Electromagnetic Functions Modulation of Recycled By-Products by Heterodimensional Structure
Corresponding Author: Jingjing Chang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 137
Abstract
One of the significant technological challenges in safeguarding electronic devices pertains to the modulation of electromagnetic (EM) wave jamming and the recycling of defensive shields. The synergistic effect of heterodimensional materials can effectively enable the manipulation of EM waves by altering the nanostructure. Here we propose a novel approach for upcycling by-products of silver nanowires that can fabricate shape-tunable aerogels which enable the modulation of its interaction with microwaves by heterodimensional structure of by-products. By-product heterodimensionality was used to design EM-wave-jamming-dissipation structures and therefore two typical tunable aerogel forms were studied. The first tunable form was aerogel film, which shielded EM interference (EMI shielding effectiveness (EMI SE) > 89 dB) and the second tunable form was foam, which performed dual EM functions (SE > 30 dB& reflective loss (RL) < -35 dB, effective absorption bandwidth (EAB) > 6.7 GHz). We show that secondary recycled aerogels retain nearly all of their EM protection properties, making this type of closed-loop cycle an appealing option. Our findings pave the way for the development of adaptive EM functions with nanoscale regulation in a green and closed-loop cycle, and they shed light on the fundamental understanding of microwave interactions with heterodimensional structures.
Highlights:
1 Turning trash into treasure: The outstanding tunable aerogels were fabricated via heterodimensional by-products of silver nanowires. The first tunable form, aerogel film, shields electromagnetic interference (EMI SE > 89 dB), while the second tunable form, aerogel foam, performs dual EM functions (EMI SE > 30 dB and RL < -35 dB, EAB > 6.7 GHz).
2 Recycle again: The secondary recycled aerogels retain nearly all of their EM protection qualities, making this closed-loop cycle desirable.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Cao, H. Bu, M. Vinet, M. Cao, S. Takagi et al., The future transistors. Nature 620, 501–515 (2023). https://doi.org/10.1038/s41586-023-06145-x
- C.-Y. Huang, G. Dewey, E. Mannebach, A. Phan, P. Morrow et al., 3-D self-aligned stacked NMOS-on-PMOS nanoribbon transistors for continued Moore’s law scaling. 2020 IEEE International Electron Devices Meeting (IEDM). December 12–18, 2020. San Francisco, CA, USA. IEEE, (2020). https://doi.org/10.1109/iedm13553.2020.9372066
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- M. Ying, R. Zhao, X. Hu, Z. Zhang, W. Liu et al., Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew. Chem. Int. Ed. 61, e202201323 (2022). https://doi.org/10.1002/anie.202201323
- E. Sicard, J. Wu, R.J. Shen, E.-P. Li, E.-X. Liu et al., Recent advances in electromagnetic compatibility of 3D-ICs &2013; part I. IEEE Electromagn. Compat. Mag. 4, 79–89 (2015). https://doi.org/10.1109/MEMC.2015.7407186
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
- Q. An, D. Li, W. Liao, T. Liu, D. Joralmon et al., A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv. Mater. 35, e2300659 (2023). https://doi.org/10.1002/adma.202300659
- L. Liu, B. Huang, Y. Lu, Y. Zhao, X. Tang et al., Interactions between electromagnetic radiation and biological systems. iScience 27, 109201 (2024). https://doi.org/10.1016/j.isci.2024.109201
- G. Yang, M. Wang, J. Dong, F. Su, Y. Ji et al., Fibers-induced segregated-like structure for polymer composites achieving excellent thermal conductivity and electromagnetic interference shielding efficiency. Compos. Part B Eng. 246, 110253 (2022). https://doi.org/10.1016/j.compositesb.2022.110253
- Z. Nan, W. Wei, Z. Lin, J. Chang, Y. Hao, Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 15, 172 (2023). https://doi.org/10.1007/s40820-023-01122-5
- N.B. Abramenko, T.B. Demidova, V. Abkhalimov, B.G. Ershov, E.Y. Krysanov et al., Ecotoxicity of different-shaped silver nanops: case of zebrafish embryos. J. Hazard. Mater. 347, 89–94 (2018). https://doi.org/10.1016/j.jhazmat.2017.12.060
- X. Lu, Y. Zhu, R. Bai, Z. Wu, W. Qian et al., Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades. Nat. Nanotechnol. 14, 719–727 (2019). https://doi.org/10.1038/s41565-019-0472-4
