Novel Hybrid Nanoparticles of Vanadium Nitride/Porous Carbon as an Anode Material for Symmetrical Supercapacitor
Corresponding Author: Fen Ran
Nano-Micro Letters,
Vol. 9 No. 1 (2017), Article Number: 6
Abstract
Hybrid materials of vanadium nitride and porous carbon nanoparticles (VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide (V2O5) xerogel and melamine at relatively low temperature of 800 °C for supercapacitor application. The effects of the feed ratio of V2O5 to melamine (r), and nitrogen flow rate on the microstructure and electrochemical performance were also investigated. It was found that the size of the as-synthesized nanoparticles is about 20 nm. Both r value and N2 flow rate have enormous impacts on morphology and microstructure of the nanoparticle, which correspondingly determined the electrochemical performance of the material. The VN/C hybrid nanoparticles exhibited high capacitive properties, and a maximum specific capacitance of 255.0 F g−1 was achieved at a current density of 1.0 A g−1 in 2 M KOH aqueous electrolyte and the potential range from 0 to −1.15 V. In addition, symmetrical supercapacitor fabricated with the as-synthesized VN/PCNPs presents a high specific capacitance of 43.5 F g−1 at 0.5 A g−1 based on the entire cell, and an energy density of 8.0 Wh kg−1 when the power density was 575 W kg−1. Even when the power density increased to 2831.5 W kg−1, the energy density still remained 6.1 Wh kg−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.M. Dell, D.A.J. Rand, Energy storage—a key technology for global energy sustainability. J. Power Sources 100(1–2), 2–17 (2001). doi:10.1016/S0378-7753(01)00894-1
- X. Lu, T. Liu, T. Zhai, G. Wang, M. Yu, S. Xie, Y. Ling, Y. Tong, Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4(4), 168–175 (2014). doi:10.1002/aenm.201300994
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
- L.F. Chen, X.D. Zhang, H.W. Liang, M. Kong, Q.F. Guan, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8), 7092–7102 (2012). doi:10.1021/nn302147s
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). doi:10.1126/science.1246501
- M.S. Balogun, W. Qiu, J. Jian, Y. Huang, Y. Luo, X.H. Lu, Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries. ACS Appl. Mater. Inter. 7(41), 23205–23215 (2015). doi:10.1021/acsami.5b07044
- J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). doi:10.1126/science.1158736
- F. Su, C.K. Poh, J.S. Chen, G. Xu, D. Wang, X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energ. Environ. Sci. 4(3), 717–724 (2011). doi:10.1039/C0EE00277A
- Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011). doi:10.1002/adma.201100984
- I.E. Rauda, V. Augustyn, B. Dunn, S.H. Tolbert, Enhancing pseudocapacitive charge storage in polymer template mesoporous materials. Acc. Chem. Res. 46(5), 1113–1124 (2013). doi:10.1021/ar300167h
- A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sources 91(1), 37–50 (2000). doi:10.1016/S0378-7753(00)00485-7
- Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011). doi:10.1126/science.1213003
- V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ. Environ. Sci. 7(5), 1597–1614 (2014). doi:10.1039/c3ee44164d
- A.S. Arico, P. Bruce, B. Scrosati, J. Tarascon, W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005). doi:10.1038/nmat1368
- B.E. Conway, Electrochemical Supercapacitors (Kluwer Academic Plenum Press, New York, 1999). doi:10.1007/978-1-4757-3058-6
- G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). doi:10.1039/C1CS15060J
- B.E. Conway, W.G. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electr. 7(9), 637–644 (2003). doi:10.1007/s10008-003-0395-7
