15 Years of Progress on Transition Metal-Based Electrocatalysts for Microbial Electrochemical Hydrogen Production: From Nanoscale Design to Macroscale Application
Corresponding Author: Wenshan Guo
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 303
Abstract
Designing high-performance electrocatalysts is one of the key challenges in the development of microbial electrochemical hydrogen production. Transition metal-based (TM-based) electrocatalysts are introduced as an astonishing alternative for future catalysts by addressing several disadvantages, like the high cost and low performance of noble metal and metal-free electrocatalysts, respectively. In this critical review, a comprehensive analysis of the major development of all families of TM-based catalysts from the beginning development of microbial electrolysis cells in the last 15 years is presented. Importantly, pivotal design parameters such as selecting efficient synthesis methods based on the type of material, main criteria during each synthesizing method, and the pros and cons of various procedures are highlighted and compared. Moreover, procedures for tuning and tailoring the structures, advanced strategies to promote active sites, and the potential for implementing novel unexplored TM-based hybrid structures suggested. Furthermore, consideration for large-scale application of TM-based catalysts for future mass production, including life cycle assessment, cost assessment, economic analysis, and recently pilot-scale studies were highlighted. Of great importance, the potential of utilizing artificial intelligence and advanced computational methods such as active learning, microkinetic modeling, and physics-informed machine learning in designing high-performance electrodes in successful practices was elucidated. Finally, a conceptual framework for future studies and remaining challenges on different aspects of TM-based electrocatalysts in microbial electrolysis cells is proposed.
Highlights:
1 Comprehensive overview of the evolution of transition metal-based catalysts in microbial electrolysis cells from their inception to the present.
2 Critical design parameters of catalysts evaluated from technical, economic, and sustainability perspectives.
3 A conceptual framework is proposed to address current challenges and guide future research based on literature best practices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.M. Parsa, A. Rahbar, M.H. Koleini, Y. Davoud Javadi, M. Afrand et al., First approach on nanofluid-based solar still in high altitude for water desalination and solar water disinfection (SODIS). Desalination 491, 114592 (2020). https://doi.org/10.1016/j.desal.2020.114592
- UN General Assembly, Resolution adopted by the General Assembly on 25 September 2015, Transforming our world: the 2030 agenda for sustainable development, 16301 (2015). p. 1–35. https://doi.org/10.1007/s13398-014-0173-7.2
- F. Fuso Nerini, J. Tomei, L.S. To, I. Bisaga, P. Parikh et al., Mapping synergies and trade-offs between energy and the sustainable development goals. Nat. Energy 3(1), 10–15 (2017). https://doi.org/10.1038/s41560-017-0036-5
- S.M. Parsa, A. Rahbar, M.H. Koleini, S. Aberoumand, M. Afrand et al., A renewable energy-driven thermoelectric-utilized solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and desalination. Desalination 480, 114354 (2020). https://doi.org/10.1016/j.desal.2020.114354
- E.T. Sayed, M. Ali Abdelkareem, K. Obaideen, K. Elsaid, T. Wilberforce et al., Progress in plant-based bioelectrochemical systems and their connection with sustainable development goals. Carbon Resour. Convers. 4, 169–183 (2021). https://doi.org/10.1016/j.crcon.2021.04.004
- R. Kothari, A.K. Pathak, H.M. Singh, K. Goria, Z.U.D. Sheikh et al., MFC-mediated wastewater treatment technology and bioelectricity generation: Future perspectives with SDGs 7 & 13. Process. Saf. Environ. Prot. 192, 155–176 (2024). https://doi.org/10.1016/j.psep.2024.08.078
- C. Martínez de León, P. Molina, C. Ríos, J.J. Brey, Green hydrogen production’s impact on sustainable development goals. Int. J. Hydrog. Energy (in press) (2025). https://doi.org/10.1016/j.ijhydene.2024.12.355
- D. Cudjoe, B. Zhu, H. Wang, Towards the realization of sustainable development goals: benefits of hydrogen from biogas using food waste in China. J. Clean. Prod. 360, 132161 (2022). https://doi.org/10.1016/j.jclepro.2022.132161
- N. Strelkovskii, N. Komendantova, Integration of UN sustainable development goals in national hydrogen strategies: a text analysis approach. Int. J. Hydrog. Energy 102, 1282–1294 (2025). https://doi.org/10.1016/j.ijhydene.2025.01.134
- A. El-Maaroufi, M. Daoudi, R.A. Laamara, Hydrogen production for SDG 13 using hybrid renewables energies in southern Morocco. Energy 319, 134986 (2025). https://doi.org/10.1016/j.energy.2025.134986
- S.M. Parsa, Mega-scale desalination efficacy (reverse osmosis, electrodialysis, membrane distillation, MED, MSF) during COVID-19: evidence from salinity, pretreatment methods, temperature of operation. J. Hazard. Mater. Adv. 9, 100217 (2023). https://doi.org/10.1016/j.hazadv.2022.100217
- S.M. Parsa, F. Norozpour, A.H. Elsheikh, A.E. Kabeel, Solar desalination/purification (solar stills, humidification-dehumidification, solar disinfection) in high altitude during COVID19: Insights of gastrointestinal manifestations and systems’ mechanism. J. Hazard. Mater. Adv. 10, 100259 (2023). https://doi.org/10.1016/j.hazadv.2023.100259
- M. Potter, On the difference of potential due to the vital activity of microorganisms. Proc. Durham. Univ. Phil. Soc. 3, 245–249 (1910)
- B. Cohen, The bacterial culture as an electrical half-cell. J. Bacteriol. 21(1), 18–19 (1931)
- H. Liu, S. Grot, B.E. Logan, Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39(11), 4317–4320 (2005). https://doi.org/10.1021/es050244p
- R.A. Rozendal, H.V.M. Hamelers, G.J.W. Euverink, S.J. Metz, C.J.N. Buisman, Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrog. Energy 31(12), 1632–1640 (2006). https://doi.org/10.1016/j.ijhydene.2005.12.006
- F. Ndayisenga, Z. Yu, J. Zheng, B. Wang, H. Liang et al., Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: substrate pretreatment towards optimization. Renew. Sustain. Energy Rev. 145, 111078 (2021). https://doi.org/10.1016/j.rser.2021.111078
- K.P. Katuri, M. Ali, P.E. Saikaly, The role of microbial electrolysis cell in urban wastewater treatment: integration options, challenges, and prospects. Curr. Opin. Biotechnol. 57, 101–110 (2019). https://doi.org/10.1016/j.copbio.2019.03.007
- W. Wang, D.-J. Lee, Z. Lei, Integrating anaerobic digestion with microbial electrolysis cell for performance enhancement: a review. Bioresour. Technol. 344, 126321 (2022). https://doi.org/10.1016/j.biortech.2021.126321
- A.K. Islam, Hydropower coupled with hydrogen production from wastewater: integration of micro-hydropower plant (MHP) and microbial electrolysis cell (MEC). Int. J. Hydrog. Energy 49, 1–14 (2024). https://doi.org/10.1016/j.ijhydene.2023.06.179
- Y. Li, J. Styczynski, Y. Huang, Z. Xu, J. McCutcheon et al., Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC). J. Power. Sources 356, 529–538 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.069
- A. Wang, D. Sun, G. Cao, H. Wang, N. Ren et al., Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour. Technol. 102(5), 4137–4143 (2011). https://doi.org/10.1016/j.biortech.2010.10.137
- A. Kundu, J.N. Sahu, G. Redzwan, M.A. Hashim, An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int. J. Hydrog. Energy 38(4), 1745–1757 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.031
- W. Wang, B. Zhang, Z. He, Bioelectrochemical deposition of palladium nanops as catalysts by Shewanella oneidensis MR-1 towards enhanced hydrogen production in microbial electrolysis cells. Electrochim. Acta 318, 794–800 (2019). https://doi.org/10.1016/j.electacta.2019.06.038
- L. Xu, W. Li, J. Luo, L. Chen, K. He et al., Carbon-based materials as highly efficient catalysts for the hydrogen evolution reaction in microbial electrolysis cells: mechanisms, methods, and perspectives. Chem. Eng. J. 471, 144670 (2023). https://doi.org/10.1016/j.cej.2023.144670
- Z. Chen, G.-F. Han, A. Mahmood, J. Hou, W. Wei et al., Mechanosynthesized electroactive materials for sustainable energy and environmental applications: a critical review. Prog. Mater. Sci. 145, 101299 (2024). https://doi.org/10.1016/j.pmatsci.2024.101299
- Z. Chen, T. Ma, W. Wei, W.-Y. Wong, C. Zhao et al., Work function-guided electrocatalyst design. Adv. Mater. 36(29), 2401568 (2024). https://doi.org/10.1002/adma.202401568
- Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 7(25), 14971–15005 (2019). https://doi.org/10.1039/C9TA03220G
- Z. Chen, Y. Liu, W. Wei, B.-J. Ni, Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ. Sci. Nano 6(8), 2332–2366 (2019). https://doi.org/10.1039/C9EN00411D
- H. Meng, Z. Chen, J. Zhu, B. You, T. Ma et al., In situ amorphization of electrocatalysts. Adv. Funct. Mater. 34(39), 2405270 (2024). https://doi.org/10.1002/adfm.202405270
- S.M. Parsa, Z. Chen, S. Feng, Y. Yang, L. Luo et al., Metal-free nitrogen-doped carbon-based electrocatalysts for oxygen reduction reaction in microbial fuel cells: advances, challenges, and future directions. Nano Energy 134, 110537 (2025). https://doi.org/10.1016/j.nanoen.2024.110537
- B. Kim, E. Yang, B. Kim, M. Obaid, J.K. Jang et al., Recent application of nanomaterials to overcome technological challenges of microbial electrolysis cells. Nanomaterials 12(8), 1316 (2022). https://doi.org/10.3390/nano12081316
- N.K. Abd-Elrahman, N. Al-Harbi, Y. Al-Hadeethi, A.B. Alruqi, H. Mohammed et al., Influence of nanomaterials and other factors on biohydrogen production rates in microbial electrolysis cells-a review. Molecules 27(23), 8594 (2022). https://doi.org/10.3390/molecules27238594
- D. Frattini, G. Karunakaran, E.-B. Cho, Y. Kwon, Sustainable syntheses and sources of nanomaterials for microbial fuel/electrolysis cell applications: an overview of recent progress. Processes 9(7), 1221 (2021). https://doi.org/10.3390/pr9071221
- N. Savla, M. Guin, S. Pandit, H. Malik, S. Khilari et al., Recent advancements in the cathodic catalyst for the hydrogen evolution reaction in microbial electrolytic cells. Int. J. Hydrog. Energy 47(34), 15333–15356 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.058
- H. Yuan, Z. He, Platinum group metal–free catalysts for hydrogen evolution reaction in microbial electrolysis cells. Chem. Rec. 17(7), 641–652 (2017). https://doi.org/10.1002/tcr.201700007
- J. Tang, Y. Bian, S. Jin, D. Sun, Z.J. Ren, Cathode material development in the past decade for H2 production from microbial electrolysis cells. ACS Environ. Au 2(1), 20–29 (2021). https://doi.org/10.1021/acsenvironau.1c00021
- T.E. Suharto, I. Satar, W.R.W. Daud, M.R. Somalu, K.B. Hong, Recent advancement of nickel based-cathode for the microbial electrolysis cell (MEC) and its future prospect. J. Eng. Sci. Technol. Rev. 15(1), 191–198 (2022). https://doi.org/10.25103/jestr.151.24
- Z. Liu, L. Zhou, Q. Chen, W. Zhou, Y. Liu, Advances in graphene/graphene composite based microbial fuel/electrolysis cells. Electroanalysis 29(3), 652–661 (2017). https://doi.org/10.1002/elan.201600502
- M. Hasany, M.M. Mardanpour, S. Yaghmaei, Biocatalysts in microbial electrolysis cells: a review. Int. J. Hydrog. Energy 41(3), 1477–1493 (2016). https://doi.org/10.1016/j.ijhydene.2015.10.097
- T. Jafary, W.R.W. Daud, M. Ghasemi, B.H. Kim, J. Md Jahim et al., Biocathode in microbial electrolysis cell; present status and future prospects. Renew. Sustain. Energy Rev. 47, 23–33 (2015). https://doi.org/10.1016/j.rser.2015.03.003
- R. Lin, L. Xie, X. Zheng, D.D. Patience, X. Duan, Advances and challenges in biocathode microbial electrolysis cells for chlorinated organic compounds degradation from electroactive perspectives. Sci. Total. Environ. 905, 167141 (2023). https://doi.org/10.1016/j.scitotenv.2023.167141
- B.H. Kim, S.S. Lim, W.R.W. Daud, G.M. Gadd, I.S. Chang, The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresour. Technol. 190, 395–401 (2015). https://doi.org/10.1016/j.biortech.2015.04.084
- M. Sun, L.-F. Zhai, Y. Mu, H.-Q. Yu, Bioelectrochemical element conversion reactions towards generation of energy and value-added chemicals. Prog. Energy Combust. Sci. 77, 100814 (2020). https://doi.org/10.1016/j.pecs.2019.100814
- G. Zhen, X. Lu, G. Kumar, P. Bakonyi, K. Xu et al., Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: current situation, challenges and future perspectives. Prog. Energy Combust. Sci. 63, 119–145 (2017). https://doi.org/10.1016/j.pecs.2017.07.003
- A. Kadier, M.S. Kalil, P. Abdeshahian, K. Chandrasekhar, A. Mohamed et al., Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew. Sustain. Energy Rev. 61, 501–525 (2016). https://doi.org/10.1016/j.rser.2016.04.017
- M. Sun, Z.-X. Mu, G.-P. Sheng, N. Shen, Z.-H. Tong et al., Hydrogen production from propionate in a biocatalyzed system with in situ utilization of the electricity generated from a microbial fuel cell. Int. Biodeterior. Biodegrad. 64(5), 378–382 (2010). https://doi.org/10.1016/j.ibiod.2010.04.004
- S. Cheng, B.E. Logan, Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. U.S.A. 104(47), 18871–18873 (2007). https://doi.org/10.1073/pnas.0706379104
- R.A. Rozendal, H.V.M. Hamelers, R.J. Molenkamp, C.J.N. Buisman, Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res. 41(9), 1984–1994 (2007). https://doi.org/10.1016/j.watres.2007.01.019
- A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides: efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5(2), 5577–5591 (2012). https://doi.org/10.1039/C2EE02618J
- C. Jing, L. Hong, B. Li, Y. Wang, F. Zhang et al., A review with transition-metal phosphide electrocatalysts in hydrogen evolution reaction: doping perspective. Mol. Catal. 554, 113832 (2024). https://doi.org/10.1016/j.mcat.2024.113832
- B.A. Yusuf, W. Yaseen, M. Xie, R.S. Zayyan, A.I. Muhammad et al., Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: a comprehensive review. Adv. Colloid Interface Sci. 311, 102811 (2023). https://doi.org/10.1016/j.cis.2022.102811
- B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47(22–23), 3571–3594 (2002). https://doi.org/10.1016/S0013-4686(02)00329-8
- V.T. Nguyen, P.A. Le, Y.C. Hsu, K.H. Wei, Plasma-induced exfoliation provides onion-like graphene-surrounded MoS2 nanosheets for a highly efficient hydrogen evolution reaction. ACS Appl. Mater. Interfaces 12(10), 11533–11542 (2020). https://doi.org/10.1021/acsami.9b20902
- Z. Zeng, C. Tan, X. Huang, S. Bao, H. Zhang, Growth of noble metal nanops on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 7(2), 797–803 (2014). https://doi.org/10.1039/C3EE42620C
- T.P. Nguyen, S. Choi, J.-M. Jeon, K.C. Kwon, H.W. Jang et al., Transition metal disulfide nanosheets synthesized by facile sonication method for the hydrogen evolution reaction. J. Phys. Chem. C 120(7), 3929–3935 (2016). https://doi.org/10.1021/acs.jpcc.5b12164
- A. Ambrosi, Z. Sofer, M. Pumera, Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small 11(5), 605–612 (2015). https://doi.org/10.1002/smll.201400401