- S. Liu, Y. Lu, W. Chen, Bridge knowledge gaps in environmental health and safety for sustainable development of nano-industries. Nano Today 23, 11–15 (2018). https://doi.org/10.1016/j.nantod.2018.09.002
- S.F. Hansen, A. Lennquist, Carbon nanotubes added to the SIN list as a nanomaterial of very high concern. Nat. Nanotechnol. 15, 3–4 (2020). https://doi.org/10.1038/s41565-019-0613-9
- B.K. Reck, T.E. Graedel, Challenges in metal recycling. Science 337, 690–695 (2012). https://doi.org/10.1126/science.1217501
- C.R. Westerman, B.C. McGill, J.J. Wilker, Sustainably sourced components to generate high-strength adhesives. Nature 621, 306–311 (2023). https://doi.org/10.1038/s41586-023-06335-7
- Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of CuCo2S4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14, 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
- F. Pan, M. Ning, Z. Li, D. Batalu, H. Guo et al., Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 33, 2300374 (2023). https://doi.org/10.1002/adfm.202300374
- R. Song, B. Mao, Z. Wang, Y. Hui, N. Zhang et al., Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding. Proc. Natl. Acad. Sci. U.S.A. 120, e2209807120 (2023). https://doi.org/10.1073/pnas.2209807120
- J. Zhou, W. Zhang, Y.-C. Lin, J. Cao, Y. Zhou et al., Heterodimensional superlattice with in-plane anomalous Hall effect. Nature 609, 46–51 (2022). https://doi.org/10.1038/s41586-022-05031-2
- Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, e2107538 (2022). https://doi.org/10.1002/adma.202107538
- C. Jiang, B. Wen, Construction of 1D heterogeneous Co/C@Ag nws with tunable electromagnetic wave absorption and shielding performance. Small 19, e2301760 (2023). https://doi.org/10.1002/smll.202301760
- M. Cheng, M. Ying, R. Zhao, L. Ji, H. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
- T. Zhou, H. Ni, Y. Wang, C. Wu, H. Zhang et al., Ultratough graphene-black phosphorus films. Proc. Natl. Acad. Sci. U.S.A. 117, 8727–8735 (2020). https://doi.org/10.1073/pnas.1916610117
- H. Wang, X. Sun, Y. Wang, K. Li, J. Wang et al., Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra-high electrical conductivity. Nat. Commun. 14, 380 (2023). https://doi.org/10.1038/s41467-023-36082-2
- Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
- C. Yi, H. Liu, S. Zhang, Y. Yang, Y. Zhang et al., Self-limiting directional nanop bonding governed by reaction stoichiometry. Science 369, 1369–1374 (2020). https://doi.org/10.1126/science.aba8653
- T. Xue, T. He, L. Peng, O.A. Syzgantseva, R. Li et al., A customized MOF-polymer composite for rapid gold extraction from water matrices. Sci. Adv. 9, eadg4923 (2023). https://doi.org/10.1126/sciadv.adg4923
- D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
- P. Zhonglei Ma, X. Xiang, P. Liang Shao, D. Yali Zhang, P. Junwei Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
- Y. Wang, H. Qin, Z. Li, J. Dai, H.-P. Cong et al., Highly compressible and environmentally adaptive conductors with high-tortuosity interconnected cellular architecture. Nat. Synth. 1, 975–986 (2022). https://doi.org/10.1038/s44160-022-00167-5
- Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanops. Science 298, 2176–2179 (2002). https://doi.org/10.1126/science.1077229
- Y. Sun, B. Gates, B. Mayers, Y. Xia, Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165–168 (2002). https://doi.org/10.1021/nl010093y
- C. Chen, Y. Zhao, W. Wei, J. Tao, G. Lei et al., Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity and their application in transparent electronics. J. Mater. Chem. C 5, 2240–2246 (2017). https://doi.org/10.1039/C6TC05455B
- Y.-C. Zhang, R. Ding, P.-G. Su, F.-R. Zeng, X.-X. Jia et al., Biomimetic ambient-pressure-dried aerogels with oriented microstructures for enhanced electromagnetic shielding. Adv. Funct. Mater., 2414683 (2024). https://doi.org/10.1002/adfm.202414683
- W.M. Schuette, W.E. Buhro, Silver chloride as a heterogeneous nucleant for the growth of silver nanowires. ACS Nano 7, 3844–3853 (2013). https://doi.org/10.1021/nn400414h
- KC Pradel, K Sohn, P Jiaxing Huang, Cross-flow purification of nanowires. Angew. Chem. Int. Ed. 50, 3412–3416 (2011). https://doi.org/10.1002/ange.201100087
- M. Arjmand, Electrical conductivity, electromagnetic interference shielding and dielectric properties of multi-walled carbon nanotube/polymer composites. Thesis, NS23073, (2014).