- A.M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn et al., Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5. Chem. Mater. 22(3), 914–921 (2009). doi:10.1021/cm901729x
- O. Bondarchuk, A. Morel, D. Bélanger, E. Goikolea, T. Brousse, Thin films of pure vanadium nitride: evidence for anomalous non-faradaic capacitance. J. Power Sources 324, 439–446 (2016). doi:10.1016/j.jpowsour.2016.05.093
- A. Morel, Y. Borjon-Piron, R.L. Porto, T. Brousse, D. Bélanger, Suitable conditions for the use of vanadium nitride as an electrode for electrochemical capacitor. J. Electrochem. Soc. 163(6), A1077–A1082 (2016). doi:10.1149/2.1221606jes
- Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 201500286 (2016). doi:10.1002/advs.201500286
- D. Choi, P.N. Kumta, Chemically synthesized nanostructured VN for pseudocapacitor application. Electrochem. Solid State Lett. 8(8), A418–A422 (2005). doi:10.1149/1.1951201
- M.S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu, Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 3(4), 1364–1387 (2015). doi:10.1039/C4TA05565A
- X. Zhou, H. Chen, D. Shu, C. He, J. Nan, Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material. J. Phys. Chem. Solids 70(2), 495–500 (2009). doi:10.1016/j.jpcs.2008.12.004
- C.M. Ghimbeu, E. Raymundo-Piñero, P. Fioux, F. Béguin, C. Vix-Guterl, Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors. J. Mater. Chem. 21(35), 13268–13275 (2011). doi:10.1039/c1jm11014d
- F. Cheng, C. He, D. Shu, H. Chen, J. Zhang, Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior. Mater. Chem. Phys. 131(1), 268–273 (2011). doi:10.1016/j.matchemphys.2011.09.040
- D. Shu, C. Lv, F. Cheng, C. He, K. Yang, Enhanced capacitance and rate capability of nanocrystalline VN as electrode materials for supercapacitors. Int. J. Electrochem. Sci. 8(1), 1209–1225 (2013)
- J. Lang, X. Yan, W. Liu, R. Wang, Q. Xue, Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes. J. Power Sources 204(1), 220–229 (2012). doi:10.1016/j.jpowsour.2011.12.044
- H. Fan, F. Ran, X. Zhang, H. Song, W. Jing, Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid–liquid phase separation and pyrolysis process. Electrochim. Acta 138(25), 367–375 (2014). doi:10.1016/j.electacta.2014.06.118
- W. Ai, J. Jiang, J. Zhu, Z. Fan, Y. Wang, Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous grapheme sheets as anode materials for Li-ion batteries. Adv. Energy Mater. 5(15), 1500559 (2015). doi:10.1002/aenm.201500559
- Y. Han, X. Dong, C. Zhang, S. Liu, Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material. J. Power Sources 211, 92–96 (2012). doi:10.1016/j.jpowsour.2012.03.053
- Z.C. Yang, C.H. Tang, H. Gong, X. Li, J. Wang, Hollow spheres of nanocarbon and their manganese dioxide hybrids derived from soft template for supercapacitor application. J. Power Sources 240(240), 713–720 (2013). doi:10.1016/j.jpowsour.2013.05.034
- F. He, Z. Hu, K. Liu, S. Zhang, H. Liu, In situ fabrication of nickel aluminum-layered double hydroxide nanosheets/hollow carbon nanofibers composite as a novel electrode material for supercapacitors. J. Power Sources 267(4), 188–196 (2014). doi:10.1016/j.jpowsour.2014.05.084
- Y. Su, I. Zhitomirsky, Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors. J. Power Sources 267, 235–242 (2014). doi:10.1016/j.jpowsour.2014.05.091
- E.F.D. Souza, C.A. Chagas, T.C. Ramalho, V.T.D. Silva, D.L.M. Aguiar, A combined experimental and theoretical study on the formation of crystalline vanadium nitride (VN) in low temperature through a fully solid-state synthesis route. J. Phys. Chem. C 117(48), 25659–25668 (2013). doi:10.1021/jp410885u