- J. Shi, D. Ma, G.-F. Han, Y. Zhang, Q. Ji et al., Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10), 10196–10204 (2014). https://doi.org/10.1021/nn503211t
- Y. Hou, M. Qiu, T. Zhang, X. Zhuang, C.-S. Kim et al., Ternary porous cobalt phosphoselenide nanosheets: an efficient electrocatalyst for electrocatalytic and photoelectrochemical water splitting. Adv. Mater. 29(35), 1701589 (2017). https://doi.org/10.1002/adma.201701589
- A.Y. Eng, A. Ambrosi, Z. Sofer, P. Šimek, M. Pumera, Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 8(12), 12185–12198 (2014). https://doi.org/10.1021/nn503832j
- Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50(47), 11093–11097 (2011). https://doi.org/10.1002/anie.201106004
- L. Wang, Z. Xu, W. Wang, X. Bai, Atomic mechanism of dynamic electrochemical lithiation processes of MoS₂ nanosheets. J. Am. Chem. Soc. 136(18), 6693–6697 (2014). https://doi.org/10.1021/ja501686w
- T.-N. Ye, L.-B. Lv, M. Xu, B. Zhang, K.-X. Wang et al., Hierarchical carbon nanopapers coupled with ultrathin MoS2 nanosheets: highly efficient large-area electrodes for hydrogen evolution. Nano Energy 15, 335–342 (2015). https://doi.org/10.1016/j.nanoen.2015.04.033
- Z. Zhao, F. Qin, S. Kasiraju, L. Xie, M.K. Alam et al., Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution. ACS Catal. 7(10), 7312–7318 (2017). https://doi.org/10.1021/acscatal.7b02885
- J. Cao, J. Zhou, Y. Zhang, Y. Wang, X. Liu, Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 10(2), 1752–1760 (2018). https://doi.org/10.1021/acsami.7b16407
- S. Yeo, D.K. Nandi, R. Rahul, T.H. Kim, B. Shong et al., Low-temperature direct synthesis of high quality WS2 thin films by plasma-enhanced atomic layer deposition for energy related applications. Appl. Surf. Sci. 459, 596–605 (2018). https://doi.org/10.1016/j.apsusc.2018.07.210
- B. Ma, Z. Yang, Y. Chen, Z. Yuan, Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 12(2), 375–380 (2019). https://doi.org/10.1007/s12274-018-2226-2
- T.S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee et al., Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15(4), 6420–6429 (2021). https://doi.org/10.1021/acsnano.0c08357
- A. Lipatov, A. Goad, M.J. Loes, N.S. Vorobeva, J. Abourahma et al., High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes. Matter 4(4), 1413–1427 (2021). https://doi.org/10.1016/j.matt.2021.01.021
- Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong et al., MoS2 nanops grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b
- F.-Y. Chen, Z.-Y. Wu, Z. Adler, H. Wang, Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule 5(7), 1704–1731 (2021). https://doi.org/10.1016/j.joule.2021.05.005
- L. She, G. Zhao, T. Ma, J. Chen, W. Sun et al., On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 32(5), 2108465 (2022). https://doi.org/10.1002/adfm.202108465
- Q. Wen, Y. Zhao, Y. Liu, H. Li, T. Zhai, Ultrahigh-current-density and long-term-durability electrocatalysts for water splitting. Small 18(4), 2104513 (2022). https://doi.org/10.1002/smll.202104513
- W. Zhai, Y. Ma, D. Chen, J.C. Ho, Z. Dai et al., Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts. InfoMat 4(9), e12357 (2022). https://doi.org/10.1002/inf2.12357
- Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 49(11), 3484–3524 (2020). https://doi.org/10.1039/C9CS00903E
- L. Zhang, W. Liu, Y. Dou, Z. Du, M. Shao, The role of transition metal and nitrogen in metal–N–C composites for hydrogen evolution reaction at universal pHs. J. Phys. Chem. C 120(51), 29047–29053 (2016). https://doi.org/10.1021/acs.jpcc.6b11782
- X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu et al., Electrochemistry. High-performance transition metal-doped Pt₃Ni octahedra for oxygen reduction reaction. Science 348(6240), 1230–1234 (2015). https://doi.org/10.1126/science.aaa8765
- K. Chen, N. Qiu, Q. Deng, M.-H. Kang, H. Yang et al., Cytocompatibility of Ti3AlC2, Ti3SiC2, and Ti2AlN: in vitro tests and first-principles calculations. ACS Biomater. Sci. Eng. 3(10), 2293–2301 (2017). https://doi.org/10.1021/acsbiomaterials.7b00432
- K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47(14), 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
- G. Porcheron, A. Garénaux, J. Proulx, M. Sabri, C.M. Dozois, Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front. Cell. Infect. Microbiol. 3, 90 (2013). https://doi.org/10.3389/fcimb.2013.00090
- H.O. Mohamed, E.T. Sayed, M. Obaid, Y.-J. Choi, S.-G. Park et al., Transition metal nanops doped carbon paper as a cost-effective anode in a microbial fuel cell powered by pure and mixed biocatalyst cultures. Int. J. Hydrog. Energy 43(46), 21560–21571 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.199
- D.V. Esposito, S.T. Hunt, Y.C. Kimmel, J.G. Chen, A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 134(6), 3025–3033 (2012). https://doi.org/10.1021/ja208656v
- B. Zhang, Z. Wen, S. Ci, S. Mao, J. Chen et al., Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells. ACS Appl. Mater. Interfaces 6(10), 7464–7470 (2014). https://doi.org/10.1021/am5008547
- S. Hübner, J.G. de Vries, V. Farina, Why does industry not use immobilized transition metal complexes as catalysts? Adv. Synth. Catal. 358(1), 3–25 (2016). https://doi.org/10.1002/adsc.201500846
- W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich et al., Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8(5), 1404–1427 (2015). https://doi.org/10.1039/C4EE03869J
- Z. Lei, J.M. Lee, G. Singh, C.I. Sathish, X. Chu et al., Recent advances of layered-transition metal oxides for energy-related applications. Energy Storage Mater. 36, 514–550 (2021). https://doi.org/10.1016/j.ensm.2021.01.004
- J.B. Mitchell, M. Chagnot, V. Augustyn, Hydrous transition metal oxides for electrochemical energy and environmental applications. Annu. Rev. Mater. Res. 53, 1–23 (2023). https://doi.org/10.1146/annurev-matsci-080819-124955
- G. Maduraiveeran, M. Sasidharan, W. Jin, Earth-abundant transition metal and metal oxide nanomaterials: synthesis and electrochemical applications. Prog. Mater. Sci. 106, 100574 (2019). https://doi.org/10.1016/j.pmatsci.2019.100574
- X. Guo, G. Zhang, Q. Li, H. Xue, H. Pang, Non-noble metal-transition metal oxide materials for electrochemical energy storage. Energy Storage Mater. 15, 171–201 (2018). https://doi.org/10.1016/j.ensm.2018.04.002
- P.-J. Lin, C.-H. Yeh, J.-C. Jiang, Theoretical insight into hydroxyl production via H2O2 decomposition over the Fe3O4(311) surface. RSC Adv. 11(57), 36257–36264 (2021). https://doi.org/10.1039/D1RA06943H
- A. el Maazouzi, R. Masrour, A. Jabar, Magnetic properties of inverse spinel: (Fe3+)A(Fe3+Fe2+)BO42− magnetite. J. Supercond. Nov. Magn. 33(12), 3871–3874 (2020). https://doi.org/10.1007/s10948-020-05515-0
- J. Hu, C. Zeng, G. Liu, H. Luo, L. Qu et al., Magnetite nanops accelerate the autotrophic sulfate reduction in biocathode microbial electrolysis cells. Biochem. Eng. J. 133, 96–105 (2018). https://doi.org/10.1016/j.bej.2018.01.036
- G. Rani, K. Krishna, K.N. Yogalakshmi, Enhancing the electrochemical performance of Fe3O4 nanops layered carbon electrodes in microbial electrolysis cell. J. Environ. Chem. Eng. 9(6), 106326 (2021). https://doi.org/10.1016/j.jece.2021.106326
- J. Cheng, R. Xia, H. Li, Z. Chen, X. Zhou et al., Enhancing extracellular electron transfer of Geobacter sulfurreducens in bioelectrochemical systems using N-doped Fe3O4@Carbon dots. ACS Sustain. Chem. Eng. 10(12), 3935–3950 (2022). https://doi.org/10.1021/acssuschemeng.1c08167
- M.B. Tahir, Microbial photoelectrochemical cell for improved hydrogen evolution using nickel ferrite incorporated WO3 under visible light irradiation. Int. J. Hydrog. Energy 44(32), 17316–17322 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.067
- M. Bohra, V. Alman, R. Arras, Nanostructured ZnFe2O4: an exotic energy material. Nanomaterials 11(5), 1286 (2021). https://doi.org/10.3390/nano11051286
- L. Huang, W. Kong, S. Song, X. Quan, G. Li Puma, Treatment of industrial etching terminal wastewater using ZnFe2O4/g-C3N4 heterojunctions photo-assisted cathodes in single-chamber microbial electrolysis cells. Appl. Catal. B Environ. 335, 122849 (2023). https://doi.org/10.1016/j.apcatb.2023.122849
- S. Song, L. Huang, P. Zhou, Efficient H2 production in a ZnFe2O4/g-C3N4 photo-cathode single-chamber microbial electrolysis cell. Appl. Microbiol. Biotechnol. 107(1), 391–404 (2023). https://doi.org/10.1007/s00253-022-12293-3
- S. Hirai, Y. Goto, Y. Sakai, A. Wakatsuki, Y. Kamihara et al., The electronic structure of structurally strained Mn3O4Postspinel and the relationship with Mn3O4Spinel. J. Phys. Soc. Jpn. 84(11), 114702 (2015). https://doi.org/10.7566/jpsj.84.114702
- S. Hirai, Y. Goto, A. Wakatsuki, Y. Kamihara, M. Matoba et al., Electronic structure of spin frustrated magnets: Mn3O4 spinel and postspinel. arXiv.1406.4486 (2014). https://doi.org/10.48550/arXiv.1406.4486
- R.A.P. Ribeiro, S.R. de Lazaro, S.A. Pianaro, Density functional theory applied to magnetic materials: Mn3O4 at different hybrid functionals. J. Magn. Magn. Mater. 391, 166–171 (2015). https://doi.org/10.1016/j.jmmm.2015.04.091
- E. Chorbadzhiyska, I. Bardarov, Y. Hubenova, M. Mitov, Modified graphite electrodes as potential cathodic electrocatalysts for microbial electrolysis cells. Bulg. Chem. Commun. 51(2), 284–288 (2019). https://doi.org/10.34049/bcc.51.2.5154
- Y. Li, X. Han, T. Yi, Y. He, X. Li, Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J. Energy Chem. 31, 54–78 (2019). https://doi.org/10.1016/j.jechem.2018.05.010
- Z. Li, J. Wang, K. Tian, C. Zhou, Y. Pei et al., Nickel-cobalt oxide nanop-induced biohydrogen production. ACS Omega 7(45), 41594–41605 (2022). https://doi.org/10.1021/acsomega.2c05580
- Y. Ha, L. Shi, X. Yan, Z. Chen, Y. Li et al., Multifunctional electrocatalysis on a porous N-doped NiCo2O4@C nanonetwork. ACS Appl. Mater. Interfaces 11(49), 45546–45553 (2019). https://doi.org/10.1021/acsami.9b13580
- T. Jayabalan, M. Manickam, S. Naina Mohamed, NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production. Renew. Energy 154, 1144–1152 (2020). https://doi.org/10.1016/j.renene.2020.03.071
- L. Zhang, S. Zheng, L. Wang, H. Tang, H. Xue et al., Fabrication of metal molybdate micro/nanomaterials for electrochemical energy storage. Small 13(33), 1700917 (2017). https://doi.org/10.1002/smll.201700917
- S.K. Ray, J. Hur, A critical review on modulation of NiMoO4-based materials for photocatalytic applications. J. Environ. Manag. 278, 111562 (2021). https://doi.org/10.1016/j.jenvman.2020.111562
- M. Luo, J. Yang, X. Li, M. Eguchi, Y. Yamauchi et al., Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem. Sci. 14(13), 3400–3414 (2023). https://doi.org/10.1039/D2SC06298D
- D. Guo, Y. Luo, X. Yu, Q. Li, T. Wang, High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174–182 (2014). https://doi.org/10.1016/j.nanoen.2014.06.002
- P.K. Bankar, S. Ratha, M.A. More, D.J. Late, C.S. Rout, Enhanced field emission performance of NiMoO4 nanosheets by tuning the phase. Appl. Surf. Sci. 418, 270–274 (2017). https://doi.org/10.1016/j.apsusc.2017.02.177
- T. Jayabalan, M. Matheswaran, T.K. Radhakrishnan, S. Naina Mohamed, Influence of nickel molybdate nanocatalyst for enhancing biohydrogen production in microbial electrolysis cell utilizing sugar industrial effluent. Bioresour. Technol. 320, 124284 (2021). https://doi.org/10.1016/j.biortech.2020.124284
- K.J. Kormondy, A.B. Posadas, A. Slepko, A. Dhamdhere, D.J. Smith et al., Epitaxy of polar semiconductor Co3O4 (110): growth, structure, and characterization. J. Appl. Phys. 115(24), 243708 (2014). https://doi.org/10.1063/1.4885048
- X.-L. Xu, Z.-H. Chen, Y. Li, W.-K. Chen, J.-Q. Li, Bulk and surface properties of spinel Co3O4 by density functional calculations. Surf. Sci. 603(4), 653–658 (2009). https://doi.org/10.1016/j.susc.2008.12.036
- T. Jayabalan, S. Naina Mohamed, M. Matheswaran, T.K. Radhakrishnan, A. Pugazhendhi et al., Enhanced biohydrogen production from sugar industry effluent using nickel oxide and cobalt oxide as cathode nanocatalysts in microbial electrolysis cell. Int. J. Energy Res. 45(12), 17431–17439 (2021). https://doi.org/10.1002/er.5645
- W. Zhang, Y. Zhao, J. Zhang, S. Chen, NiO/MoO/MoO prepared by normal pulse voltammetry as cathode catalysts to investigate the properties of microbial electrolysis cells. J. Chem. Technol. Biotechnol. 98(6), 1488–1496 (2023). https://doi.org/10.1002/jctb.7368
- R. Rossi, J. Nicolas, B.E. Logan, Using nickel-molybdenum cathode catalysts for efficient hydrogen gas production in microbial electrolysis cells. J. Power. Sources 560, 232594 (2023). https://doi.org/10.1016/j.jpowsour.2022.232594
- D. Liu, X. An, P. Wang, X. Ma, Y. Zhao et al., An effective copper doping strategy of Co(OH)F cathode for producing hydrogen in microbial electrolytic cells. Int. J. Hydrog. Energy 48(67), 26072–26083 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.331
- M. Siegert, M.D. Yates, A.M. Spormann, B.E. Logan, Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells. ACS Sustain. Chem. Eng. 3(7), 1668–1676 (2015). https://doi.org/10.1021/acssuschemeng.5b00367
- S. Rozenfeld, H. Teller, M. Schechter, R. Farber, O. Krichevski et al., Exfoliated molybdenum di-sulfide (MoS2) electrode for hydrogen production in microbial electrolysis cell. Bioelectrochemistry 123, 201–210 (2018). https://doi.org/10.1016/j.bioelechem.2018.05.007
- J.C. Tokash, B.E. Logan, Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells. Int. J. Hydrog. Energy 36(16), 9439–9445 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.080
- H. Yuan, J. Li, C. Yuan, Z. He, Facile synthesis of MoS2@CNT as an effective catalyst for hydrogen production in microbial electrolysis cells. ChemElectroChem 1(11), 1828–1833 (2014). https://doi.org/10.1002/celc.201402150
- Y. Hou, L. Tu, S. Qin, Z. Yu, Y. Yan et al., Dye wastewater treatment and hydrogen production in microbial electrolysis cells using MoS2-graphene oxide cathode: effects of dye concentration, co-substrate and buffer solution. Process Biochem. 102, 51–58 (2021). https://doi.org/10.1016/j.procbio.2020.12.008
- Y. Jeon, J.H. Kim, K. Koo, S. Kim, A photo-assisted microbial electrolysis cell for the exclusive biohydrogen production using a MoS2-coated p-type copper oxide. J. Power. Sources 373, 79–84 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.003
- H. Dai, H. Yang, Z. Liang, Electrochemical evaluation of MoS2-Cu-RGO as a catalyst for hydrogen evolution in microbial electrolysis cell. Int. J. Electrochem. Sci. 16(4), 210458 (2021). https://doi.org/10.20964/2021.04.18
- J.-H. Hwang, S. Fahad, H. Ryu, K.L. Rodriguez, J.S. Domingo et al., Recycling urine for bioelectrochemical hydrogen production using a MoS2 nano carbon coated electrode in a microbial electrolysis cell. J. Power. Sources 527, 231209 (2022). https://doi.org/10.1016/j.jpowsour.2022.231209
- M. Kokko, F. Bayerköhler, J. Erben, R. Zengerle, P. Kurz et al., Molybdenum sulphides on carbon supports as electrocatalysts for hydrogen evolution in acidic industrial wastewater. Appl. Energy 190, 1221–1233 (2017). https://doi.org/10.1016/j.apenergy.2016.12.097
- E. Ribot-Llobet, J.-Y. Nam, J.C. Tokash, A. Guisasola, B.E. Logan, Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells. Int. J. Hydrog. Energy 38(7), 2951–2956 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.037