- M.J. Hÿtch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998). https://doi.org/10.1016/S0304-3991(98)00035-7
- S. Hao, H. Sheng, M. Liu, J. Huang, G. Zheng et al., Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat. Nanotechnol. 16, 1371–1377 (2021). https://doi.org/10.1038/s41565-021-00986-1
- Y. Sun, Y. Su, Z. Chai, L. Jiang, L. Heng, Flexible solid-liquid bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation. Nat. Commun. 15, 7290 (2024). https://doi.org/10.1038/s41467-024-51732-9
- W. Fu, W. Yang, C. Qian, Y. Fu, Y. Zhu, One-pot synthesis of Ag/AgCl heterojunction nanops on polyaniline nanocone arrays on graphene oxide for microwave absorption. ACS Appl. Nano Mater. 6, 3728–3737 (2023). https://doi.org/10.1021/acsanm.2c05440
- J.S. Griffin, M.F. Bertino, T.M. Selden, S.M. Członka, S.A. Steiner III, Freeze drying. Springer Handbook of Aerogels. Springer International Publishing, (2023), pp 121–131. https://doi.org/10.1007/978-3-030-27322-4_5
- G.W. Scherer, Freezing gels. J. Non Cryst. Solids 155, 1–25 (1993). https://doi.org/10.1016/0022-3093(93)90467-c
- G. Wang, D. Yi, X. Jia, J. Chen, B. Shen et al., Structural design of compressible shape-memory foams for smart self-fixable electromagnetic shielding with reduced reflection. Mater. Today Phys. 22, 100612 (2022). https://doi.org/10.1016/j.mtphys.2022.100612
- J. Feng, B.-L. Su, H. Xia, S. Zhao, C. Gao et al., Printed aerogels: chemistry, processing, and applications. Chem. Soc. Rev. 50, 3842–3888 (2021). https://doi.org/10.1039/c9cs00757a
- S. Lee, N.K. Nguyen, W. Kim, M. Kim, V.A. Cao et al., Absorption-dominant electromagnetic interference shielding through electrical polarization and triboelectrification in surface-patterned ferroelectric poly [(vinylidenefluoride-co-trifluoroethylene)-MXene] composite. Adv. Funct. Mater. 33, 2307588 (2023). https://doi.org/10.1002/adfm.202307588
- Z. Nan, W. Wei, Z. Lin, J. Ouyang, J. Chang et al., Flexible electromagnetic interference shields: materials, structure and multifunctionalization. Mater. Sci. Eng. R. Rep. 160, 100823 (2024). https://doi.org/10.1016/j.mser.2024.100823
- G. Yang, X. Zhang, J. Zhu, Z. Li, D. Pan et al., Silver nanops bridging liquid metal for wearable electromagnetic interference fabric. J. Mater. Sci. Technol. 220, 320–328 (2024). https://doi.org/10.1016/j.jmst.2024.10.006
- G. Yang, L. Zhou, M. Wang, T. Xiang, D. Pan et al., Polymer composites designed with 3D fibrous CNT “tracks” achieving excellent thermal conductivity and electromagnetic interference shielding efficiency. Nano Res. 16, 11411–11421 (2023). https://doi.org/10.1007/s12274-023-5884-7
- B. Zhao, Y. Du, H. Lv, Z. Yan, H. Jian et al., Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv. Funct. Mater. 33, 2302172 (2023). https://doi.org/10.1002/adfm.202302172
- S. Ning, M. Wang, S. Luo, G. Yang, Y. Feng et al., Lightweight carbon fiber hybrid film for high-efficiency electromagnetic interference shielding and electro/photo-thermal conversion applications. J. Alloys Compd. 958, 170510 (2023). https://doi.org/10.1016/j.jallcom.2023.170510
- Y. Chen, L. Zhang, Y. Yang, B. Pang, W. Xu et al., Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv. Mater. 33, e2005569 (2021). https://doi.org/10.1002/adma.202005569
- Q. Xia, C. Chen, Y. Yao, J. Li, S. He et al., A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4, 627–635 (2021). https://doi.org/10.1038/s41893-021-00702-w
- J.J. Patil, W.H. Chae, A. Trebach, K.-J. Carter, E. Lee et al., Failing forward: stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 33, 2004356 (2021). https://doi.org/10.1002/adma.202004356