- B. Gao, X. Li, X. Guo, X. Zhang, X. Peng, Nitrogen-doped carbon encapsulated mesoporousvanadium nitride nanowires as self-supported electrodes for flexible all-solid-state supercapacitors. Adv. Mater. Interfaces 2(13), 1500211 (2015). doi:10.1002/admi.201500211
- X. Zhou, C. Shang, L. Gu, S. Dong, X. Chen, Mesoporous coaxial titanium nitride-vanadium nitride fibers of core–shell structures for high-performance supercapacitors. ACS Appl. Mater. Inter. 3(8), 3058–3063 (2011). doi:10.1021/am200564b
- Y.M. Shul’Ga, V.N. Troitskii, Study of the surface of finely divided titanium nitride by X-ray photoelectron spectroscopy. Rev. Mex. Biodivers. 6(18), 681–684 (2006). doi:10.1007/BF00797433
- D. Choi, G.E. Blomgren, P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18(9), 1178–1182 (2006). doi:10.1002/adma.200502471
- H. Zhao, M. Lei, X. Chen, W. Tang, Facile route to metal nitrides through melamine and metal oxides. J. Mater. Chem. 16(45), 4407–4412 (2006). doi:10.1039/b611381h
- J. Buha, I. Djerdj, M. Antonietti, M. Niederberger, Thermal transformation of metal oxide nanoparticles into nanocrystalline metal nitrides using cyanamide and urea as nitrogen source. Chem. Mater. 19(14), 3499–3505 (2007). doi:10.1021/cm0701759
- Y. Wang, Z. Hong, M. Wei, Y. Xia, Layered H2Ti6O13-nanowires: a new promising pseudocapacitive material in non-aqueous electrolyte. Adv. Funct. Mater. 22(24), 5185–5193 (2012). doi:10.1002/adfm.201200766
- K. Shen, F. Ran, Y. Tan, X. Niu, H. Fan, Toward interconnected hierarchical porous structure via chemical depositing organic nano-polyaniline on inorganic carbon scaffold for supercapacitor. Synth. Met. 199, 205–213 (2015). doi:10.1016/j.synthmet.2014.11.034
- H. Fan, F. Ran, X. Zhang, H. Song, X. Niu, Hollow carbon microspheres/MnO2 nanosheets composites: hydrothermal synthesis and electrochemical behaviors. Nano-Micro Lett. 7(1), 59–67 (2015). doi:10.1007/s40820-014-0019-z
- R. Wang, J. Lang, P. Zhang, Z. Lin, X. Yan, Fast and large lithium storage in 3D porous VN nanowires–graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv. Funct. Mater. 25(15), 2270–2278 (2015). doi:10.1002/adfm.201404472
- L. Zhao, L.Z. Fan, M.Q. Zhou, H. Guan, S. Qiao, Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv. Mater. 22(45), 5202–5206 (2010). doi:10.1002/adma.201002647
- X. Zhou, H. Chen, D. Shu, C. He, J. Nan, Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material. J. Phys. Chem. Solids 70(2), 495–500 (2009). doi:10.1016/j.jpcs.2008.12.004
- M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). doi:10.1021/nl802558y
- S. Boukhalfa, K. Evanoff, G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ. Sci. 5(5), 6872–6879 (2012). doi:10.1039/c2ee21110f
- M.W. Xu, D.D. Zhao, S.J. Bao, H.L. Li, Mesoporous amorphous MnO2 as electrode material for supercapacitor. J. Solid State Electr. 11(8), 1101–1107 (2007). doi:10.1007/s10008-006-0246-4
- S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 49(7), 1057–1061 (2004). doi:10.1016/j.electacta.2003.10.016
- S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26(25), 4260–4267 (2014). doi:10.1002/adma.201400447
- R. Wang, J. Lang, Y. Liu, Z. Lin, X. Yan, Ultra-small, size-controlled Ni(OH)2 nanoparticles: elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Mater. 7(6), e183 (2015). doi:10.1038/am.2015.42
- Y. Xu, J. Wang, L. Shen, H. Dou, X. Zhang, One-dimensional vanadium nitride nanofibers fabricated by electrospinning for supercapacitors. Electrochim. Acta 173, 680–686 (2015). doi:10.1016/j.electacta.2015.05.088
- L. Wang, J. Sun, R. Song, S. Yang, H. Song, Hybrid 2D–0D graphene–VN quantum dots for superior lithium and sodium storage. Adv. Energy Mater. (2015). doi:10.1002/aenm.201502067