- A. Tenca, R.D. Cusick, A. Schievano, R. Oberti, B.E. Logan, Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells. Int. J. Hydrog. Energy 38(4), 1859–1865 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.103
- P. Xiao, W. Chen, X. Wang, A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 5(24), 1500985 (2015). https://doi.org/10.1002/aenm.201500985
- S.J. Marje, H.B. Tyagaraj, S.-K. Hwang, G.S. Rama Raju, K.S. Ranjith et al., Transition nickel/cobalt phosphates: an advanced cathode for hybrid supercapacitors. J. Mater. Chem. A 11(27), 14586–14613 (2023). https://doi.org/10.1039/D3TA02335D
- S. Kumaravel, K. Karthick, S. Sam Sankar, A. Karmakar, R. Madhu et al., Recent progresses in engineering of Ni and Co based phosphides for effective electrocatalytic water splitting. ChemElectroChem 8(24), 4638–4685 (2021). https://doi.org/10.1002/celc.202100984
- J.F. Callejas, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 28(17), 6017–6044 (2016). https://doi.org/10.1021/acs.chemmater.6b02148
- X.-Y. Zhang, J.-Y. Xie, Y. Ma, B. Dong, C.-G. Liu et al., An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction. Chem. Eng. J. 430, 132312 (2022). https://doi.org/10.1016/j.cej.2021.132312
- D. Liang, L. Zhang, W. He, C. Li, J. Liu et al., Efficient hydrogen recovery with CoP-NF as cathode in microbial electrolysis cells. Appl. Energy 264, 114700 (2020). https://doi.org/10.1016/j.apenergy.2020.114700
- K. Hagos, C. Liu, X. Lu, Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: employing catalyzed stainless steel mesh cathode. Chin. J. Chem. Eng. 26(3), 574–582 (2018). https://doi.org/10.1016/j.cjche.2017.08.005
- L. Dai, C. Jia, B. Liu, Z. Wen, K. Li et al., Ru doped CoP nanosheets for efficient hydrogen evolution in microbial electrolysis cells. Sustain. Energy Fuels 6(21), 4982–4990 (2022). https://doi.org/10.1039/D2SE01019D
- F. Li, W. Liu, Y. Sun, W. Ding, S. Cheng, Enhancing hydrogen production with Ni–P coated nickel foam as cathode catalyst in single chamber microbial electrolysis cells. Int. J. Hydrog. Energy 42(6), 3641–3646 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.163
- K.-Y. Kim, S.E. Habas, J.A. Schaidle, B.E. Logan, Application of phase-pure nickel phosphide nanops as cathode catalysts for hydrogen production in microbial electrolysis cells. Bioresour. Technol. 293, 122067 (2019). https://doi.org/10.1016/j.biortech.2019.122067
- W. Cai, W. Liu, H. Sun, J. Li, L. Yang et al., Ni5P4-NiP2 nanosheet matrix enhances electron-transfer kinetics for hydrogen recovery in microbial electrolysis cells. Appl. Energy 209, 56–64 (2018). https://doi.org/10.1016/j.apenergy.2017.10.082
- E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout et al., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(25), 9267–9270 (2013). https://doi.org/10.1021/ja403440e
- L. Wang, Y. Chen, Y. Ye, B. Lu, S. Zhu et al., Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell. Water Sci. Technol. 63(3), 440–448 (2011). https://doi.org/10.2166/wst.2011.241
- S. Qin, Y. Duan, X.-L. Zhang, L.-R. Zheng, F.-Y. Gao et al., Ternary nickel-tungsten-copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation. Nat. Commun. 12(1), 2686 (2021). https://doi.org/10.1038/s41467-021-22996-2
- Y. Duan, Z.-Y. Yu, L. Yang, L.-R. Zheng, C.-T. Zhang et al., Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nat. Commun. 11(1), 4789 (2020). https://doi.org/10.1038/s41467-020-18585-4
- Z. Chen, Y. Xu, D. Ding, G. Song, X. Gan et al., Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction. Nat. Commun. 13(1), 763 (2022). https://doi.org/10.1038/s41467-022-28413-6
- H. Zhang, Y. Wang, D. Song, L. Wang, Y. Zhang et al., Cerium-based electrocatalysts for oxygen evolution/reduction reactions: progress and perspectives. Nanomaterials 13(13), 1921 (2023). https://doi.org/10.3390/nano13131921
- Y. Li, X. Zhang, Z. Zheng, A review of transition metal oxygen-evolving catalysts decorated by cerium-based materials: current status and future prospects. CCS Chem. 4(1), 31–53 (2022). https://doi.org/10.31635/ccschem.021.202101194
- P. Liu, J.A. Rodriguez, Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 127(42), 14871–14878 (2005). https://doi.org/10.1021/ja0540019
- Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu et al., Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 1500286 (2016). https://doi.org/10.1002/advs.201500286
- B.M. Tackett, W. Sheng, J.G. Chen, Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule 1(2), 253–263 (2017). https://doi.org/10.1016/j.joule.2017.07.002
- P. Gupta, M. Singh, M.T. Noori, J. Jack, Microbial photo electrosynthesis for efficient CO2 conversion using MXenes: materials, mechanisms, and applications. J. Environ. Chem. Eng. 12(3), 113063 (2024). https://doi.org/10.1016/j.jece.2024.113063
- S. Jin, Y. Feng, J. Jia, F. Zhao, Z. Wu et al., Three-dimensional N-doped carbon nanotube/graphene composite aerogel anode to develop high-power microbial fuel cell. Energy Environ. Mater. 6(3), e12373 (2023). https://doi.org/10.1002/eem2.12373
- F. Kong, X. Cui, Y. Huang, H. Yao, Y. Chen et al., N-doped carbon electrocatalyst: marked ORR activity in acidic media without the contribution from metal sites? Angew. Chem. Int. Ed. 61(15), e202116290 (2022). https://doi.org/10.1002/anie.202116290
- C. Rao, Z. Zhao, Z. Wen, Q. Xu, K. Chen et al., N-doped macroporous carbon loading Mo2C as cathode electrocatalyst of hybrid neutral-alkaline microbial electrolysis cells for H2 generation. Electrochim. Acta 431, 141142 (2022). https://doi.org/10.1016/j.electacta.2022.141142
- C. Rao, Z. Zhao, Z. Wen, Q. Xu, K. Chen et al., N-doped Mo2C ps as a cathode catalyst of asymmetric neutral-alkaline microbial electrolysis cells for hydrogen production. Sustain. Energy Fuels 7(14), 3375–3383 (2023). https://doi.org/10.1039/d3se00597f
- S. Tian, H. Wang, Z. Dong, Y. Yang, H. Yuan et al., Mo2C-induced hydrogen production enhances microbial electrosynthesis of acetate from CO2 reduction. Biotechnol. Biofuels 12, 71 (2019). https://doi.org/10.1186/s13068-019-1413-z
- Q. Zhu, J. Peng, Y. Huang, H. Ni, Z.-E. Long et al., Effect of Mo2C-functionalized electrode interface on enhancing microbial cathode electrocatalysis: beyond electrochemical hydrogen evolution. Electrochim. Acta 443, 141924 (2023). https://doi.org/10.1016/j.electacta.2023.141924
- K. Tahir, W. Miran, J. Jang, N. Maile, A. Shahzad et al., MXene-coated biochar as potential biocathode for improved microbial electrosynthesis system. Sci. Total. Environ. 773, 145677 (2021). https://doi.org/10.1016/j.scitotenv.2021.145677
- K. Tahir, W. Miran, J. Jang, A. Shahzad, M. Moztahida et al., A novel MXene-coated biocathode for enhanced microbial electrosynthesis performance. Chem. Eng. J. 381, 122687 (2020). https://doi.org/10.1016/j.cej.2019.122687
- K. Tahir, N. Maile, A.A. Ghani, B. Kim, J. Jang et al., Development of a three-dimensional macroporous sponge biocathode coated with carbon nanotube–MXene composite for high-performance microbial electrosynthesis systems. Bioelectrochemistry 146, 108140 (2022). https://doi.org/10.1016/j.bioelechem.2022.108140
- J. Liu, S. Yun, K. Wang, L. Liu, J. An et al., Enhanced methane production in microbial electrolysis cell coupled anaerobic digestion system with MXene accelerants. Bioresour. Technol. 380, 129089 (2023). https://doi.org/10.1016/j.biortech.2023.129089
- F. Harnisch, G. Sievers, U. Schröder, Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions. Appl. Catal. B Environ. 89(3–4), 455–458 (2009). https://doi.org/10.1016/j.apcatb.2009.01.003
- Y. Zhou, J. Niu, G. Zhang, M. Yu, F. Yang, A three-dimensional self-standing Mo2C/nitrogen-doped graphene aerogel: enhancement hydrogen production from landfill leachate wastewater in MFCs-AEC coupled system. Environ. Res. 184, 109283 (2020). https://doi.org/10.1016/j.envres.2020.109283
- G. Zhang, Y. Zhou, F. Yang, Hydrogen production from microbial fuel cells-ammonia electrolysis cell coupled system fed with landfill leachate using Mo2C/N-doped graphene nanocomposite as HER catalyst. Electrochim. Acta 299, 672–681 (2019). https://doi.org/10.1016/j.electacta.2019.01.055
- S. Lu, B. Lu, G. Tan, W. Moe, W. Xu et al., Mo2N nanobelt cathodes for efficient hydrogen production in microbial electrolysis cells with shaped biofilm microbiome. Biosens. Bioelectron. 167, 112491 (2020). https://doi.org/10.1016/j.bios.2020.112491
- I.P. Hidayati, P. Ekadewi, R. Arbianti, T. Surya Utami, Activated carbon-Fe catalyst modification on stainless steel cathode affects hydrogen production in microbial electrolysis cell. IOP Conf. Ser. Earth Environ. Sci. 749(1), 012071 (2021). https://doi.org/10.1088/1755-1315/749/1/012071
- K.-Y. Kim, B.E. Logan, Nickel powder blended activated carbon cathodes for hydrogen production in microbial electrolysis cells. Int. J. Hydrog. Energy 44(26), 13169–13174 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.041
- Y. Zhao, Z. Dong, Y. Wang, D. Yang, X. An, Orthogonal test design for optimisation of the carbon-based nickel electrodeposits as cathode catalysts for hydrogen evolution in microbial electrolysis cell. Int. J. Electrochem. Sci. 14(3), 2883–2892 (2019). https://doi.org/10.20964/2019.03.04
- D.A. Moreno-Jimenez, K.-Y. Kim, Enhanced wettability improves catalytic activity of nickel-functionalized activated carbon cathode for hydrogen production in microbial electrolysis cells. Bioresour. Technol. 350, 126881 (2022). https://doi.org/10.1016/j.biortech.2022.126881
- S. Son, B. Koo, H. Chai, H.V.H. Tran, S. Pandit et al., Comparison of hydrogen production and system performance in a microbial electrolysis cell containing cathodes made of non-platinum catalysts and binders. J. Water Process. Eng. 40, 101844 (2021). https://doi.org/10.1016/j.jwpe.2020.101844
- K.-Y. Kim, W. Yang, B.E. Logan, Regenerable nickel-functionalized activated carbon cathodes enhanced by metal adsorption to improve hydrogen production in microbial electrolysis cells. Environ. Sci. Technol. 52(12), 7131–7137 (2018). https://doi.org/10.1021/acs.est.7b06005
- Q. Wang, L. Huang, H. Yu, X. Quan, Y. Li et al., Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells. Int. J. Hydrog. Energy 40(1), 184–196 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.014
- A. Yadav, N. Verma, Efficient hydrogen production using Ni-graphene oxide-dispersed laser-engraved 3D carbon micropillars as electrodes for microbial electrolytic cell. Renew. Energy 138, 628–638 (2019). https://doi.org/10.1016/j.renene.2019.01.100
- N. Aryal, L. Wan, M.H. Overgaard, A.C. Stoot, Y. Chen et al., Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode. Bioelectrochemistry 128, 83–93 (2019). https://doi.org/10.1016/j.bioelechem.2019.03.011
- S. Xiu, J. Lu, Y. Guo, Y. Li, F. Liu et al., Confinement strategy to boost the compatibility of hybrid microbial-inorganic catalysis for highly efficient CO2 reduction. Chem. Eng. J. 474, 145407 (2023). https://doi.org/10.1016/j.cej.2023.145407
- L. Xiao, Z. Wen, S. Ci, J. Chen, Z. He, Carbon/iron-based nanorod catalysts for hydrogen production in microbial electrolysis cells. Nano Energy 1(5), 751–756 (2012). https://doi.org/10.1016/j.nanoen.2012.06.002
- M.F. Manuel, V. Neburchilov, H. Wang, S.R. Guiot, B. Tartakovsky, Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes. J. Power. Sources 195(17), 5514–5519 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.061
- M. Qin, W.A. Maza, B.M. Stratakes, S.R. Ahrenholtz, Nanoparticulate Ni(OH)2 films synthesized from macrocyclic Nickel (II) cyclam for hydrogen production in microbial electrolysis cells nanoparticulate Ni(OH)2 films synthesized from macrocyclic nickel (II) cyclam for hydrogen production in microbia. J. Electrochem. Soc. 163, F437 (2016). https://doi.org/10.1149/2.1081605jes
- J. Wang, Y. Li, M. Liu, Z. Li, X. Gao et al., A nickel- and cerium-doped zeolite composite: an affordable cathode material for biohydrogen production in microbial electrolysis cells. ChemPlusChem 85(10), 2290–2297 (2020). https://doi.org/10.1002/cplu.202000492
- Y. Li, Q. Wei, X. Zhao, Y. Qi, M. Guo et al., Degradation of sulfamethazine by microbial electrolysis cell with nickel-cobalt co-modified biocathode. Environ. Sci. Pollut. Res. Int. 31(11), 16497–16510 (2024). https://doi.org/10.1007/s11356-024-32313-1
- L. Wang, W. Liu, T. Sangeetha, Z. Guo, Z. He et al., Electrodeposited Ni–Co–S nanosheets on nickel foam as bioelectrochemical cathodes for efficient H2 evolution. Int. J. Hydrog. Energy 45(11), 6583–6591 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.001
- L. Lu, D. Hou, Y. Fang, Y. Huang, Z.J. Ren, Nickel based catalysts for highly efficient H2 evolution from wastewater in microbial electrolysis cells. Electrochim. Acta 206, 381–387 (2016). https://doi.org/10.1016/j.electacta.2016.04.167
- Y. Zhao, Z. Dong, Y. Wang, J. Li, X. An et al., Process kinetics for the electrocatalytic hydrogen evolution reaction on carbon-based Ni/NiO nanocomposite in a single-chamber microbial electrolysis cell. Int. J. Hydrog. Energy 44(54), 28841–28847 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.018
- I. Satar, M.H. Abu Bakar, W.R. Wan Daud, N.H. Mohd Yasin, M.R. Somalu et al., Feasibility of Ni/Ti and Ni/GF cathodes in microbial electrolysis cells for hydrogen production from fermentation effluent: a step toward real application. Int. J. Energy Res. 44(9), 7464–7476 (2020). https://doi.org/10.1002/er.5466
- M. Mitov, E. Chorbadzhiyska, L. Nalbandian, Y. Hubenova, Nickel-based electrodeposits as potential cathode catalysts for hydrogen production by microbial electrolysis. J. Power. Sources 356, 467–472 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.066
- H. Hu, Y. Fan, H. Liu, Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int. J. Hydrog. Energy 34(20), 8535–8542 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.011
- X. Zheng, R. Lin, J. Xu, Y. He, X. Zhang et al., Enhanced methane production by bimetallic metal–organic frameworks (MOFs) as cathode in an anaerobic digestion microbial electrolysis cell. Chem. Eng. J. 440, 135799 (2022). https://doi.org/10.1016/j.cej.2022.135799
- C. Wang, X. Ye, Y. Liu, Z. Jia, C. Cao et al., Enhanced anaerobic digestion for degradation of swine wastewater through a Fe/Ni-MOF modified microbial electrolysis cell. J. Clean. Prod. 380, 134773 (2022). https://doi.org/10.1016/j.jclepro.2022.134773
- X. Zheng, J. Xu, R. Lin, Y. He, Y. Yu et al., Internal driving mechanism of microbial community and metabolic pathway for psychrophilic anaerobic digestion by microbial electrolysis cell. Bioresour. Technol. 374, 128764 (2023). https://doi.org/10.1016/j.biortech.2023.128764
- J. Dai, Z. Huang, H. Zhang, H. Shi, S.R.B. Arulmani et al., Promoted Sb removal with hydrogen production in microbial electrolysis cell by ZIF-67-derived modified sulfate-reducing bacteria bio-cathode. Sci. Total. Environ. 856, 158839 (2023). https://doi.org/10.1016/j.scitotenv.2022.158839
- T. Li, Y. Chen, K. Zhang, X. Li, T. Song et al., Visible light-driven dual photoelectrode microbial electrosynthesis using BiVO4-RuO2-IrO2 on Ti mesh photoanode and ZIF-67/g-C3N4 on carbon felt photocathode for the efficient reduction of CO2 into acetate. Appl. Energy 348, 121609 (2023). https://doi.org/10.1016/j.apenergy.2023.121609