References
W. Cao, H. Bu, M. Vinet, M. Cao, S. Takagi et al., The future transistors. Nature 620, 501–515 (2023). https://doi.org/10.1038/s41586-023-06145-x
C.-Y. Huang, G. Dewey, E. Mannebach, A. Phan, P. Morrow et al., 3-D self-aligned stacked NMOS-on-PMOS nanoribbon transistors for continued Moore’s law scaling. 2020 IEEE International Electron Devices Meeting (IEDM). December 12–18, 2020. San Francisco, CA, USA. IEEE, (2020). https://doi.org/10.1109/iedm13553.2020.9372066
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
M. Ying, R. Zhao, X. Hu, Z. Zhang, W. Liu et al., Wrinkled titanium carbide (MXene) with surface charge polarizations through chemical etching for superior electromagnetic interference shielding. Angew. Chem. Int. Ed. 61, e202201323 (2022). https://doi.org/10.1002/anie.202201323
E. Sicard, J. Wu, R.J. Shen, E.-P. Li, E.-X. Liu et al., Recent advances in electromagnetic compatibility of 3D-ICs &2013; part I. IEEE Electromagn. Compat. Mag. 4, 79–89 (2015). https://doi.org/10.1109/MEMC.2015.7407186
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020). https://doi.org/10.1126/science.aba7977
Q. An, D. Li, W. Liao, T. Liu, D. Joralmon et al., A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures. Adv. Mater. 35, e2300659 (2023). https://doi.org/10.1002/adma.202300659
L. Liu, B. Huang, Y. Lu, Y. Zhao, X. Tang et al., Interactions between electromagnetic radiation and biological systems. iScience 27, 109201 (2024). https://doi.org/10.1016/j.isci.2024.109201
G. Yang, M. Wang, J. Dong, F. Su, Y. Ji et al., Fibers-induced segregated-like structure for polymer composites achieving excellent thermal conductivity and electromagnetic interference shielding efficiency. Compos. Part B Eng. 246, 110253 (2022). https://doi.org/10.1016/j.compositesb.2022.110253
Z. Nan, W. Wei, Z. Lin, J. Chang, Y. Hao, Flexible nanocomposite conductors for electromagnetic interference shielding. Nano-Micro Lett. 15, 172 (2023). https://doi.org/10.1007/s40820-023-01122-5
N.B. Abramenko, T.B. Demidova, V. Abkhalimov, B.G. Ershov, E.Y. Krysanov et al., Ecotoxicity of different-shaped silver nanops: case of zebrafish embryos. J. Hazard. Mater. 347, 89–94 (2018). https://doi.org/10.1016/j.jhazmat.2017.12.060
X. Lu, Y. Zhu, R. Bai, Z. Wu, W. Qian et al., Long-term pulmonary exposure to multi-walled carbon nanotubes promotes breast cancer metastatic cascades. Nat. Nanotechnol. 14, 719–727 (2019). https://doi.org/10.1038/s41565-019-0472-4
S. Liu, Y. Lu, W. Chen, Bridge knowledge gaps in environmental health and safety for sustainable development of nano-industries. Nano Today 23, 11–15 (2018). https://doi.org/10.1016/j.nantod.2018.09.002
S.F. Hansen, A. Lennquist, Carbon nanotubes added to the SIN list as a nanomaterial of very high concern. Nat. Nanotechnol. 15, 3–4 (2020). https://doi.org/10.1038/s41565-019-0613-9
B.K. Reck, T.E. Graedel, Challenges in metal recycling. Science 337, 690–695 (2012). https://doi.org/10.1126/science.1217501
C.R. Westerman, B.C. McGill, J.J. Wilker, Sustainably sourced components to generate high-strength adhesives. Nature 621, 306–311 (2023). https://doi.org/10.1038/s41586-023-06335-7
Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of CuCo2S4@Expanded Graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14, 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
F. Pan, M. Ning, Z. Li, D. Batalu, H. Guo et al., Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 33, 2300374 (2023). https://doi.org/10.1002/adfm.202300374