- C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27(31), 4566–4571 (2015). doi:10.1002/adma.201501838
- X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie, Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 12(10), 5376–5381 (2012). doi:10.1021/nl302761z
- X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 3(6), 2628–2633 (2013). doi:10.1021/nl400760a
- S. Zhang, N. Pan, Supercapacitors performance evaluation. Adv. Energy Mater. 5(6), 1401401 (2014). doi:10.1002/aenm.201401401
References
R.M. Dell, D.A.J. Rand, Energy storage—a key technology for global energy sustainability. J. Power Sources 100(1–2), 2–17 (2001). doi:10.1016/S0378-7753(01)00894-1
X. Lu, T. Liu, T. Zhai, G. Wang, M. Yu, S. Xie, Y. Ling, Y. Tong, Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4(4), 168–175 (2014). doi:10.1002/aenm.201300994
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). doi:10.1038/nmat2297
L.F. Chen, X.D. Zhang, H.W. Liang, M. Kong, Q.F. Guan, Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8), 7092–7102 (2012). doi:10.1021/nn302147s
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). doi:10.1126/science.1246501
M.S. Balogun, W. Qiu, J. Jian, Y. Huang, Y. Luo, X.H. Lu, Vanadium nitride nanowire supported SnS2 nanosheets with high reversible capacity as anode material for lithium ion batteries. ACS Appl. Mater. Inter. 7(41), 23205–23215 (2015). doi:10.1021/acsami.5b07044
J.R. Miller, P. Simon, Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). doi:10.1126/science.1158736
F. Su, C.K. Poh, J.S. Chen, G. Xu, D. Wang, X.W. Lou, Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energ. Environ. Sci. 4(3), 717–724 (2011). doi:10.1039/C0EE00277A
Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011). doi:10.1002/adma.201100984
I.E. Rauda, V. Augustyn, B. Dunn, S.H. Tolbert, Enhancing pseudocapacitive charge storage in polymer template mesoporous materials. Acc. Chem. Res. 46(5), 1113–1124 (2013). doi:10.1021/ar300167h
A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sources 91(1), 37–50 (2000). doi:10.1016/S0378-7753(00)00485-7
Y. Gogotsi, P. Simon, True performance metrics in electrochemical energy storage. Science 334(6058), 917–918 (2011). doi:10.1126/science.1213003
V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ. Environ. Sci. 7(5), 1597–1614 (2014). doi:10.1039/c3ee44164d
A.S. Arico, P. Bruce, B. Scrosati, J. Tarascon, W.V. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4(5), 366–377 (2005). doi:10.1038/nmat1368
B.E. Conway, Electrochemical Supercapacitors (Kluwer Academic Plenum Press, New York, 1999). doi:10.1007/978-1-4757-3058-6
G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012). doi:10.1039/C1CS15060J
B.E. Conway, W.G. Pell, Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J. Solid State Electr. 7(9), 637–644 (2003). doi:10.1007/s10008-003-0395-7
A.M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn et al., Structure and capacitive properties of porous nanocrystalline VN prepared by temperature-programmed ammonia reduction of V2O5. Chem. Mater. 22(3), 914–921 (2009). doi:10.1021/cm901729x
O. Bondarchuk, A. Morel, D. Bélanger, E. Goikolea, T. Brousse, Thin films of pure vanadium nitride: evidence for anomalous non-faradaic capacitance. J. Power Sources 324, 439–446 (2016). doi:10.1016/j.jpowsour.2016.05.093
A. Morel, Y. Borjon-Piron, R.L. Porto, T. Brousse, D. Bélanger, Suitable conditions for the use of vanadium nitride as an electrode for electrochemical capacitor. J. Electrochem. Soc. 163(6), A1077–A1082 (2016). doi:10.1149/2.1221606jes
Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 201500286 (2016). doi:10.1002/advs.201500286