- J.M. Foley, R.A. Rozendal, C.K. Hertle, P.A. Lant, K. Rabaey, Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ. Sci. Technol. 44(9), 3629–3637 (2010). https://doi.org/10.1021/es100125h
- J. Chen, W. Xu, X. Wu, N. Lu et al., System development and environmental performance analysis of a pilot scale microbial electrolysis cell for hydrogen production using urban wastewater. Energy Convers. Manag. 193, 52–63 (2019). https://doi.org/10.1016/j.enconman.2019.04.060
- M.Y. Chin, Z.X. Phuang, K.S. Woon, M.M. Hanafiah, Z. Zhang et al., Life cycle assessment of bioelectrochemical and integrated microbial fuel cell systems for sustainable wastewater treatment and resource recovery. J. Environ. Manag. 320, 115778 (2022). https://doi.org/10.1016/j.jenvman.2022.115778
- J. Zhang, H. Yuan, I.M. Abu-Reesh, Z. He, C. Yuan, Life cycle environmental impact comparison of bioelectrochemical systems for wastewater treatment. Procedia CIRP 80, 382–388 (2019). https://doi.org/10.1016/j.procir.2019.01.075
- D. Pant, A. Singh, G. Van Bogaert, Y.A. Gallego, L. Diels et al., An introduction to the life cycle assessment (LCA of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew. Sustain. Energy Rev. 15(2), 1305–1313 (2011). https://doi.org/10.1016/j.rser.2010.10.005
- S. Tutar Öksüz, Life cycle assessment of microbial electrolysis cells for hydrogen generation using TRACI methodology. Sakarya Univ. J. Sci. 26(3), 620–632 (2022). https://doi.org/10.16984/saufenbilder.1005044
- M. Dadashi Firouzjaei, S.K. Nemani, M. Sadrzadeh, E.K. Wujcik, M. Elliott et al., Life-cycle assessment of Ti3 C2 tx MXene synthesis. Adv. Mater. 35(31), e2300422 (2023). https://doi.org/10.1002/adma.202300422
- M. Hachhach, H. Akram, A. El Kasmi, M. Hanafi, O. Achak et al., Life cycle assessment of large-scale production of MoS2 nanomaterials through the solvothermal method. J. Nanopart. Res. 24(9), 181 (2022). https://doi.org/10.1007/s11051-022-05563-8
- V. Ntouros, I. Kousis, D. Papadaki, A.L. Pisello, M.N. Assimakopoulos, Life cycle assessment on different synthetic routes of ZIF-8 nanomaterials. Energies 14(16), 4998 (2021). https://doi.org/10.3390/en14164998
- C.A. Grande, R. Blom, A. Spjelkavik, V. Moreau, J. Payet, Life-cycle assessment as a tool for eco-design of metal-organic frameworks (MOFs). Sustain. Mater. Technol. 14, 11–18 (2017). https://doi.org/10.1016/j.susmat.2017.10.002
- E.S. Heidrich, J. Dolfing, K. Scott, S.R. Edwards, C. Jones et al., Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Appl. Microbiol. Biotechnol. 97(15), 6979–6989 (2013). https://doi.org/10.1007/s00253-012-4456-7
- S.S. Lim, J.-M. Fontmorin, P. Izadi, W.R. Wan Daud, K. Scott et al., Impact of applied cell voltage on the performance of a microbial electrolysis cell fully catalysed by microorganisms. Int. J. Hydrog. Energy 45(4), 2557–2568 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.142
- L. Gil-Carrera, A. Escapa, B. Carracedo, A. Morán, X. Gómez, Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages. Bioresour. Technol. 146, 63–69 (2013). https://doi.org/10.1016/j.biortech.2013.07.020
- B. Tartakovsky, P. Mehta, G. Santoyo, S.R. Guiot, Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage. Int. J. Hydrog. Energy 36(17), 10557–10564 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.162
- R.A. Rozendal, H.V.M. Hamelers, K. Rabaey, J. Keller, C.J.N. Buisman, Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 26(8), 450–459 (2008). https://doi.org/10.1016/j.tibtech.2008.04.008
- J.G. Freeze, H.R. Kelly, V.S. Batista, Search for catalysts by inverse design: artificial intelligence, mountain climbers, and alchemists. Chem. Rev. 119(11), 6595–6612 (2019). https://doi.org/10.1021/acs.chemrev.8b00759
- L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater et al., Towards the online computer-aided design of catalytic pockets. Nat. Chem. 11(10), 872–879 (2019). https://doi.org/10.1038/s41557-019-0319-5
- A.H. Motagamwala, J.A. Dumesic, Microkinetic modeling: a tool for rational catalyst design. Chem. Rev. 121(2), 1049–1076 (2021). https://doi.org/10.1021/acs.chemrev.0c00394
- E.J. Kluender, J.L. Hedrick, K.A. Brown, R. Rao, B. Meckes et al., Catalyst discovery through megalibraries of nanomaterials. Proc. Natl. Acad. Sci. U.S.A. 116(1), 40–45 (2019). https://doi.org/10.1073/pnas.1815358116
- D.K. Madheswaran, A. Jayakumar, Recent advancements on non-platinum based catalyst electrode material for polymer electrolyte membrane fuel cells: a mini techno-economic review. Bull. Mater. Sci. 44(4), 287 (2021). https://doi.org/10.1007/s12034-021-02572-6
- E. Ruiz-López, J. Gandara-Loe, F. Baena-Moreno, T.R. Reina, J.A. Odriozola, Electrocatalytic CO2 conversion to C2 products: catalysts design, market perspectives and techno-economic aspects. Renew. Sustain. Energy Rev. 161, 112329 (2022). https://doi.org/10.1016/j.rser.2022.112329
- M.I. Blanco, The economics of wind energy. Renew. Sustain. Energy Rev. 13(6–7), 1372–1382 (2009). https://doi.org/10.1016/j.rser.2008.09.004
- S.L.Y. Lo, B.S. How, W.D. Leong, S.Y. Teng, M.A. Rhamdhani et al., Techno-economic analysis for biomass supply chain: a state-of-the-art review. Renew. Sustain. Energy Rev. 135, 110164 (2021). https://doi.org/10.1016/j.rser.2020.110164
- S. Masoud Parsa, M. Majidniya, W.H. Alawee, H.A. Dhahad, H. Muhammad Ali et al., Thermodynamic, economic, and sensitivity analysis of salt gradient solar pond (SGSP) integrated with a low-temperature multi effect desalination (MED): case study, Iran. Sustain. Energy Technol. Assess. 47, 101478 (2021). https://doi.org/10.1016/j.seta.2021.101478
- M.M. Mohideen, B. Subramanian, J. Sun, J. Ge, H. Guo et al., Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles. Renew. Sustain. Energy Rev. 174, 113153 (2023). https://doi.org/10.1016/j.rser.2023.113153
- S.M. Parsa, A. Yazdani, D. Javadi, M. Afrand, N. Karimi et al., Selecting efficient side of thermoelectric in pyramid-shape solar desalination units incorporated phase change material (PCM), nanop, turbulator with battery storage powered by photovoltaic. J. Energy Storage 51, 104448 (2022). https://doi.org/10.1016/j.est.2022.104448
- S. Shoeibi, N. Rahbar, A. Abedini Esfahlani, H. Kargarsharifabad, A comprehensive review of enviro-exergo-economic analysis of solar stills. Renew. Sustain. Energy Rev. 149, 111404 (2021). https://doi.org/10.1016/j.rser.2021.111404
- S.M. Parsa, F. Norouzpour, S. Shoeibi, A. Shahsavar, S. Aberoumand et al., A comprehensive study to find the optimal fraction of nanop coated at the interface of solar desalination absorbers: 5E and GHGs analysis in different seasons. Sol. Energy Mater. Sol. Cells 256, 112308 (2023). https://doi.org/10.1016/j.solmat.2023.112308
- S.M. Parsa, A. Rahbar, D. Javadi, M.H. Koleini, M. Afrand et al., Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000m: altitude concept. J. Clean. Prod. 261, 121243 (2020). https://doi.org/10.1016/j.jclepro.2020.121243
- J. Jiang, J.A. Lopez-Ruiz, Y. Bian, D. Sun, Y. Yan et al., Scale-up and techno-economic analysis of microbial electrolysis cells for hydrogen production from wastewater. Water Res. 241, 120139 (2023). https://doi.org/10.1016/j.watres.2023.120139
- E.S. Heidrich, S.R. Edwards, J. Dolfing, S.E. Cotterill, T.P. Curtis, Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12month period. Bioresour. Technol. 173, 87–95 (2014). https://doi.org/10.1016/j.biortech.2014.09.083
- O. Guerrero-Sodric, J.A. Baeza, A. Guisasola, Exploring key operational factors for improving hydrogen production in a pilot-scale microbial electrolysis cell treating urban wastewater. Chem. Eng. J. 469, 144001 (2023). https://doi.org/10.1016/j.cej.2023.144001
- S.E. Cotterill, J. Dolfing, T.P. Curtis, E.S. Heidrich, Community assembly in wastewater-fed pilot-scale microbial electrolysis cells. Front. Energy Res. 6, 98 (2018). https://doi.org/10.3389/fenrg.2018.00098
- S.E. Cotterill, J. Dolfing, C. Jones, T.P. Curtis, E.S. Heidrich, Low temperature domestic wastewater treatment in a microbial electrolysis cell with 1 m2 anodes: towards system scale-up. Fuel Cells 17(5), 584–592 (2017). https://doi.org/10.1002/fuce.201700034
- R.D. Cusick, B. Bryan, D.S. Parker, M.D. Merrill, M. Mehanna et al., Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl. Microbiol. Biotechnol. 89(6), 2053–2063 (2011). https://doi.org/10.1007/s00253-011-3130-9
- L. Gil-Carrera, A. Escapa, P. Mehta, G. Santoyo, S.R. Guiot et al., Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production. Bioresour. Technol. 130, 584–591 (2013). https://doi.org/10.1016/j.biortech.2012.12.062
- A. Escapa, M.I. San-Martín, R. Mateos, A. Morán, Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations. Bioresour. Technol. 180, 72–78 (2015). https://doi.org/10.1016/j.biortech.2014.12.096
- O. Guerrero-Sodric, J.A. Baeza, A. Guisasola, Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant. Water Res. 256, 121616 (2024). https://doi.org/10.1016/j.watres.2024.121616
- S.M. Parsa, F. Norozpour, S. Momeni, S. Shoeibi, X. Zeng et al., Advanced nanostructured materials in solar interfacial steam generation and desalination against pathogens: combatting microbial-contaminants in water–a critical review. J. Mater. Chem. A 11(34), 18046–18080 (2023). https://doi.org/10.1039/D3TA03343K
- G. Liu, D.B. Catacutan, K. Rathod, K. Swanson, W. Jin et al., Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19(11), 1342–1350 (2023). https://doi.org/10.1038/s41589-023-01349-8
- P.K.T. Nguyen, J. Kim, G. Das, H.H. Yoon, D.H. Lee, Optimization of simultaneous dark fermentation and microbial electrolysis cell for hydrogen production from macroalgae using response surface methodology. Biochem. Eng. J. 171, 108029 (2021). https://doi.org/10.1016/j.bej.2021.108029
- G. Rani, J.R. Banu, G. Kumar, K.N. Yogalakshmi, Statistical optimization of operating parameters of microbial electrolysis cell treating dairy industry wastewater using quadratic model to enhance energy generation. Int. J. Hydrog. Energy 47(88), 37401–37414 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.120
- L. Zou, X. Zhao, K. Wu, C. Liang, J. Liu et al., Multi-objective optimization for microbial electrolysis cell-assisted anaerobic digestion of swine manure. Int. J. Hydrog. Energy 77, 545–556 (2024). https://doi.org/10.1016/j.ijhydene.2024.06.166
- S. Shi, G. Xu, Novel performance prediction model of a biofilm system treating domestic wastewater based on stacked denoising auto-encoders deep learning network. Chem. Eng. J. 347, 280–290 (2018). https://doi.org/10.1016/j.cej.2018.04.087
- A. Hosseinzadeh, J.L. Zhou, A. Altaee, M. Baziar, D. Li, Effective modelling of hydrogen and energy recovery in microbial electrolysis cell by artificial neural network and adaptive network-based fuzzy inference system. Bioresour. Technol. 316, 123967 (2020). https://doi.org/10.1016/j.biortech.2020.123967
- J. Yoon, D.-Y. Cheong, G. Baek, Predicting current and hydrogen productions from microbial electrolysis cells using random forest model. Appl. Energy 371, 123641 (2024). https://doi.org/10.1016/j.apenergy.2024.123641
- K. Takahashi, L. Takahashi, I. Miyazato, J. Fujima, Y. Tanaka et al., The rise of catalyst informatics: towards catalyst genomics. ChemCatChem 11(4), 1146–1152 (2019). https://doi.org/10.1002/cctc.201801956
- K. Takahashi, J. Ohyama, S. Nishimura, J. Fujima, L. Takahashi et al., Catalysts informatics: paradigm shift towards data-driven catalyst design. Chem. Commun. 59(16), 2222–2238 (2023). https://doi.org/10.1039/D2CC05938J
- T. Hao, H. Zhou, P. Gai, Z. Wang, Y. Guo et al., Deep learning-assisted single-atom detection of copper ions by combining click chemistry and fast scan voltammetry. Nat. Commun. 15(1), 10292 (2024). https://doi.org/10.1038/s41467-024-54743-8
- T. Taniike, A. Fujiwara, S. Nakanowatari, F. García-Escobar, K. Takahashi, Automatic feature engineering for catalyst design using small data without prior knowledge of target catalysis. Commun. Chem. 7, 11 (2024). https://doi.org/10.1038/s42004-023-01086-y
- N.S. Lai, Y.S. Tew, X. Zhong, J. Yin, J. Li et al., Artificial intelligence (AI) workflow for catalyst design and optimization. Ind. Eng. Chem. Res. 62(43), 17835–17848 (2023). https://doi.org/10.1021/acs.iecr.3c02520
- K. Boonpalit, Y. Wongnongwa, C. Prommin, S. Nutanong, S. Namuangruk, Data-driven discovery of graphene-based dual-atom catalysts for hydrogen evolution reaction with graph neural network and DFT calculations. ACS Appl. Mater. Interfaces 15(10), 12936–12945 (2023). https://doi.org/10.1021/acsami.2c19391
- L. Cheng, Y. Tang, K.K. Ostrikov, Q. Xiang, Single-atom heterogeneous catalysts: human- and AI-driven platform for augmented designs, analytics and reality-enabled manufacturing. Angew. Chem. Int. Ed. 63(5), e202313599 (2024). https://doi.org/10.1002/anie.202313599
- H. Li, Y. Jiao, K. Davey, S.-Z. Qiao, Data-driven machine learning for understanding surface structures of heterogeneous catalysts. Angew. Chem. Int. Ed. 62(9), e202216383 (2023). https://doi.org/10.1002/anie.202216383
- Z.-K. Han, D. Sarker, R. Ouyang, A. Mazheika, Y. Gao et al., Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat. Commun. 12(1), 1833 (2021). https://doi.org/10.1038/s41467-021-22048-9
- J.A. Esterhuizen, B.R. Goldsmith, S. Linic, Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5(3), 175–184 (2022). https://doi.org/10.1038/s41929-022-00744-z
- X. Zhang, Y. Tian, L. Chen, X. Hu, Z. Zhou, Machine learning: a new paradigm in computational electrocatalysis. J. Phys. Chem. Lett. 13(34), 7920–7930 (2022). https://doi.org/10.1021/acs.jpclett.2c01710
- N. Omidvar, H.S. Pillai, S.-H. Wang, T. Mou, S. Wang et al., Interpretable machine learning of chemical bonding at solid surfaces. J. Phys. Chem. Lett. 12(46), 11476–11487 (2021). https://doi.org/10.1021/acs.jpclett.1c03291
- H. Xin, Catalyst design with machine learning. Nat. Energy 7(9), 790–791 (2022). https://doi.org/10.1038/s41560-022-01112-8
- S. Zhai, H. Xie, P. Cui, D. Guan, J. Wang et al., A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat. Energy 7(9), 866–875 (2022). https://doi.org/10.1038/s41560-022-01098-3
- Z. Han, A. Chen, Z. Li, M. Zhang, Z. Wang et al., Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development. Nat. Commun. 15(1), 8433 (2024). https://doi.org/10.1038/s41467-024-52550-9
- M. Raissi, G.E. Karniadakis, Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018). https://doi.org/10.1016/j.jcp.2017.11.039
- T. Mou, H.S. Pillai, S. Wang, M. Wan, X. Han et al., Bridging the complexity gap in computational heterogeneous catalysis with machine learning. Nat. Catal. 6(2), 122–136 (2023). https://doi.org/10.1038/s41929-023-00911-w
- G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang et al., Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021). https://doi.org/10.1038/s42254-021-00314-5
- Z. Wu, H. Wang, C. He, B. Zhang, T. Xu et al., The application of physics-informed machine learning in multiphysics modeling in chemical engineering. Ind. Eng. Chem. Res. 62(44), 18178–18204 (2023). https://doi.org/10.1021/acs.iecr.3c02383