R. Song, B. Mao, Z. Wang, Y. Hui, N. Zhang et al., Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding. Proc. Natl. Acad. Sci. U.S.A. 120, e2209807120 (2023). https://doi.org/10.1073/pnas.2209807120
J. Zhou, W. Zhang, Y.-C. Lin, J. Cao, Y. Zhou et al., Heterodimensional superlattice with in-plane anomalous Hall effect. Nature 609, 46–51 (2022). https://doi.org/10.1038/s41586-022-05031-2
Z. Wu, H.-W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34, e2107538 (2022). https://doi.org/10.1002/adma.202107538
C. Jiang, B. Wen, Construction of 1D heterogeneous Co/C@Ag nws with tunable electromagnetic wave absorption and shielding performance. Small 19, e2301760 (2023). https://doi.org/10.1002/smll.202301760
M. Cheng, M. Ying, R. Zhao, L. Ji, H. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
T. Zhou, H. Ni, Y. Wang, C. Wu, H. Zhang et al., Ultratough graphene-black phosphorus films. Proc. Natl. Acad. Sci. U.S.A. 117, 8727–8735 (2020). https://doi.org/10.1073/pnas.1916610117
H. Wang, X. Sun, Y. Wang, K. Li, J. Wang et al., Acid enhanced zipping effect to densify MWCNT packing for multifunctional MWCNT films with ultra-high electrical conductivity. Nat. Commun. 14, 380 (2023). https://doi.org/10.1038/s41467-023-36082-2
Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
C. Yi, H. Liu, S. Zhang, Y. Yang, Y. Zhang et al., Self-limiting directional nanop bonding governed by reaction stoichiometry. Science 369, 1369–1374 (2020). https://doi.org/10.1126/science.aba8653
T. Xue, T. He, L. Peng, O.A. Syzgantseva, R. Li et al., A customized MOF-polymer composite for rapid gold extraction from water matrices. Sci. Adv. 9, eadg4923 (2023). https://doi.org/10.1126/sciadv.adg4923
D. Jung, C. Lim, H.J. Shim, Y. Kim, C. Park et al., Highly conductive and elastic nanomembrane for skin electronics. Science 373, 1022–1026 (2021). https://doi.org/10.1126/science.abh4357
P. Zhonglei Ma, X. Xiang, P. Liang Shao, D. Yali Zhang, P. Junwei Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
Y. Wang, H. Qin, Z. Li, J. Dai, H.-P. Cong et al., Highly compressible and environmentally adaptive conductors with high-tortuosity interconnected cellular architecture. Nat. Synth. 1, 975–986 (2022). https://doi.org/10.1038/s44160-022-00167-5
Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanops. Science 298, 2176–2179 (2002). https://doi.org/10.1126/science.1077229
Y. Sun, B. Gates, B. Mayers, Y. Xia, Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165–168 (2002). https://doi.org/10.1021/nl010093y
C. Chen, Y. Zhao, W. Wei, J. Tao, G. Lei et al., Fabrication of silver nanowire transparent conductive films with an ultra-low haze and ultra-high uniformity and their application in transparent electronics. J. Mater. Chem. C 5, 2240–2246 (2017). https://doi.org/10.1039/C6TC05455B
Y.-C. Zhang, R. Ding, P.-G. Su, F.-R. Zeng, X.-X. Jia et al., Biomimetic ambient-pressure-dried aerogels with oriented microstructures for enhanced electromagnetic shielding. Adv. Funct. Mater., 2414683 (2024). https://doi.org/10.1002/adfm.202414683
W.M. Schuette, W.E. Buhro, Silver chloride as a heterogeneous nucleant for the growth of silver nanowires. ACS Nano 7, 3844–3853 (2013). https://doi.org/10.1021/nn400414h
KC Pradel, K Sohn, P Jiaxing Huang, Cross-flow purification of nanowires. Angew. Chem. Int. Ed. 50, 3412–3416 (2011). https://doi.org/10.1002/ange.201100087
M. Arjmand, Electrical conductivity, electromagnetic interference shielding and dielectric properties of multi-walled carbon nanotube/polymer composites. Thesis, NS23073, (2014).