D. Choi, P.N. Kumta, Chemically synthesized nanostructured VN for pseudocapacitor application. Electrochem. Solid State Lett. 8(8), A418–A422 (2005). doi:10.1149/1.1951201
M.S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu, Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 3(4), 1364–1387 (2015). doi:10.1039/C4TA05565A
X. Zhou, H. Chen, D. Shu, C. He, J. Nan, Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material. J. Phys. Chem. Solids 70(2), 495–500 (2009). doi:10.1016/j.jpcs.2008.12.004
C.M. Ghimbeu, E. Raymundo-Piñero, P. Fioux, F. Béguin, C. Vix-Guterl, Vanadium nitride/carbon nanotube nanocomposites as electrodes for supercapacitors. J. Mater. Chem. 21(35), 13268–13275 (2011). doi:10.1039/c1jm11014d
F. Cheng, C. He, D. Shu, H. Chen, J. Zhang, Preparation of nanocrystalline VN by the melamine reduction of V2O5 xerogel and its supercapacitive behavior. Mater. Chem. Phys. 131(1), 268–273 (2011). doi:10.1016/j.matchemphys.2011.09.040
D. Shu, C. Lv, F. Cheng, C. He, K. Yang, Enhanced capacitance and rate capability of nanocrystalline VN as electrode materials for supercapacitors. Int. J. Electrochem. Sci. 8(1), 1209–1225 (2013)
J. Lang, X. Yan, W. Liu, R. Wang, Q. Xue, Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes. J. Power Sources 204(1), 220–229 (2012). doi:10.1016/j.jpowsour.2011.12.044
H. Fan, F. Ran, X. Zhang, H. Song, W. Jing, Easy fabrication and high electrochemical capacitive performance of hierarchical porous carbon by a method combining liquid–liquid phase separation and pyrolysis process. Electrochim. Acta 138(25), 367–375 (2014). doi:10.1016/j.electacta.2014.06.118
W. Ai, J. Jiang, J. Zhu, Z. Fan, Y. Wang, Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous grapheme sheets as anode materials for Li-ion batteries. Adv. Energy Mater. 5(15), 1500559 (2015). doi:10.1002/aenm.201500559
Y. Han, X. Dong, C. Zhang, S. Liu, Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material. J. Power Sources 211, 92–96 (2012). doi:10.1016/j.jpowsour.2012.03.053
Z.C. Yang, C.H. Tang, H. Gong, X. Li, J. Wang, Hollow spheres of nanocarbon and their manganese dioxide hybrids derived from soft template for supercapacitor application. J. Power Sources 240(240), 713–720 (2013). doi:10.1016/j.jpowsour.2013.05.034
F. He, Z. Hu, K. Liu, S. Zhang, H. Liu, In situ fabrication of nickel aluminum-layered double hydroxide nanosheets/hollow carbon nanofibers composite as a novel electrode material for supercapacitors. J. Power Sources 267(4), 188–196 (2014). doi:10.1016/j.jpowsour.2014.05.084
Y. Su, I. Zhitomirsky, Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors. J. Power Sources 267, 235–242 (2014). doi:10.1016/j.jpowsour.2014.05.091
E.F.D. Souza, C.A. Chagas, T.C. Ramalho, V.T.D. Silva, D.L.M. Aguiar, A combined experimental and theoretical study on the formation of crystalline vanadium nitride (VN) in low temperature through a fully solid-state synthesis route. J. Phys. Chem. C 117(48), 25659–25668 (2013). doi:10.1021/jp410885u
B. Gao, X. Li, X. Guo, X. Zhang, X. Peng, Nitrogen-doped carbon encapsulated mesoporousvanadium nitride nanowires as self-supported electrodes for flexible all-solid-state supercapacitors. Adv. Mater. Interfaces 2(13), 1500211 (2015). doi:10.1002/admi.201500211
X. Zhou, C. Shang, L. Gu, S. Dong, X. Chen, Mesoporous coaxial titanium nitride-vanadium nitride fibers of core–shell structures for high-performance supercapacitors. ACS Appl. Mater. Inter. 3(8), 3058–3063 (2011). doi:10.1021/am200564b
Y.M. Shul’Ga, V.N. Troitskii, Study of the surface of finely divided titanium nitride by X-ray photoelectron spectroscopy. Rev. Mex. Biodivers. 6(18), 681–684 (2006). doi:10.1007/BF00797433
