Zhou, X. Li, Y. Liu, Photocatalysis-Fenton of Fe-doped g-C3N4 catalyst and its excellent degradation performance towards RhB. J. Water Process. Eng. 40, 101804 (2021). https://doi.org/10.1016/j.jwpe.2020.101804
Q. Dong, Y. Chen, L. Wang, S. Ai, H. Ding, Cu-modified alkalinized g-C3N4 as photocatalytically assisted heterogeneous Fenton-like catalyst. Appl. Surf. Sci. 426, 1133–1140 (2017). https://doi.org/10.1016/j.apsusc.2017.07.254
X. Yan, Z. Jia, H. Che, S. Chen, P. Hu et al., A selective ion replacement strategy for the synthesis of copper doped carbon nitride nanotubes with improved photocatalytic hydrogen evolution. Appl. Catal. B Environ. 234, 19–25 (2018). https://doi.org/10.1016/j.apcatb.2018.04.020
W. Li, C. Feng, S. Dai, J. Yue, F. Hua et al., Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. Appl. Catal. B Environ. 168–169, 465–471 (2015). https://doi.org/10.1016/j.apcatb.2015.01.012
X. Yang, J. Ma, S. Sun, Z. Liu, R. Sun, K/O co-doping and introduction of cyano groups in polymeric carbon nitride towards efficient simultaneous solar photocatalytic water splitting and biorefineries. Green Chem. 24, 2104–2113 (2022). https://doi.org/10.1039/d1gc04323d
M. Preeyanghaa, V. Vinesh, P. Sabarikirishwaran, A. Rajkamal, M. Ashokkumar et al., Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation. Carbon 192, 405–417 (2022). https://doi.org/10.1016/j.carbon.2022.03.011
J. Wang, R. Pan, Q. Hao, Y. Gao, J. Ye et al., Constructing Defect-Mediated CdS/g-C3N4 by an In-situ interlocking strategy for Cocatalyst-free photocatalytic H2 production. Appl. Surf. Sci. 599, 153875 (2022). https://doi.org/10.1016/j.apsusc.2022.153875
H. Shi, Y. He, Y. Li, P. Luo, Unraveling the synergy mechanism between photocatalysis and peroxymonosulfate activation on a Co/Fe bimetal-doped carbon nitride. ACS Catal. 13, 8973–8986 (2023). https://doi.org/10.1021/acscatal.3c01496
R. Du, K. Xiao, B. Li, X. Han, C. Zhang et al., Controlled oxygen doping in highly dispersed Ni-loaded g-C3N4 nanotubes for efficient photocatalytic H2O2 production. Chem. Eng. J. 441, 135999 (2022). https://doi.org/10.1016/j.cej.2022.135999
C. Zhang, D. Qin, Y. Zhou, F. Qin, H. Wang et al., Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: morphology and defect evolution. Appl. Catal. B Environ. 303, 120904 (2022). https://doi.org/10.1016/j.apcatb.2021.120904
H. Mao, L. Wang, Q. Zhang, Chen F., Y. Song et al., via Iron-Doped g-C3N4/GO Hybrid for Complex Wastewater, pp.1–17 (2023)
K. Liu, J. Ma, X. Yang, Z. Liu, X. Li et al., Phosphorus/oxygen co-doping in hollow-tube-shaped carbon nitride for efficient simultaneous visible-light-driven water splitting and biorefinery. Chem. Eng. J. 437, 135232 (2022). https://doi.org/10.1016/j.cej.2022.135232
J. Ding, L. Wang, Q. Liu, Y. Chai, X. Liu et al., Remarkable enhancement in visible-light absorption and electron transfer of carbon nitride nanosheets with 1% tungstate dopant. Appl. Catal. B Environ. 176–177, 91–98 (2015). https://doi.org/10.1016/j.apcatb.2015.03.028
B. Yue, Q. Li, H. Iwai, T. Kako, J. Ye, Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light. Sci. Technol. Adv. Mater. 12, 034401 (2011). https://doi.org/10.1088/1468-6996/12/3/034401
S. Hu, L. Ma, J. You, F. Li, Z. Fan et al., Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts Co-doped with iron and phosphorus. Appl. Surf. Sci. 311, 164–171 (2014). https://doi.org/10.1016/j.apsusc.2014.05.036
S. Le, T. Jiang, Q. Zhao, X. Liu, Y. Li et al., Cu-doped mesoporous graphitic carbon nitride for enhanced visible-light driven photocatalysis. RSC Adv. 6, 38811–38819 (2016). https://doi.org/10.1039/C6RA03982K
M. Zhang, X. Bai, D. Liu, J. Wang, Y. Zhu, Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Appl. Catal. B Environ. 164, 77–81 (2015). https://doi.org/10.1016/j.apcatb.2014.09.020
Y. Deng, Z. Zhou, H. Zeng, R. Tang, L. Li et al., Phosphorus and kalium Co-doped g-C3N4 with multiple-locus synergies to degrade atrazine: insights into the depth analysis of the generation and role of singlet oxygen. Appl. Catal. B Environ. 320, 121942 (2023). https://doi.org/10.1016/j.apcatb.2022.121942
D.R. Paul, R. Sharma, S. Singh, P. Singh, P. Panchal et al., Mg/Li Co-doped g-C3N4: an excellent photocatalyst for wastewater remediation and hydrogen production applications towards sustainable development. Int. J. Hydrog. Energy 48, 37746–37761 (2023). https://doi.org/10.1016/j.ijhydene.2022.12.178
S. Tao, S. Wan, Q. Huang, C. Li, J. Yu et al., Molecular engineering of g-C3N4 with dibenzothiophene groups as electron donor for enhanced photocatalytic H2-production. Chin. J. Struct. Chem. 41, 2206048–2206054 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0068
H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao et al., Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29, 1605148 (2017). https://doi.org/10.1002/adma.201605148
C. Wu, Q. Han, L. Qu, Functional Group defect design in polymeric carbon nitride for photocatalytic application. APL Mater. 8, 120703 (2020). https://doi.org/10.1063/5.0029374
J. Zhang, B. Xin, C. Shan, W. Zhang, D.D. Dionysiou et al., Roles of oxygen-containing functional groups of O-doped g-C3N4 in catalytic ozonation: quantitative relationship and first-principles investigation. Appl. Catal. B Environ. 292, 120155 (2021). https://doi.org/10.1016/j.apcatb.2021.120155
T.K.A. Nguyen, T.-T. Pham, B. Gendensuren, E.-S. Oh