M.J. Hÿtch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998). https://doi.org/10.1016/S0304-3991(98)00035-7
S. Hao, H. Sheng, M. Liu, J. Huang, G. Zheng et al., Torsion strained iridium oxide for efficient acidic water oxidation in proton exchange membrane electrolyzers. Nat. Nanotechnol. 16, 1371–1377 (2021). https://doi.org/10.1038/s41565-021-00986-1
Y. Sun, Y. Su, Z. Chai, L. Jiang, L. Heng, Flexible solid-liquid bi-continuous electrically and thermally conductive nanocomposite for electromagnetic interference shielding and heat dissipation. Nat. Commun. 15, 7290 (2024). https://doi.org/10.1038/s41467-024-51732-9
W. Fu, W. Yang, C. Qian, Y. Fu, Y. Zhu, One-pot synthesis of Ag/AgCl heterojunction nanops on polyaniline nanocone arrays on graphene oxide for microwave absorption. ACS Appl. Nano Mater. 6, 3728–3737 (2023). https://doi.org/10.1021/acsanm.2c05440
J.S. Griffin, M.F. Bertino, T.M. Selden, S.M. Członka, S.A. Steiner III, Freeze drying. Springer Handbook of Aerogels. Springer International Publishing, (2023), pp 121–131. https://doi.org/10.1007/978-3-030-27322-4_5
G.W. Scherer, Freezing gels. J. Non Cryst. Solids 155, 1–25 (1993). https://doi.org/10.1016/0022-3093(93)90467-c
G. Wang, D. Yi, X. Jia, J. Chen, B. Shen et al., Structural design of compressible shape-memory foams for smart self-fixable electromagnetic shielding with reduced reflection. Mater. Today Phys. 22, 100612 (2022). https://doi.org/10.1016/j.mtphys.2022.100612
J. Feng, B.-L. Su, H. Xia, S. Zhao, C. Gao et al., Printed aerogels: chemistry, processing, and applications. Chem. Soc. Rev. 50, 3842–3888 (2021). https://doi.org/10.1039/c9cs00757a
S. Lee, N.K. Nguyen, W. Kim, M. Kim, V.A. Cao et al., Absorption-dominant electromagnetic interference shielding through electrical polarization and triboelectrification in surface-patterned ferroelectric poly [(vinylidenefluoride-co-trifluoroethylene)-MXene] composite. Adv. Funct. Mater. 33, 2307588 (2023). https://doi.org/10.1002/adfm.202307588
Z. Nan, W. Wei, Z. Lin, J. Ouyang, J. Chang et al., Flexible electromagnetic interference shields: materials, structure and multifunctionalization. Mater. Sci. Eng. R. Rep. 160, 100823 (2024). https://doi.org/10.1016/j.mser.2024.100823
G. Yang, X. Zhang, J. Zhu, Z. Li, D. Pan et al., Silver nanops bridging liquid metal for wearable electromagnetic interference fabric. J. Mater. Sci. Technol. 220, 320–328 (2024). https://doi.org/10.1016/j.jmst.2024.10.006
G. Yang, L. Zhou, M. Wang, T. Xiang, D. Pan et al., Polymer composites designed with 3D fibrous CNT “tracks” achieving excellent thermal conductivity and electromagnetic interference shielding efficiency. Nano Res. 16, 11411–11421 (2023). https://doi.org/10.1007/s12274-023-5884-7
B. Zhao, Y. Du, H. Lv, Z. Yan, H. Jian et al., Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv. Funct. Mater. 33, 2302172 (2023). https://doi.org/10.1002/adfm.202302172
S. Ning, M. Wang, S. Luo, G. Yang, Y. Feng et al., Lightweight carbon fiber hybrid film for high-efficiency electromagnetic interference shielding and electro/photo-thermal conversion applications. J. Alloys Compd. 958, 170510 (2023). https://doi.org/10.1016/j.jallcom.2023.170510
Y. Chen, L. Zhang, Y. Yang, B. Pang, W. Xu et al., Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv. Mater. 33, e2005569 (2021). https://doi.org/10.1002/adma.202005569
Q. Xia, C. Chen, Y. Yao, J. Li, S. He et al., A strong, biodegradable and recyclable lignocellulosic bioplastic. Nat. Sustain. 4, 627–635 (2021). https://doi.org/10.1038/s41893-021-00702-w
J.J. Patil, W.H. Chae, A. Trebach, K.-J. Carter, E. Lee et al., Failing forward: stability of transparent electrodes based on metal nanowire networks. Adv. Mater. 33, 2004356 (2021). https://doi.org/10.1002/adma.202004356