D. Choi, G.E. Blomgren, P.N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18(9), 1178–1182 (2006). doi:10.1002/adma.200502471
H. Zhao, M. Lei, X. Chen, W. Tang, Facile route to metal nitrides through melamine and metal oxides. J. Mater. Chem. 16(45), 4407–4412 (2006). doi:10.1039/b611381h
J. Buha, I. Djerdj, M. Antonietti, M. Niederberger, Thermal transformation of metal oxide nanoparticles into nanocrystalline metal nitrides using cyanamide and urea as nitrogen source. Chem. Mater. 19(14), 3499–3505 (2007). doi:10.1021/cm0701759
Y. Wang, Z. Hong, M. Wei, Y. Xia, Layered H2Ti6O13-nanowires: a new promising pseudocapacitive material in non-aqueous electrolyte. Adv. Funct. Mater. 22(24), 5185–5193 (2012). doi:10.1002/adfm.201200766
K. Shen, F. Ran, Y. Tan, X. Niu, H. Fan, Toward interconnected hierarchical porous structure via chemical depositing organic nano-polyaniline on inorganic carbon scaffold for supercapacitor. Synth. Met. 199, 205–213 (2015). doi:10.1016/j.synthmet.2014.11.034
H. Fan, F. Ran, X. Zhang, H. Song, X. Niu, Hollow carbon microspheres/MnO2 nanosheets composites: hydrothermal synthesis and electrochemical behaviors. Nano-Micro Lett. 7(1), 59–67 (2015). doi:10.1007/s40820-014-0019-z
R. Wang, J. Lang, P. Zhang, Z. Lin, X. Yan, Fast and large lithium storage in 3D porous VN nanowires–graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv. Funct. Mater. 25(15), 2270–2278 (2015). doi:10.1002/adfm.201404472
L. Zhao, L.Z. Fan, M.Q. Zhou, H. Guan, S. Qiao, Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv. Mater. 22(45), 5202–5206 (2010). doi:10.1002/adma.201002647
X. Zhou, H. Chen, D. Shu, C. He, J. Nan, Study on the electrochemical behavior of vanadium nitride as a promising supercapacitor material. J. Phys. Chem. Solids 70(2), 495–500 (2009). doi:10.1016/j.jpcs.2008.12.004
M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett. 8(10), 3498–3502 (2008). doi:10.1021/nl802558y
S. Boukhalfa, K. Evanoff, G. Yushin, Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy Environ. Sci. 5(5), 6872–6879 (2012). doi:10.1039/c2ee21110f
M.W. Xu, D.D. Zhao, S.J. Bao, H.L. Li, Mesoporous amorphous MnO2 as electrode material for supercapacitor. J. Solid State Electr. 11(8), 1101–1107 (2007). doi:10.1007/s10008-006-0246-4
S.S. Zhang, K. Xu, T.R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochim. Acta 49(7), 1057–1061 (2004). doi:10.1016/j.electacta.2003.10.016
S. Cong, Y. Tian, Q. Li, Z. Zhao, F. Geng, Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Adv. Mater. 26(25), 4260–4267 (2014). doi:10.1002/adma.201400447
R. Wang, J. Lang, Y. Liu, Z. Lin, X. Yan, Ultra-small, size-controlled Ni(OH)2 nanoparticles: elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Mater. 7(6), e183 (2015). doi:10.1038/am.2015.42
Y. Xu, J. Wang, L. Shen, H. Dou, X. Zhang, One-dimensional vanadium nitride nanofibers fabricated by electrospinning for supercapacitors. Electrochim. Acta 173, 680–686 (2015). doi:10.1016/j.electacta.2015.05.088
L. Wang, J. Sun, R. Song, S. Yang, H. Song, Hybrid 2D–0D graphene–VN quantum dots for superior lithium and sodium storage. Adv. Energy Mater. (2015). doi:10.1002/aenm.201502067
C. Zhu, P. Yang, D. Chao, X. Wang, X. Zhang, All metal nitrides solid-state asymmetric supercapacitors. Adv. Mater. 27(31), 4566–4571 (2015). doi:10.1002/adma.201501838
X. Lu, G. Wang, T. Zhai, M. Yu, S. Xie, Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 12(10), 5376–5381 (2012). doi:10.1021/nl302761z
X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 3(6), 2628–2633 (2013). doi:10.1021/nl400760a
S. Zhang, N. Pan, Supercapacitors performance evaluation. Adv. Energy Mater. 5(6), 1401401 (2014). doi:10.1002/aenm.201401401