- Y. Chong, Y. Huo, S. Jiang, X. Wang, B. Zhang et al., Machine learning of spectra-property relationship for imperfect and small chemistry data. Proc. Natl. Acad. Sci. U.S.A. 120(20), e2220789120 (2023). https://doi.org/10.1073/pnas.2220789120
- B. Dou, Z. Zhu, E. Merkurjev, L. Ke, L. Chen et al., Machine learning methods for small data challenges in molecular science. Chem. Rev. 123(13), 8736–8780 (2023). https://doi.org/10.1021/acs.chemrev.3c00189
- M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581(7807), 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8
- D.H. Mok, H. Li, G. Zhang, C. Lee, K. Jiang et al., Data-driven discovery of electrocatalysts for CO2 reduction using active motifs-based machine learning. Nat. Commun. 14(1), 7303 (2023). https://doi.org/10.1038/s41467-023-43118-0
- K. Tran, Z.W. Ulissi, Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1(9), 696–703 (2018). https://doi.org/10.1038/s41929-018-0142-1
- J. Moon, W. Beker, M. Siek, J. Kim, H.S. Lee et al., Active learning guides discovery of a champion four-metal perovskite oxide for oxygen
References
S.M. Parsa, A. Rahbar, M.H. Koleini, Y. Davoud Javadi, M. Afrand et al., First approach on nanofluid-based solar still in high altitude for water desalination and solar water disinfection (SODIS). Desalination 491, 114592 (2020). https://doi.org/10.1016/j.desal.2020.114592
UN General Assembly, Resolution adopted by the General Assembly on 25 September 2015, Transforming our world: the 2030 agenda for sustainable development, 16301 (2015). p. 1–35. https://doi.org/10.1007/s13398-014-0173-7.2
F. Fuso Nerini, J. Tomei, L.S. To, I. Bisaga, P. Parikh et al., Mapping synergies and trade-offs between energy and the sustainable development goals. Nat. Energy 3(1), 10–15 (2017). https://doi.org/10.1038/s41560-017-0036-5
S.M. Parsa, A. Rahbar, M.H. Koleini, S. Aberoumand, M. Afrand et al., A renewable energy-driven thermoelectric-utilized solar still with external condenser loaded by silver/nanofluid for simultaneously water disinfection and desalination. Desalination 480, 114354 (2020). https://doi.org/10.1016/j.desal.2020.114354
E.T. Sayed, M. Ali Abdelkareem, K. Obaideen, K. Elsaid, T. Wilberforce et al., Progress in plant-based bioelectrochemical systems and their connection with sustainable development goals. Carbon Resour. Convers. 4, 169–183 (2021). https://doi.org/10.1016/j.crcon.2021.04.004
R. Kothari, A.K. Pathak, H.M. Singh, K. Goria, Z.U.D. Sheikh et al., MFC-mediated wastewater treatment technology and bioelectricity generation: Future perspectives with SDGs 7 & 13. Process. Saf. Environ. Prot. 192, 155–176 (2024). https://doi.org/10.1016/j.psep.2024.08.078
C. Martínez de León, P. Molina, C. Ríos, J.J. Brey, Green hydrogen production’s impact on sustainable development goals. Int. J. Hydrog. Energy (in press) (2025). https://doi.org/10.1016/j.ijhydene.2024.12.355
D. Cudjoe, B. Zhu, H. Wang, Towards the realization of sustainable development goals: benefits of hydrogen from biogas using food waste in China. J. Clean. Prod. 360, 132161 (2022). https://doi.org/10.1016/j.jclepro.2022.132161
N. Strelkovskii, N. Komendantova, Integration of UN sustainable development goals in national hydrogen strategies: a text analysis approach. Int. J. Hydrog. Energy 102, 1282–1294 (2025). https://doi.org/10.1016/j.ijhydene.2025.01.134
A. El-Maaroufi, M. Daoudi, R.A. Laamara, Hydrogen production for SDG 13 using hybrid renewables energies in southern Morocco. Energy 319, 134986 (2025). https://doi.org/10.1016/j.energy.2025.134986
S.M. Parsa, Mega-scale desalination efficacy (reverse osmosis, electrodialysis, membrane distillation, MED, MSF) during COVID-19: evidence from salinity, pretreatment methods, temperature of operation. J. Hazard. Mater. Adv. 9, 100217 (2023). https://doi.org/10.1016/j.hazadv.2022.100217
S.M. Parsa, F. Norozpour, A.H. Elsheikh, A.E. Kabeel, Solar desalination/purification (solar stills, humidification-dehumidification, solar disinfection) in high altitude during COVID19: Insights of gastrointestinal manifestations and systems’ mechanism. J. Hazard. Mater. Adv. 10, 100259 (2023). https://doi.org/10.1016/j.hazadv.2023.100259
M. Potter, On the difference of potential due to the vital activity of microorganisms. Proc. Durham. Univ. Phil. Soc. 3, 245–249 (1910)
B. Cohen, The bacterial culture as an electrical half-cell. J. Bacteriol. 21(1), 18–19 (1931)
H. Liu, S. Grot, B.E. Logan, Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39(11), 4317–4320 (2005). https://doi.org/10.1021/es050244p
R.A. Rozendal, H.V.M. Hamelers, G.J.W. Euverink, S.J. Metz, C.J.N. Buisman, Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrog. Energy 31(12), 1632–1640 (2006). https://doi.org/10.1016/j.ijhydene.2005.12.006
F. Ndayisenga, Z. Yu, J. Zheng, B. Wang, H. Liang et al., Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: substrate pretreatment towards optimization. Renew. Sustain. Energy Rev. 145, 111078 (2021). https://doi.org/10.1016/j.rser.2021.111078
K.P. Katuri, M. Ali, P.E. Saikaly, The role of microbial electrolysis cell in urban wastewater treatment: integration options, challenges, and prospects. Curr. Opin. Biotechnol. 57, 101–110 (2019). https://doi.org/10.1016/j.copbio.2019.03.007
W. Wang, D.-J. Lee, Z. Lei, Integrating anaerobic digestion with microbial electrolysis cell for performance enhancement: a review. Bioresour. Technol. 344, 126321 (2022). https://doi.org/10.1016/j.biortech.2021.126321
A.K. Islam, Hydropower coupled with hydrogen production from wastewater: integration of micro-hydropower plant (MHP) and microbial electrolysis cell (MEC). Int. J. Hydrog. Energy 49, 1–14 (2024). https://doi.org/10.1016/j.ijhydene.2023.06.179
Y. Li, J. Styczynski, Y. Huang, Z. Xu, J. McCutcheon et al., Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC). J. Power. Sources 356, 529–538 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.069
A. Wang, D. Sun, G. Cao, H. Wang, N. Ren et al., Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour. Technol. 102(5), 4137–4143 (2011). https://doi.org/10.1016/j.biortech.2010.10.137
A. Kundu, J.N. Sahu, G. Redzwan, M.A. Hashim, An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int. J. Hydrog. Energy 38(4), 1745–1757 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.031
W. Wang, B. Zhang, Z. He, Bioelectrochemical deposition of palladium nanops as catalysts by Shewanella oneidensis MR-1 towards enhanced hydrogen production in microbial electrolysis cells. Electrochim. Acta 318, 794–800 (2019). https://doi.org/10.1016/j.electacta.2019.06.038
L. Xu, W. Li, J. Luo, L. Chen, K. He et al., Carbon-based materials as highly efficient catalysts for the hydrogen evolution reaction in microbial electrolysis cells: mechanisms, methods, and perspectives. Chem. Eng. J. 471, 144670 (2023). https://doi.org/10.1016/j.cej.2023.144670
Z. Chen, G.-F. Han, A. Mahmood, J. Hou, W. Wei et al., Mechanosynthesized electroactive materials for sustainable energy and environmental applications: a critical review. Prog. Mater. Sci. 145, 101299 (2024). https://doi.org/10.1016/j.pmatsci.2024.101299
Z. Chen, T. Ma, W. Wei, W.-Y. Wong, C. Zhao et al., Work function-guided electrocatalyst design. Adv. Mater. 36(29), 2401568 (2024). https://doi.org/10.1002/adma.202401568
Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, Recent advances in transition metal-based electrocatalysts for alkaline hydrogen evolution. J. Mater. Chem. A 7(25), 14971–15005 (2019). https://doi.org/10.1039/C9TA03220G
Z. Chen, Y. Liu, W. Wei, B.-J. Ni, Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ. Sci. Nano 6(8), 2332–2366 (2019). https://doi.org/10.1039/C9EN00411D
H. Meng, Z. Chen, J. Zhu, B. You, T. Ma et al., In situ amorphization of electrocatalysts. Adv. Funct. Mater. 34(39), 2405270 (2024). https://doi.org/10.1002/adfm.202405270
S.M. Parsa, Z. Chen, S. Feng, Y. Yang, L. Luo et al., Metal-free nitrogen-doped carbon-based electrocatalysts for oxygen reduction reaction in microbial fuel cells: advances, challenges, and future directions. Nano Energy 134, 110537 (2025). https://doi.org/10.1016/j.nanoen.2024.110537
B. Kim, E. Yang, B. Kim, M. Obaid, J.K. Jang et al., Recent application of nanomaterials to overcome technological challenges of microbial electrolysis cells. Nanomaterials 12(8), 1316 (2022). https://doi.org/10.3390/nano12081316
N.K. Abd-Elrahman, N. Al-Harbi, Y. Al-Hadeethi, A.B. Alruqi, H. Mohammed et al., Influence of nanomaterials and other factors on biohydrogen production rates in microbial electrolysis cells-a review. Molecules 27(23), 8594 (2022). https://doi.org/10.3390/molecules27238594
D. Frattini, G. Karunakaran, E.-B. Cho, Y. Kwon, Sustainable syntheses and sources of nanomaterials for microbial fuel/electrolysis cell applications: an overview of recent progress. Processes 9(7), 1221 (2021). https://doi.org/10.3390/pr9071221
N. Savla, M. Guin, S. Pandit, H. Malik, S. Khilari et al., Recent advancements in the cathodic catalyst for the hydrogen evolution reaction in microbial electrolytic cells. Int. J. Hydrog. Energy 47(34), 15333–15356 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.058
H. Yuan, Z. He, Platinum group metal–free catalysts for hydrogen evolution reaction in microbial electrolysis cells. Chem. Rec. 17(7), 641–652 (2017). https://doi.org/10.1002/tcr.201700007
J. Tang, Y. Bian, S. Jin, D. Sun, Z.J. Ren, Cathode material development in the past decade for H2 production from microbial electrolysis cells. ACS Environ. Au 2(1), 20–29 (2021). https://doi.org/10.1021/acsenvironau.1c00021
T.E. Suharto, I. Satar, W.R.W. Daud, M.R. Somalu, K.B. Hong, Recent advancement of nickel based-cathode for the microbial electrolysis cell (MEC) and its future prospect. J. Eng. Sci. Technol. Rev. 15(1), 191–198 (2022). https://doi.org/10.25103/jestr.151.24
Z. Liu, L. Zhou, Q. Chen, W. Zhou, Y. Liu, Advances in graphene/graphene composite based microbial fuel/electrolysis cells. Electroanalysis 29(3), 652–661 (2017). https://doi.org/10.1002/elan.201600502
M. Hasany, M.M. Mardanpour, S. Yaghmaei, Biocatalysts in microbial electrolysis cells: a review. Int. J. Hydrog. Energy 41(3), 1477–1493 (2016). https://doi.org/10.1016/j.ijhydene.2015.10.097
T. Jafary, W.R.W. Daud, M. Ghasemi, B.H. Kim, J. Md Jahim et al., Biocathode in microbial electrolysis cell; present status and future prospects. Renew. Sustain. Energy Rev. 47, 23–33 (2015). https://doi.org/10.1016/j.rser.2015.03.003
R. Lin, L. Xie, X. Zheng, D.D. Patience, X. Duan, Advances and challenges in biocathode microbial electrolysis cells for chlorinated organic compounds degradation from electroactive perspectives. Sci. Total. Environ. 905, 167141 (2023). https://doi.org/10.1016/j.scitotenv.2023.167141
B.H. Kim, S.S. Lim, W.R.W. Daud, G.M. Gadd, I.S. Chang, The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresour. Technol. 190, 395–401 (2015). https://doi.org/10.1016/j.biortech.2015.04.084
M. Sun, L.-F. Zhai, Y. Mu, H.-Q. Yu, Bioelectrochemical element conversion reactions towards generation of energy and value-added chemicals. Prog. Energy Combust. Sci. 77, 100814 (2020). https://doi.org/10.1016/j.pecs.2019.100814
G. Zhen, X. Lu, G. Kumar, P. Bakonyi, K. Xu et al., Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: current situation, challenges and future perspectives. Prog. Energy Combust. Sci. 63, 119–145 (2017). https://doi.org/10.1016/j.pecs.2017.07.003
A. Kadier, M.S. Kalil, P. Abdeshahian, K. Chandrasekhar, A. Mohamed et al., Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals. Renew. Sustain. Energy Rev. 61, 501–525 (2016). https://doi.org/10.1016/j.rser.2016.04.017
M. Sun, Z.-X. Mu, G.-P. Sheng, N. Shen, Z.-H. Tong et al., Hydrogen production from propionate in a biocatalyzed system with in situ utilization of the electricity generated from a microbial fuel cell. Int. Biodeterior. Biodegrad. 64(5), 378–382 (2010). https://doi.org/10.1016/j.ibiod.2010.04.004
S. Cheng, B.E. Logan, Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. U.S.A. 104(47), 18871–18873 (2007). https://doi.org/10.1073/pnas.0706379104
R.A. Rozendal, H.V.M. Hamelers, R.J. Molenkamp, C.J.N. Buisman, Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res. 41(9), 1984–1994 (2007). https://doi.org/10.1016/j.watres.2007.01.019
A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides: efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5(2), 5577–5591 (2012). https://doi.org/10.1039/C2EE02618J
C. Jing, L. Hong, B. Li, Y. Wang, F. Zhang et al., A review with transition-metal phosphide electrocatalysts in hydrogen evolution reaction: doping perspective. Mol. Catal. 554, 113832 (2024). https://doi.org/10.1016/j.mcat.2024.113832
B.A. Yusuf, W. Yaseen, M. Xie, R.S. Zayyan, A.I. Muhammad et al., Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: a comprehensive review. Adv. Colloid Interface Sci. 311, 102811 (2023). https://doi.org/10.1016/j.cis.2022.102811
B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47(22–23), 3571–3594 (2002). https://doi.org/10.1016/S0013-4686(02)00329-8
V.T. Nguyen, P.A. Le, Y.C. Hsu, K.H. Wei, Plasma-induced exfoliation provides onion-like graphene-surrounded MoS2 nanosheets for a highly efficient hydrogen evolution reaction. ACS Appl. Mater. Interfaces 12(10), 11533–11542 (2020). https://doi.org/10.1021/acsami.9b20902
Z. Zeng, C. Tan, X. Huang, S. Bao, H. Zhang, Growth of noble metal nanops on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 7(2), 797–803 (2014). https://doi.org/10.1039/C3EE42620C
T.P. Nguyen, S. Choi, J.-M. Jeon, K.C. Kwon, H.W. Jang et al., Transition metal disulfide nanosheets synthesized by facile sonication method for the hydrogen evolution reaction. J. Phys. Chem. C 120(7), 3929–3935 (2016). https://doi.org/10.1021/acs.jpcc.5b12164
A. Ambrosi, Z. Sofer, M. Pumera, Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small 11(5), 605–612 (2015). https://doi.org/10.1002/smll.201400401
J. Shi, D. Ma, G.-F. Han, Y. Zhang, Q. Ji et al., Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 8(10), 10196–10204 (2014). https://doi.org/10.1021/nn503211t
Y. Hou, M. Qiu, T. Zhang, X. Zhuang, C.-S. Kim et al., Ternary porous cobalt phosphoselenide nanosheets: an efficient electrocatalyst for electrocatalytic and photoelectrochemical water splitting. Adv. Mater. 29(35), 1701589 (2017). https://doi.org/10.1002/adma.201701589
A.Y. Eng, A. Ambrosi, Z. Sofer, P. Šimek, M. Pumera, Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano 8(12), 12185–12198 (2014). https://doi.org/10.1021/nn503832j
Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He et al., Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50(47), 11093–11097 (2011). https://doi.org/10.1002/anie.201106004
L. Wang, Z. Xu, W. Wang, X. Bai, Atomic mechanism of dynamic electrochemical lithiation processes of MoS₂ nanosheets. J. Am. Chem. Soc. 136(18), 6693–6697 (2014). https://doi.org/10.1021/ja501686w
T.-N. Ye, L.-B. Lv, M. Xu, B. Zhang, K.-X. Wang et al., Hierarchical carbon nanopapers coupled with ultrathin MoS2 nanosheets: highly efficient large-area electrodes for hydrogen evolution. Nano Energy 15, 335–342 (2015). https://doi.org/10.1016/j.nanoen.2015.04.033
Z. Zhao, F. Qin, S. Kasiraju, L. Xie, M.K. Alam et al., Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution. ACS Catal. 7(10), 7312–7318 (2017). https://doi.org/10.1021/acscatal.7b02885
J. Cao, J. Zhou, Y. Zhang, Y. Wang, X. Liu, Dominating role of aligned MoS2/Ni3S2 nanoarrays supported on three-dimensional Ni foam with hydrophilic interface for highly enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 10(2), 1752–1760 (2018). https://doi.org/10.1021/acsami.7b16407
S. Yeo, D.K. Nandi, R. Rahul, T.H. Kim, B. Shong et al., Low-temperature direct synthesis of high quality WS2 thin films by plasma-enhanced atomic layer deposition for energy related applications. Appl. Surf. Sci. 459, 596–605 (2018). https://doi.org/10.1016/j.apsusc.2018.07.210
B. Ma, Z. Yang, Y. Chen, Z. Yuan, Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 12(2), 375–380 (2019). https://doi.org/10.1007/s12274-018-2226-2
T.S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee et al., Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15(4), 6420–6429 (2021). https://doi.org/10.1021/acsnano.0c08357
A. Lipatov, A. Goad, M.J. Loes, N.S. Vorobeva, J. Abourahma et al., High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes. Matter 4(4), 1413–1427 (2021). https://doi.org/10.1016/j.matt.2021.01.021
Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong et al., MoS2 nanops grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b
F.-Y. Chen, Z.-Y. Wu, Z. Adler, H. Wang, Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule 5(7), 1704–1731 (2021). https://doi.org/10.1016/j.joule.2021.05.005
L. She, G. Zhao, T. Ma, J. Chen, W. Sun et al., On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 32(5), 2108465 (2022). https://doi.org/10.1002/adfm.202108465
Q. Wen, Y. Zhao, Y. Liu, H. Li, T. Zhai, Ultrahigh-current-density and long-term-durability electrocatalysts for water splitting. Small 18(4), 2104513 (2022). https://doi.org/10.1002/smll.202104513
W. Zhai, Y. Ma, D. Chen, J.C. Ho, Z. Dai et al., Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts. InfoMat 4(9), e12357 (2022). https://doi.org/10.1002/inf2.12357
Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 49(11), 3484–3524 (2020). https://doi.org/10.1039/C9CS00903E
L. Zhang, W. Liu, Y. Dou, Z. Du, M. Shao, The role of transition metal and nitrogen in metal–N–C composites for hydrogen evolution reaction at universal pHs. J. Phys. Chem. C 120(51), 29047–29053 (2016). https://doi.org/10.1021/acs.jpcc.6b11782
X. Huang, Z. Zhao, L. Cao, Y. Chen, E. Zhu et al., Electrochemistry. High-performance transition metal-doped Pt₃Ni octahedra for oxygen reduction reaction. Science 348(6240), 1230–1234 (2015). https://doi.org/10.1126/science.aaa8765
K. Chen, N. Qiu, Q. Deng, M.-H. Kang, H. Yang et al., Cytocompatibility of Ti3AlC2, Ti3SiC2, and Ti2AlN: in vitro tests and first-principles calculations. ACS Biomater. Sci. Eng. 3(10), 2293–2301 (2017). https://doi.org/10.1021/acsbiomaterials.7b00432
K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47(14), 5109–5124 (2018). https://doi.org/10.1039/C7CS00838D
G. Porcheron, A. Garénaux, J. Proulx, M. Sabri, C.M. Dozois, Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front. Cell. Infect. Microbiol. 3, 90 (2013). https://doi.org/10.3389/fcimb.2013.00090
H.O. Mohamed, E.T. Sayed, M. Obaid, Y.-J. Choi, S.-G. Park et al., Transition metal nanops doped carbon paper as a cost-effective anode in a microbial fuel cell powered by pure and mixed biocatalyst cultures. Int. J. Hydrog. Energy 43(46), 21560–21571 (2018). https://doi.org/10.1016/j.ijhydene.2018.09.199
D.V. Esposito, S.T. Hunt, Y.C. Kimmel, J.G. Chen, A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. J. Am. Chem. Soc. 134(6), 3025–3033 (2012). https://doi.org/10.1021/ja208656v
B. Zhang, Z. Wen, S. Ci, S. Mao, J. Chen et al., Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells. ACS Appl. Mater. Interfaces 6(10), 7464–7470 (2014). https://doi.org/10.1021/am5008547
S. Hübner, J.G. de Vries, V. Farina, Why does industry not use immobilized transition metal complexes as catalysts? Adv. Synth. Catal. 358(1), 3–25 (2016). https://doi.org/10.1002/adsc.201500846
W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich et al., Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8(5), 1404–1427 (2015). https://doi.org/10.1039/C4EE03869J
Z. Lei, J.M. Lee, G. Singh, C.I. Sathish, X. Chu et al., Recent advances of layered-transition metal oxides for energy-related applications. Energy Storage Mater. 36, 514–550 (2021). https://doi.org/10.1016/j.ensm.2021.01.004
J.B. Mitchell, M. Chagnot, V. Augustyn, Hydrous transition metal oxides for electrochemical energy and environmental applications. Annu. Rev. Mater. Res. 53, 1–23 (2023). https://doi.org/10.1146/annurev-matsci-080819-124955
G. Maduraiveeran, M. Sasidharan, W. Jin, Earth-abundant transition metal and metal oxide nanomaterials: synthesis and electrochemical applications. Prog. Mater. Sci. 106, 100574 (2019). https://doi.org/10.1016/j.pmatsci.2019.100574
X. Guo, G. Zhang, Q. Li, H. Xue, H. Pang, Non-noble metal-transition metal oxide materials for electrochemical energy storage. Energy Storage Mater. 15, 171–201 (2018). https://doi.org/10.1016/j.ensm.2018.04.002
P.-J. Lin, C.-H. Yeh, J.-C. Jiang, Theoretical insight into hydroxyl production via H2O2 decomposition over the Fe3O4(311) surface. RSC Adv. 11(57), 36257–36264 (2021). https://doi.org/10.1039/D1RA06943H
A. el Maazouzi, R. Masrour, A. Jabar, Magnetic properties of inverse spinel: (Fe3+)A(Fe3+Fe2+)BO42− magnetite. J. Supercond. Nov. Magn. 33(12), 3871–3874 (2020). https://doi.org/10.1007/s10948-020-05515-0
J. Hu, C. Zeng, G. Liu, H. Luo, L. Qu et al., Magnetite nanops accelerate the autotrophic sulfate reduction in biocathode microbial electrolysis cells. Biochem. Eng. J. 133, 96–105 (2018). https://doi.org/10.1016/j.bej.2018.01.036
G. Rani, K. Krishna, K.N. Yogalakshmi, Enhancing the electrochemical performance of Fe3O4 nanops layered carbon electrodes in microbial electrolysis cell. J. Environ. Chem. Eng. 9(6), 106326 (2021). https://doi.org/10.1016/j.jece.2021.106326
J. Cheng, R. Xia, H. Li, Z. Chen, X. Zhou et al., Enhancing extracellular electron transfer of Geobacter sulfurreducens in bioelectrochemical systems using N-doped Fe3O4@Carbon dots. ACS Sustain. Chem. Eng. 10(12), 3935–3950 (2022). https://doi.org/10.1021/acssuschemeng.1c08167
M.B. Tahir, Microbial photoelectrochemical cell for improved hydrogen evolution using nickel ferrite incorporated WO3 under visible light irradiation. Int. J. Hydrog. Energy 44(32), 17316–17322 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.067
M. Bohra, V. Alman, R. Arras, Nanostructured ZnFe2O4: an exotic energy material. Nanomaterials 11(5), 1286 (2021). https://doi.org/10.3390/nano11051286
L. Huang, W. Kong, S. Song, X. Quan, G. Li Puma, Treatment of industrial etching terminal wastewater using ZnFe2O4/g-C3N4 heterojunctions photo-assisted cathodes in single-chamber microbial electrolysis cells. Appl. Catal. B Environ. 335, 122849 (2023). https://doi.org/10.1016/j.apcatb.2023.122849
S. Song, L. Huang, P. Zhou, Efficient H2 production in a ZnFe2O4/g-C3N4 photo-cathode single-chamber microbial electrolysis cell. Appl. Microbiol. Biotechnol. 107(1), 391–404 (2023). https://doi.org/10.1007/s00253-022-12293-3
S. Hirai, Y. Goto, Y. Sakai, A. Wakatsuki, Y. Kamihara et al., The electronic structure of structurally strained Mn3O4Postspinel and the relationship with Mn3O4Spinel. J. Phys. Soc. Jpn. 84(11), 114702 (2015). https://doi.org/10.7566/jpsj.84.114702
S. Hirai, Y. Goto, A. Wakatsuki, Y. Kamihara, M. Matoba et al., Electronic structure of spin frustrated magnets: Mn3O4 spinel and postspinel. arXiv.1406.4486 (2014). https://doi.org/10.48550/arXiv.1406.4486
R.A.P. Ribeiro, S.R. de Lazaro, S.A. Pianaro, Density functional theory applied to magnetic materials: Mn3O4 at different hybrid functionals. J. Magn. Magn. Mater. 391, 166–171 (2015). https://doi.org/10.1016/j.jmmm.2015.04.091
E. Chorbadzhiyska, I. Bardarov, Y. Hubenova, M. Mitov, Modified graphite electrodes as potential cathodic electrocatalysts for microbial electrolysis cells. Bulg. Chem. Commun. 51(2), 284–288 (2019). https://doi.org/10.34049/bcc.51.2.5154
Y. Li, X. Han, T. Yi, Y. He, X. Li, Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J. Energy Chem. 31, 54–78 (2019). https://doi.org/10.1016/j.jechem.2018.05.010
Z. Li, J. Wang, K. Tian, C. Zhou, Y. Pei et al., Nickel-cobalt oxide nanop-induced biohydrogen production. ACS Omega 7(45), 41594–41605 (2022). https://doi.org/10.1021/acsomega.2c05580
Y. Ha, L. Shi, X. Yan, Z. Chen, Y. Li et al., Multifunctional electrocatalysis on a porous N-doped NiCo2O4@C nanonetwork. ACS Appl. Mater. Interfaces 11(49), 45546–45553 (2019). https://doi.org/10.1021/acsami.9b13580
T. Jayabalan, M. Manickam, S. Naina Mohamed, NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production. Renew. Energy 154, 1144–1152 (2020). https://doi.org/10.1016/j.renene.2020.03.071
L. Zhang, S. Zheng, L. Wang, H. Tang, H. Xue et al., Fabrication of metal molybdate micro/nanomaterials for electrochemical energy storage. Small 13(33), 1700917 (2017). https://doi.org/10.1002/smll.201700917
S.K. Ray, J. Hur, A critical review on modulation of NiMoO4-based materials for photocatalytic applications. J. Environ. Manag. 278, 111562 (2021). https://doi.org/10.1016/j.jenvman.2020.111562
M. Luo, J. Yang, X. Li, M. Eguchi, Y. Yamauchi et al., Insights into alloy/oxide or hydroxide interfaces in Ni–Mo-based electrocatalysts for hydrogen evolution under alkaline conditions. Chem. Sci. 14(13), 3400–3414 (2023). https://doi.org/10.1039/D2SC06298D
D. Guo, Y. Luo, X. Yu, Q. Li, T. Wang, High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8, 174–182 (2014). https://doi.org/10.1016/j.nanoen.2014.06.002
P.K. Bankar, S. Ratha, M.A. More, D.J. Late, C.S. Rout, Enhanced field emission performance of NiMoO4 nanosheets by tuning the phase. Appl. Surf. Sci. 418, 270–274 (2017). https://doi.org/10.1016/j.apsusc.2017.02.177
T. Jayabalan, M. Matheswaran, T.K. Radhakrishnan, S. Naina Mohamed, Influence of nickel molybdate nanocatalyst for enhancing biohydrogen production in microbial electrolysis cell utilizing sugar industrial effluent. Bioresour. Technol. 320, 124284 (2021). https://doi.org/10.1016/j.biortech.2020.124284
K.J. Kormondy, A.B. Posadas, A. Slepko, A. Dhamdhere, D.J. Smith et al., Epitaxy of polar semiconductor Co3O4 (110): growth, structure, and characterization. J. Appl. Phys. 115(24), 243708 (2014). https://doi.org/10.1063/1.4885048
X.-L. Xu, Z.-H. Chen, Y. Li, W.-K. Chen, J.-Q. Li, Bulk and surface properties of spinel Co3O4 by density functional calculations. Surf. Sci. 603(4), 653–658 (2009). https://doi.org/10.1016/j.susc.2008.12.036
T. Jayabalan, S. Naina Mohamed, M. Matheswaran, T.K. Radhakrishnan, A. Pugazhendhi et al., Enhanced biohydrogen production from sugar industry effluent using nickel oxide and cobalt oxide as cathode nanocatalysts in microbial electrolysis cell. Int. J. Energy Res. 45(12), 17431–17439 (2021). https://doi.org/10.1002/er.5645
W. Zhang, Y. Zhao, J. Zhang, S. Chen, NiO/MoO/MoO prepared by normal pulse voltammetry as cathode catalysts to investigate the properties of microbial electrolysis cells. J. Chem. Technol. Biotechnol. 98(6), 1488–1496 (2023). https://doi.org/10.1002/jctb.7368
R. Rossi, J. Nicolas, B.E. Logan, Using nickel-molybdenum cathode catalysts for efficient hydrogen gas production in microbial electrolysis cells. J. Power. Sources 560, 232594 (2023). https://doi.org/10.1016/j.jpowsour.2022.232594
D. Liu, X. An, P. Wang, X. Ma, Y. Zhao et al., An effective copper doping strategy of Co(OH)F cathode for producing hydrogen in microbial electrolytic cells. Int. J. Hydrog. Energy 48(67), 26072–26083 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.331
M. Siegert, M.D. Yates, A.M. Spormann, B.E. Logan, Methanobacterium dominates biocathodic archaeal communities in methanogenic microbial electrolysis cells. ACS Sustain. Chem. Eng. 3(7), 1668–1676 (2015). https://doi.org/10.1021/acssuschemeng.5b00367
S. Rozenfeld, H. Teller, M. Schechter, R. Farber, O. Krichevski et al., Exfoliated molybdenum di-sulfide (MoS2) electrode for hydrogen production in microbial electrolysis cell. Bioelectrochemistry 123, 201–210 (2018). https://doi.org/10.1016/j.bioelechem.2018.05.007
J.C. Tokash, B.E. Logan, Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells. Int. J. Hydrog. Energy 36(16), 9439–9445 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.080
H. Yuan, J. Li, C. Yuan, Z. He, Facile synthesis of MoS2@CNT as an effective catalyst for hydrogen production in microbial electrolysis cells. ChemElectroChem 1(11), 1828–1833 (2014). https://doi.org/10.1002/celc.201402150
Y. Hou, L. Tu, S. Qin, Z. Yu, Y. Yan et al., Dye wastewater treatment and hydrogen production in microbial electrolysis cells using MoS2-graphene oxide cathode: effects of dye concentration, co-substrate and buffer solution. Process Biochem. 102, 51–58 (2021). https://doi.org/10.1016/j.procbio.2020.12.008
Y. Jeon, J.H. Kim, K. Koo, S. Kim, A photo-assisted microbial electrolysis cell for the exclusive biohydrogen production using a MoS2-coated p-type copper oxide. J. Power. Sources 373, 79–84 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.003
H. Dai, H. Yang, Z. Liang, Electrochemical evaluation of MoS2-Cu-RGO as a catalyst for hydrogen evolution in microbial electrolysis cell. Int. J. Electrochem. Sci. 16(4), 210458 (2021). https://doi.org/10.20964/2021.04.18
J.-H. Hwang, S. Fahad, H. Ryu, K.L. Rodriguez, J.S. Domingo et al., Recycling urine for bioelectrochemical hydrogen production using a MoS2 nano carbon coated electrode in a microbial electrolysis cell. J. Power. Sources 527, 231209 (2022). https://doi.org/10.1016/j.jpowsour.2022.231209
M. Kokko, F. Bayerköhler, J. Erben, R. Zengerle, P. Kurz et al., Molybdenum sulphides on carbon supports as electrocatalysts for hydrogen evolution in acidic industrial wastewater. Appl. Energy 190, 1221–1233 (2017). https://doi.org/10.1016/j.apenergy.2016.12.097
E. Ribot-Llobet, J.-Y. Nam, J.C. Tokash, A. Guisasola, B.E. Logan, Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells. Int. J. Hydrog. Energy 38(7), 2951–2956 (2013). https://doi.org/10.1016/j.ijhydene.2012.12.037
A. Tenca, R.D. Cusick, A. Schievano, R. Oberti, B.E. Logan, Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells. Int. J. Hydrog. Energy 38(4), 1859–1865 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.103
P. Xiao, W. Chen, X. Wang, A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv. Energy Mater. 5(24), 1500985 (2015). https://doi.org/10.1002/aenm.201500985
S.J. Marje, H.B. Tyagaraj, S.-K. Hwang, G.S. Rama Raju, K.S. Ranjith et al., Transition nickel/cobalt phosphates: an advanced cathode for hybrid supercapacitors. J. Mater. Chem. A 11(27), 14586–14613 (2023). https://doi.org/10.1039/D3TA02335D
S. Kumaravel, K. Karthick, S. Sam Sankar, A. Karmakar, R. Madhu et al., Recent progresses in engineering of Ni and Co based phosphides for effective electrocatalytic water splitting. ChemElectroChem 8(24), 4638–4685 (2021). https://doi.org/10.1002/celc.202100984
J.F. Callejas, C.G. Read, C.W. Roske, N.S. Lewis, R.E. Schaak, Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chem. Mater. 28(17), 6017–6044 (2016). https://doi.org/10.1021/acs.chemmater.6b02148
X.-Y. Zhang, J.-Y. Xie, Y. Ma, B. Dong, C.-G. Liu et al., An overview of the active sites in transition metal electrocatalysts and their practical activity for hydrogen evolution reaction. Chem. Eng. J. 430, 132312 (2022). https://doi.org/10.1016/j.cej.2021.132312
D. Liang, L. Zhang, W. He, C. Li, J. Liu et al., Efficient hydrogen recovery with CoP-NF as cathode in microbial electrolysis cells. Appl. Energy 264, 114700 (2020). https://doi.org/10.1016/j.apenergy.2020.114700
K. Hagos, C. Liu, X. Lu, Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: employing catalyzed stainless steel mesh cathode. Chin. J. Chem. Eng. 26(3), 574–582 (2018). https://doi.org/10.1016/j.cjche.2017.08.005
L. Dai, C. Jia, B. Liu, Z. Wen, K. Li et al., Ru doped CoP nanosheets for efficient hydrogen evolution in microbial electrolysis cells. Sustain. Energy Fuels 6(21), 4982–4990 (2022). https://doi.org/10.1039/D2SE01019D
F. Li, W. Liu, Y. Sun, W. Ding, S. Cheng, Enhancing hydrogen production with Ni–P coated nickel foam as cathode catalyst in single chamber microbial electrolysis cells. Int. J. Hydrog. Energy 42(6), 3641–3646 (2017). https://doi.org/10.1016/j.ijhydene.2016.10.163
K.-Y. Kim, S.E. Habas, J.A. Schaidle, B.E. Logan, Application of phase-pure nickel phosphide nanops as cathode catalysts for hydrogen production in microbial electrolysis cells. Bioresour. Technol. 293, 122067 (2019). https://doi.org/10.1016/j.biortech.2019.122067
W. Cai, W. Liu, H. Sun, J. Li, L. Yang et al., Ni5P4-NiP2 nanosheet matrix enhances electron-transfer kinetics for hydrogen recovery in microbial electrolysis cells. Appl. Energy 209, 56–64 (2018). https://doi.org/10.1016/j.apenergy.2017.10.082
E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout et al., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135(25), 9267–9270 (2013). https://doi.org/10.1021/ja403440e
L. Wang, Y. Chen, Y. Ye, B. Lu, S. Zhu et al., Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell. Water Sci. Technol. 63(3), 440–448 (2011). https://doi.org/10.2166/wst.2011.241
S. Qin, Y. Duan, X.-L. Zhang, L.-R. Zheng, F.-Y. Gao et al., Ternary nickel-tungsten-copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation. Nat. Commun. 12(1), 2686 (2021). https://doi.org/10.1038/s41467-021-22996-2
Y. Duan, Z.-Y. Yu, L. Yang, L.-R. Zheng, C.-T. Zhang et al., Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nat. Commun. 11(1), 4789 (2020). https://doi.org/10.1038/s41467-020-18585-4
Z. Chen, Y. Xu, D. Ding, G. Song, X. Gan et al., Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction. Nat. Commun. 13(1), 763 (2022). https://doi.org/10.1038/s41467-022-28413-6
H. Zhang, Y. Wang, D. Song, L. Wang, Y. Zhang et al., Cerium-based electrocatalysts for oxygen evolution/reduction reactions: progress and perspectives. Nanomaterials 13(13), 1921 (2023). https://doi.org/10.3390/nano13131921
Y. Li, X. Zhang, Z. Zheng, A review of transition metal oxygen-evolving catalysts decorated by cerium-based materials: current status and future prospects. CCS Chem. 4(1), 31–53 (2022). https://doi.org/10.31635/ccschem.021.202101194
P. Liu, J.A. Rodriguez, Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J. Am. Chem. Soc. 127(42), 14871–14878 (2005). https://doi.org/10.1021/ja0540019
Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu et al., Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 1500286 (2016). https://doi.org/10.1002/advs.201500286
B.M. Tackett, W. Sheng, J.G. Chen, Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule 1(2), 253–263 (2017). https://doi.org/10.1016/j.joule.2017.07.002
P. Gupta, M. Singh, M.T. Noori, J. Jack, Microbial photo electrosynthesis for efficient CO2 conversion using MXenes: materials, mechanisms, and applications. J. Environ. Chem. Eng. 12(3), 113063 (2024). https://doi.org/10.1016/j.jece.2024.113063
S. Jin, Y. Feng, J. Jia, F. Zhao, Z. Wu et al., Three-dimensional N-doped carbon nanotube/graphene composite aerogel anode to develop high-power microbial fuel cell. Energy Environ. Mater. 6(3), e12373 (2023). https://doi.org/10.1002/eem2.12373
F. Kong, X. Cui, Y. Huang, H. Yao, Y. Chen et al., N-doped carbon electrocatalyst: marked ORR activity in acidic media without the contribution from metal sites? Angew. Chem. Int. Ed. 61(15), e202116290 (2022). https://doi.org/10.1002/anie.202116290
C. Rao, Z. Zhao, Z. Wen, Q. Xu, K. Chen et al., N-doped macroporous carbon loading Mo2C as cathode electrocatalyst of hybrid neutral-alkaline microbial electrolysis cells for H2 generation. Electrochim. Acta 431, 141142 (2022). https://doi.org/10.1016/j.electacta.2022.141142
C. Rao, Z. Zhao, Z. Wen, Q. Xu, K. Chen et al., N-doped Mo2C ps as a cathode catalyst of asymmetric neutral-alkaline microbial electrolysis cells for hydrogen production. Sustain. Energy Fuels 7(14), 3375–3383 (2023). https://doi.org/10.1039/d3se00597f
S. Tian, H. Wang, Z. Dong, Y. Yang, H. Yuan et al., Mo2C-induced hydrogen production enhances microbial electrosynthesis of acetate from CO2 reduction. Biotechnol. Biofuels 12, 71 (2019). https://doi.org/10.1186/s13068-019-1413-z
Q. Zhu, J. Peng, Y. Huang, H. Ni, Z.-E. Long et al., Effect of Mo2C-functionalized electrode interface on enhancing microbial cathode electrocatalysis: beyond electrochemical hydrogen evolution. Electrochim. Acta 443, 141924 (2023). https://doi.org/10.1016/j.electacta.2023.141924
K. Tahir, W. Miran, J. Jang, N. Maile, A. Shahzad et al., MXene-coated biochar as potential biocathode for improved microbial electrosynthesis system. Sci. Total. Environ. 773, 145677 (2021). https://doi.org/10.1016/j.scitotenv.2021.145677
K. Tahir, W. Miran, J. Jang, A. Shahzad, M. Moztahida et al., A novel MXene-coated biocathode for enhanced microbial electrosynthesis performance. Chem. Eng. J. 381, 122687 (2020). https://doi.org/10.1016/j.cej.2019.122687
K. Tahir, N. Maile, A.A. Ghani, B. Kim, J. Jang et al., Development of a three-dimensional macroporous sponge biocathode coated with carbon nanotube–MXene composite for high-performance microbial electrosynthesis systems. Bioelectrochemistry 146, 108140 (2022). https://doi.org/10.1016/j.bioelechem.2022.108140
J. Liu, S. Yun, K. Wang, L. Liu, J. An et al., Enhanced methane production in microbial electrolysis cell coupled anaerobic digestion system with MXene accelerants. Bioresour. Technol. 380, 129089 (2023). https://doi.org/10.1016/j.biortech.2023.129089
F. Harnisch, G. Sievers, U. Schröder, Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions. Appl. Catal. B Environ. 89(3–4), 455–458 (2009). https://doi.org/10.1016/j.apcatb.2009.01.003
Y. Zhou, J. Niu, G. Zhang, M. Yu, F. Yang, A three-dimensional self-standing Mo2C/nitrogen-doped graphene aerogel: enhancement hydrogen production from landfill leachate wastewater in MFCs-AEC coupled system. Environ. Res. 184, 109283 (2020). https://doi.org/10.1016/j.envres.2020.109283
G. Zhang, Y. Zhou, F. Yang, Hydrogen production from microbial fuel cells-ammonia electrolysis cell coupled system fed with landfill leachate using Mo2C/N-doped graphene nanocomposite as HER catalyst. Electrochim. Acta 299, 672–681 (2019). https://doi.org/10.1016/j.electacta.2019.01.055
S. Lu, B. Lu, G. Tan, W. Moe, W. Xu et al., Mo2N nanobelt cathodes for efficient hydrogen production in microbial electrolysis cells with shaped biofilm microbiome. Biosens. Bioelectron. 167, 112491 (2020). https://doi.org/10.1016/j.bios.2020.112491
I.P. Hidayati, P. Ekadewi, R. Arbianti, T. Surya Utami, Activated carbon-Fe catalyst modification on stainless steel cathode affects hydrogen production in microbial electrolysis cell. IOP Conf. Ser. Earth Environ. Sci. 749(1), 012071 (2021). https://doi.org/10.1088/1755-1315/749/1/012071
K.-Y. Kim, B.E. Logan, Nickel powder blended activated carbon cathodes for hydrogen production in microbial electrolysis cells. Int. J. Hydrog. Energy 44(26), 13169–13174 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.041
Y. Zhao, Z. Dong, Y. Wang, D. Yang, X. An, Orthogonal test design for optimisation of the carbon-based nickel electrodeposits as cathode catalysts for hydrogen evolution in microbial electrolysis cell. Int. J. Electrochem. Sci. 14(3), 2883–2892 (2019). https://doi.org/10.20964/2019.03.04
D.A. Moreno-Jimenez, K.-Y. Kim, Enhanced wettability improves catalytic activity of nickel-functionalized activated carbon cathode for hydrogen production in microbial electrolysis cells. Bioresour. Technol. 350, 126881 (2022). https://doi.org/10.1016/j.biortech.2022.126881
S. Son, B. Koo, H. Chai, H.V.H. Tran, S. Pandit et al., Comparison of hydrogen production and system performance in a microbial electrolysis cell containing cathodes made of non-platinum catalysts and binders. J. Water Process. Eng. 40, 101844 (2021). https://doi.org/10.1016/j.jwpe.2020.101844
K.-Y. Kim, W. Yang, B.E. Logan, Regenerable nickel-functionalized activated carbon cathodes enhanced by metal adsorption to improve hydrogen production in microbial electrolysis cells. Environ. Sci. Technol. 52(12), 7131–7137 (2018). https://doi.org/10.1021/acs.est.7b06005
Q. Wang, L. Huang, H. Yu, X. Quan, Y. Li et al., Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells. Int. J. Hydrog. Energy 40(1), 184–196 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.014
A. Yadav, N. Verma, Efficient hydrogen production using Ni-graphene oxide-dispersed laser-engraved 3D carbon micropillars as electrodes for microbial electrolytic cell. Renew. Energy 138, 628–638 (2019). https://doi.org/10.1016/j.renene.2019.01.100
N. Aryal, L. Wan, M.H. Overgaard, A.C. Stoot, Y. Chen et al., Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode. Bioelectrochemistry 128, 83–93 (2019). https://doi.org/10.1016/j.bioelechem.2019.03.011
S. Xiu, J. Lu, Y. Guo, Y. Li, F. Liu et al., Confinement strategy to boost the compatibility of hybrid microbial-inorganic catalysis for highly efficient CO2 reduction. Chem. Eng. J. 474, 145407 (2023). https://doi.org/10.1016/j.cej.2023.145407
L. Xiao, Z. Wen, S. Ci, J. Chen, Z. He, Carbon/iron-based nanorod catalysts for hydrogen production in microbial electrolysis cells. Nano Energy 1(5), 751–756 (2012). https://doi.org/10.1016/j.nanoen.2012.06.002
M.F. Manuel, V. Neburchilov, H. Wang, S.R. Guiot, B. Tartakovsky, Hydrogen production in a microbial electrolysis cell with nickel-based gas diffusion cathodes. J. Power. Sources 195(17), 5514–5519 (2010). https://doi.org/10.1016/j.jpowsour.2010.03.061
M. Qin, W.A. Maza, B.M. Stratakes, S.R. Ahrenholtz, Nanoparticulate Ni(OH)2 films synthesized from macrocyclic Nickel (II) cyclam for hydrogen production in microbial electrolysis cells nanoparticulate Ni(OH)2 films synthesized from macrocyclic nickel (II) cyclam for hydrogen production in microbia. J. Electrochem. Soc. 163, F437 (2016). https://doi.org/10.1149/2.1081605jes
J. Wang, Y. Li, M. Liu, Z. Li, X. Gao et al., A nickel- and cerium-doped zeolite composite: an affordable cathode material for biohydrogen production in microbial electrolysis cells. ChemPlusChem 85(10), 2290–2297 (2020). https://doi.org/10.1002/cplu.202000492
Y. Li, Q. Wei, X. Zhao, Y. Qi, M. Guo et al., Degradation of sulfamethazine by microbial electrolysis cell with nickel-cobalt co-modified biocathode. Environ. Sci. Pollut. Res. Int. 31(11), 16497–16510 (2024). https://doi.org/10.1007/s11356-024-32313-1
L. Wang, W. Liu, T. Sangeetha, Z. Guo, Z. He et al., Electrodeposited Ni–Co–S nanosheets on nickel foam as bioelectrochemical cathodes for efficient H2 evolution. Int. J. Hydrog. Energy 45(11), 6583–6591 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.001
L. Lu, D. Hou, Y. Fang, Y. Huang, Z.J. Ren, Nickel based catalysts for highly efficient H2 evolution from wastewater in microbial electrolysis cells. Electrochim. Acta 206, 381–387 (2016). https://doi.org/10.1016/j.electacta.2016.04.167
Y. Zhao, Z. Dong, Y. Wang, J. Li, X. An et al., Process kinetics for the electrocatalytic hydrogen evolution reaction on carbon-based Ni/NiO nanocomposite in a single-chamber microbial electrolysis cell. Int. J. Hydrog. Energy 44(54), 28841–28847 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.018
I. Satar, M.H. Abu Bakar, W.R. Wan Daud, N.H. Mohd Yasin, M.R. Somalu et al., Feasibility of Ni/Ti and Ni/GF cathodes in microbial electrolysis cells for hydrogen production from fermentation effluent: a step toward real application. Int. J. Energy Res. 44(9), 7464–7476 (2020). https://doi.org/10.1002/er.5466
M. Mitov, E. Chorbadzhiyska, L. Nalbandian, Y. Hubenova, Nickel-based electrodeposits as potential cathode catalysts for hydrogen production by microbial electrolysis. J. Power. Sources 356, 467–472 (2017). https://doi.org/10.1016/j.jpowsour.2017.02.066
H. Hu, Y. Fan, H. Liu, Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int. J. Hydrog. Energy 34(20), 8535–8542 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.011
X. Zheng, R. Lin, J. Xu, Y. He, X. Zhang et al., Enhanced methane production by bimetallic metal–organic frameworks (MOFs) as cathode in an anaerobic digestion microbial electrolysis cell. Chem. Eng. J. 440, 135799 (2022). https://doi.org/10.1016/j.cej.2022.135799
C. Wang, X. Ye, Y. Liu, Z. Jia, C. Cao et al., Enhanced anaerobic digestion for degradation of swine wastewater through a Fe/Ni-MOF modified microbial electrolysis cell. J. Clean. Prod. 380, 134773 (2022). https://doi.org/10.1016/j.jclepro.2022.134773
X. Zheng, J. Xu, R. Lin, Y. He, Y. Yu et al., Internal driving mechanism of microbial community and metabolic pathway for psychrophilic anaerobic digestion by microbial electrolysis cell. Bioresour. Technol. 374, 128764 (2023). https://doi.org/10.1016/j.biortech.2023.128764
J. Dai, Z. Huang, H. Zhang, H. Shi, S.R.B. Arulmani et al., Promoted Sb removal with hydrogen production in microbial electrolysis cell by ZIF-67-derived modified sulfate-reducing bacteria bio-cathode. Sci. Total. Environ. 856, 158839 (2023). https://doi.org/10.1016/j.scitotenv.2022.158839
T. Li, Y. Chen, K. Zhang, X. Li, T. Song et al., Visible light-driven dual photoelectrode microbial electrosynthesis using BiVO4-RuO2-IrO2 on Ti mesh photoanode and ZIF-67/g-C3N4 on carbon felt photocathode for the efficient reduction of CO2 into acetate. Appl. Energy 348, 121609 (2023). https://doi.org/10.1016/j.apenergy.2023.121609
J.M. Foley, R.A. Rozendal, C.K. Hertle, P.A. Lant, K. Rabaey, Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ. Sci. Technol. 44(9), 3629–3637 (2010). https://doi.org/10.1021/es100125h
J. Chen, W. Xu, X. Wu, N. Lu et al., System development and environmental performance analysis of a pilot scale microbial electrolysis cell for hydrogen production using urban wastewater. Energy Convers. Manag. 193, 52–63 (2019). https://doi.org/10.1016/j.enconman.2019.04.060
M.Y. Chin, Z.X. Phuang, K.S. Woon, M.M. Hanafiah, Z. Zhang et al., Life cycle assessment of bioelectrochemical and integrated microbial fuel cell systems for sustainable wastewater treatment and resource recovery. J. Environ. Manag. 320, 115778 (2022). https://doi.org/10.1016/j.jenvman.2022.115778
J. Zhang, H. Yuan, I.M. Abu-Reesh, Z. He, C. Yuan, Life cycle environmental impact comparison of bioelectrochemical systems for wastewater treatment. Procedia CIRP 80, 382–388 (2019). https://doi.org/10.1016/j.procir.2019.01.075
D. Pant, A. Singh, G. Van Bogaert, Y.A. Gallego, L. Diels et al., An introduction to the life cycle assessment (LCA of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renew. Sustain. Energy Rev. 15(2), 1305–1313 (2011). https://doi.org/10.1016/j.rser.2010.10.005
S. Tutar Öksüz, Life cycle assessment of microbial electrolysis cells for hydrogen generation using TRACI methodology. Sakarya Univ. J. Sci. 26(3), 620–632 (2022). https://doi.org/10.16984/saufenbilder.1005044
M. Dadashi Firouzjaei, S.K. Nemani, M. Sadrzadeh, E.K. Wujcik, M. Elliott et al., Life-cycle assessment of Ti3 C2 tx MXene synthesis. Adv. Mater. 35(31), e2300422 (2023). https://doi.org/10.1002/adma.202300422
M. Hachhach, H. Akram, A. El Kasmi, M. Hanafi, O. Achak et al., Life cycle assessment of large-scale production of MoS2 nanomaterials through the solvothermal method. J. Nanopart. Res. 24(9), 181 (2022). https://doi.org/10.1007/s11051-022-05563-8
V. Ntouros, I. Kousis, D. Papadaki, A.L. Pisello, M.N. Assimakopoulos, Life cycle assessment on different synthetic routes of ZIF-8 nanomaterials. Energies 14(16), 4998 (2021). https://doi.org/10.3390/en14164998
C.A. Grande, R. Blom, A. Spjelkavik, V. Moreau, J. Payet, Life-cycle assessment as a tool for eco-design of metal-organic frameworks (MOFs). Sustain. Mater. Technol. 14, 11–18 (2017). https://doi.org/10.1016/j.susmat.2017.10.002
E.S. Heidrich, J. Dolfing, K. Scott, S.R. Edwards, C. Jones et al., Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Appl. Microbiol. Biotechnol. 97(15), 6979–6989 (2013). https://doi.org/10.1007/s00253-012-4456-7
S.S. Lim, J.-M. Fontmorin, P. Izadi, W.R. Wan Daud, K. Scott et al., Impact of applied cell voltage on the performance of a microbial electrolysis cell fully catalysed by microorganisms. Int. J. Hydrog. Energy 45(4), 2557–2568 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.142
L. Gil-Carrera, A. Escapa, B. Carracedo, A. Morán, X. Gómez, Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages. Bioresour. Technol. 146, 63–69 (2013). https://doi.org/10.1016/j.biortech.2013.07.020
B. Tartakovsky, P. Mehta, G. Santoyo, S.R. Guiot, Maximizing hydrogen production in a microbial electrolysis cell by real-time optimization of applied voltage. Int. J. Hydrog. Energy 36(17), 10557–10564 (2011). https://doi.org/10.1016/j.ijhydene.2011.05.162
R.A. Rozendal, H.V.M. Hamelers, K. Rabaey, J. Keller, C.J.N. Buisman, Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 26(8), 450–459 (2008). https://doi.org/10.1016/j.tibtech.2008.04.008
J.G. Freeze, H.R. Kelly, V.S. Batista, Search for catalysts by inverse design: artificial intelligence, mountain climbers, and alchemists. Chem. Rev. 119(11), 6595–6612 (2019). https://doi.org/10.1021/acs.chemrev.8b00759
L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater et al., Towards the online computer-aided design of catalytic pockets. Nat. Chem. 11(10), 872–879 (2019). https://doi.org/10.1038/s41557-019-0319-5
A.H. Motagamwala, J.A. Dumesic, Microkinetic modeling: a tool for rational catalyst design. Chem. Rev. 121(2), 1049–1076 (2021). https://doi.org/10.1021/acs.chemrev.0c00394
E.J. Kluender, J.L. Hedrick, K.A. Brown, R. Rao, B. Meckes et al., Catalyst discovery through megalibraries of nanomaterials. Proc. Natl. Acad. Sci. U.S.A. 116(1), 40–45 (2019). https://doi.org/10.1073/pnas.1815358116
D.K. Madheswaran, A. Jayakumar, Recent advancements on non-platinum based catalyst electrode material for polymer electrolyte membrane fuel cells: a mini techno-economic review. Bull. Mater. Sci. 44(4), 287 (2021). https://doi.org/10.1007/s12034-021-02572-6
E. Ruiz-López, J. Gandara-Loe, F. Baena-Moreno, T.R. Reina, J.A. Odriozola, Electrocatalytic CO2 conversion to C2 products: catalysts design, market perspectives and techno-economic aspects. Renew. Sustain. Energy Rev. 161, 112329 (2022). https://doi.org/10.1016/j.rser.2022.112329
M.I. Blanco, The economics of wind energy. Renew. Sustain. Energy Rev. 13(6–7), 1372–1382 (2009). https://doi.org/10.1016/j.rser.2008.09.004
S.L.Y. Lo, B.S. How, W.D. Leong, S.Y. Teng, M.A. Rhamdhani et al., Techno-economic analysis for biomass supply chain: a state-of-the-art review. Renew. Sustain. Energy Rev. 135, 110164 (2021). https://doi.org/10.1016/j.rser.2020.110164
S. Masoud Parsa, M. Majidniya, W.H. Alawee, H.A. Dhahad, H. Muhammad Ali et al., Thermodynamic, economic, and sensitivity analysis of salt gradient solar pond (SGSP) integrated with a low-temperature multi effect desalination (MED): case study, Iran. Sustain. Energy Technol. Assess. 47, 101478 (2021). https://doi.org/10.1016/j.seta.2021.101478
M.M. Mohideen, B. Subramanian, J. Sun, J. Ge, H. Guo et al., Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles. Renew. Sustain. Energy Rev. 174, 113153 (2023). https://doi.org/10.1016/j.rser.2023.113153
S.M. Parsa, A. Yazdani, D. Javadi, M. Afrand, N. Karimi et al., Selecting efficient side of thermoelectric in pyramid-shape solar desalination units incorporated phase change material (PCM), nanop, turbulator with battery storage powered by photovoltaic. J. Energy Storage 51, 104448 (2022). https://doi.org/10.1016/j.est.2022.104448
S. Shoeibi, N. Rahbar, A. Abedini Esfahlani, H. Kargarsharifabad, A comprehensive review of enviro-exergo-economic analysis of solar stills. Renew. Sustain. Energy Rev. 149, 111404 (2021). https://doi.org/10.1016/j.rser.2021.111404
S.M. Parsa, F. Norouzpour, S. Shoeibi, A. Shahsavar, S. Aberoumand et al., A comprehensive study to find the optimal fraction of nanop coated at the interface of solar desalination absorbers: 5E and GHGs analysis in different seasons. Sol. Energy Mater. Sol. Cells 256, 112308 (2023). https://doi.org/10.1016/j.solmat.2023.112308
S.M. Parsa, A. Rahbar, D. Javadi, M.H. Koleini, M. Afrand et al., Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000m: altitude concept. J. Clean. Prod. 261, 121243 (2020). https://doi.org/10.1016/j.jclepro.2020.121243
J. Jiang, J.A. Lopez-Ruiz, Y. Bian, D. Sun, Y. Yan et al., Scale-up and techno-economic analysis of microbial electrolysis cells for hydrogen production from wastewater. Water Res. 241, 120139 (2023). https://doi.org/10.1016/j.watres.2023.120139
E.S. Heidrich, S.R. Edwards, J. Dolfing, S.E. Cotterill, T.P. Curtis, Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12month period. Bioresour. Technol. 173, 87–95 (2014). https://doi.org/10.1016/j.biortech.2014.09.083
O. Guerrero-Sodric, J.A. Baeza, A. Guisasola, Exploring key operational factors for improving hydrogen production in a pilot-scale microbial electrolysis cell treating urban wastewater. Chem. Eng. J. 469, 144001 (2023). https://doi.org/10.1016/j.cej.2023.144001
S.E. Cotterill, J. Dolfing, T.P. Curtis, E.S. Heidrich, Community assembly in wastewater-fed pilot-scale microbial electrolysis cells. Front. Energy Res. 6, 98 (2018). https://doi.org/10.3389/fenrg.2018.00098
S.E. Cotterill, J. Dolfing, C. Jones, T.P. Curtis, E.S. Heidrich, Low temperature domestic wastewater treatment in a microbial electrolysis cell with 1 m2 anodes: towards system scale-up. Fuel Cells 17(5), 584–592 (2017). https://doi.org/10.1002/fuce.201700034
R.D. Cusick, B. Bryan, D.S. Parker, M.D. Merrill, M. Mehanna et al., Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl. Microbiol. Biotechnol. 89(6), 2053–2063 (2011). https://doi.org/10.1007/s00253-011-3130-9
L. Gil-Carrera, A. Escapa, P. Mehta, G. Santoyo, S.R. Guiot et al., Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production. Bioresour. Technol. 130, 584–591 (2013). https://doi.org/10.1016/j.biortech.2012.12.062
A. Escapa, M.I. San-Martín, R. Mateos, A. Morán, Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations. Bioresour. Technol. 180, 72–78 (2015). https://doi.org/10.1016/j.biortech.2014.12.096
O. Guerrero-Sodric, J.A. Baeza, A. Guisasola, Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant. Water Res. 256, 121616 (2024). https://doi.org/10.1016/j.watres.2024.121616
S.M. Parsa, F. Norozpour, S. Momeni, S. Shoeibi, X. Zeng et al., Advanced nanostructured materials in solar interfacial steam generation and desalination against pathogens: combatting microbial-contaminants in water–a critical review. J. Mater. Chem. A 11(34), 18046–18080 (2023). https://doi.org/10.1039/D3TA03343K
G. Liu, D.B. Catacutan, K. Rathod, K. Swanson, W. Jin et al., Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19(11), 1342–1350 (2023). https://doi.org/10.1038/s41589-023-01349-8
P.K.T. Nguyen, J. Kim, G. Das, H.H. Yoon, D.H. Lee, Optimization of simultaneous dark fermentation and microbial electrolysis cell for hydrogen production from macroalgae using response surface methodology. Biochem. Eng. J. 171, 108029 (2021). https://doi.org/10.1016/j.bej.2021.108029
G. Rani, J.R. Banu, G. Kumar, K.N. Yogalakshmi, Statistical optimization of operating parameters of microbial electrolysis cell treating dairy industry wastewater using quadratic model to enhance energy generation. Int. J. Hydrog. Energy 47(88), 37401–37414 (2022). https://doi.org/10.1016/j.ijhydene.2022.03.120
L. Zou, X. Zhao, K. Wu, C. Liang, J. Liu et al., Multi-objective optimization for microbial electrolysis cell-assisted anaerobic digestion of swine manure. Int. J. Hydrog. Energy 77, 545–556 (2024). https://doi.org/10.1016/j.ijhydene.2024.06.166
S. Shi, G. Xu, Novel performance prediction model of a biofilm system treating domestic wastewater based on stacked denoising auto-encoders deep learning network. Chem. Eng. J. 347, 280–290 (2018). https://doi.org/10.1016/j.cej.2018.04.087
A. Hosseinzadeh, J.L. Zhou, A. Altaee, M. Baziar, D. Li, Effective modelling of hydrogen and energy recovery in microbial electrolysis cell by artificial neural network and adaptive network-based fuzzy inference system. Bioresour. Technol. 316, 123967 (2020). https://doi.org/10.1016/j.biortech.2020.123967
J. Yoon, D.-Y. Cheong, G. Baek, Predicting current and hydrogen productions from microbial electrolysis cells using random forest model. Appl. Energy 371, 123641 (2024). https://doi.org/10.1016/j.apenergy.2024.123641
K. Takahashi, L. Takahashi, I. Miyazato, J. Fujima, Y. Tanaka et al., The rise of catalyst informatics: towards catalyst genomics. ChemCatChem 11(4), 1146–1152 (2019). https://doi.org/10.1002/cctc.201801956
K. Takahashi, J. Ohyama, S. Nishimura, J. Fujima, L. Takahashi et al., Catalysts informatics: paradigm shift towards data-driven catalyst design. Chem. Commun. 59(16), 2222–2238 (2023). https://doi.org/10.1039/D2CC05938J
T. Hao, H. Zhou, P. Gai, Z. Wang, Y. Guo et al., Deep learning-assisted single-atom detection of copper ions by combining click chemistry and fast scan voltammetry. Nat. Commun. 15(1), 10292 (2024). https://doi.org/10.1038/s41467-024-54743-8
T. Taniike, A. Fujiwara, S. Nakanowatari, F. García-Escobar, K. Takahashi, Automatic feature engineering for catalyst design using small data without prior knowledge of target catalysis. Commun. Chem. 7, 11 (2024). https://doi.org/10.1038/s42004-023-01086-y
N.S. Lai, Y.S. Tew, X. Zhong, J. Yin, J. Li et al., Artificial intelligence (AI) workflow for catalyst design and optimization. Ind. Eng. Chem. Res. 62(43), 17835–17848 (2023). https://doi.org/10.1021/acs.iecr.3c02520
K. Boonpalit, Y. Wongnongwa, C. Prommin, S. Nutanong, S. Namuangruk, Data-driven discovery of graphene-based dual-atom catalysts for hydrogen evolution reaction with graph neural network and DFT calculations. ACS Appl. Mater. Interfaces 15(10), 12936–12945 (2023). https://doi.org/10.1021/acsami.2c19391
L. Cheng, Y. Tang, K.K. Ostrikov, Q. Xiang, Single-atom heterogeneous catalysts: human- and AI-driven platform for augmented designs, analytics and reality-enabled manufacturing. Angew. Chem. Int. Ed. 63(5), e202313599 (2024). https://doi.org/10.1002/anie.202313599
H. Li, Y. Jiao, K. Davey, S.-Z. Qiao, Data-driven machine learning for understanding surface structures of heterogeneous catalysts. Angew. Chem. Int. Ed. 62(9), e202216383 (2023). https://doi.org/10.1002/anie.202216383
Z.-K. Han, D. Sarker, R. Ouyang, A. Mazheika, Y. Gao et al., Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nat. Commun. 12(1), 1833 (2021). https://doi.org/10.1038/s41467-021-22048-9
J.A. Esterhuizen, B.R. Goldsmith, S. Linic, Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5(3), 175–184 (2022). https://doi.org/10.1038/s41929-022-00744-z
X. Zhang, Y. Tian, L. Chen, X. Hu, Z. Zhou, Machine learning: a new paradigm in computational electrocatalysis. J. Phys. Chem. Lett. 13(34), 7920–7930 (2022). https://doi.org/10.1021/acs.jpclett.2c01710
N. Omidvar, H.S. Pillai, S.-H. Wang, T. Mou, S. Wang et al., Interpretable machine learning of chemical bonding at solid surfaces. J. Phys. Chem. Lett. 12(46), 11476–11487 (2021). https://doi.org/10.1021/acs.jpclett.1c03291
H. Xin, Catalyst design with machine learning. Nat. Energy 7(9), 790–791 (2022). https://doi.org/10.1038/s41560-022-01112-8
S. Zhai, H. Xie, P. Cui, D. Guan, J. Wang et al., A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat. Energy 7(9), 866–875 (2022). https://doi.org/10.1038/s41560-022-01098-3
Z. Han, A. Chen, Z. Li, M. Zhang, Z. Wang et al., Machine learning-based design of electrocatalytic materials towards high-energy lithium||sulfur batteries development. Nat. Commun. 15(1), 8433 (2024). https://doi.org/10.1038/s41467-024-52550-9
M. Raissi, G.E. Karniadakis, Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018). https://doi.org/10.1016/j.jcp.2017.11.039
T. Mou, H.S. Pillai, S. Wang, M. Wan, X. Han et al., Bridging the complexity gap in computational heterogeneous catalysis with machine learning. Nat. Catal. 6(2), 122–136 (2023). https://doi.org/10.1038/s41929-023-00911-w
G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang et al., Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021). https://doi.org/10.1038/s42254-021-00314-5
Z. Wu, H. Wang, C. He, B. Zhang, T. Xu et al., The application of physics-informed machine learning in multiphysics modeling in chemical engineering. Ind. Eng. Chem. Res. 62(44), 18178–18204 (2023). https://doi.org/10.1021/acs.iecr.3c02383
Y. Chong, Y. Huo, S. Jiang, X. Wang, B. Zhang et al., Machine learning of spectra-property relationship for imperfect and small chemistry data. Proc. Natl. Acad. Sci. U.S.A. 120(20), e2220789120 (2023). https://doi.org/10.1073/pnas.2220789120
B. Dou, Z. Zhu, E. Merkurjev, L. Ke, L. Chen et al., Machine learning methods for small data challenges in molecular science. Chem. Rev. 123(13), 8736–8780 (2023). https://doi.org/10.1021/acs.chemrev.3c00189
M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang et al., Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581(7807), 178–183 (2020). https://doi.org/10.1038/s41586-020-2242-8
D.H. Mok, H. Li, G. Zhang, C. Lee, K. Jiang et al., Data-driven discovery of electrocatalysts for CO2 reduction using active motifs-based machine learning. Nat. Commun. 14(1), 7303 (2023). https://doi.org/10.1038/s41467-023-43118-0
K. Tran, Z.W. Ulissi, Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1(9), 696–703 (2018). https://doi.org/10.1038/s41929-018-0142-1
J. Moon, W. Beker, M. Siek, J. Kim, H.S. Lee et al., Active learning guides discovery of a champion four-metal perovskite oxide for oxygen