Buried Interface Regulation with TbCl3 for Highly-Efficient All-Inorganic Perovskite/Silicon Tandem Solar Cells
Corresponding Author: Chunfu Zhang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 244
Abstract
All-inorganic perovskite materials exhibit exceptional thermal stability and promising candidates for tandem devices, while their application is still in the initial stage. Here, a metal halide doping strategy was implemented to enhance device performance and stability for inverted CsPbI3 perovskite solar cells (PSCs), which are ideal for integration into perovskite/silicon tandem solar cells. The lanthanide compound terbium chloride (TbCl3) was employed to improve buried interface between [4-(3,6-Dimethyl-9H-carbazol-9-yl) butyl] phosphonic acid (Me-4PACz) and perovskite layer, thereby enhancing the crystallinity of CsPbI3 films and passivating non-radiative recombination defects. Thus, the inverted CsPbI3 PSCs achieved an efficiency of 18.68% and demonstrated excellent stability against water and oxygen. Meanwhile, remarkable efficiencies of 29.40% and 25.44% were, respectively, achieved in four-terminal (4T) and two-terminal (2T) perovskite/silicon mechanically tandem devices, which are higher efficiencies among reported all-inorganic perovskite-based tandem solar cells. This study presents a novel approach for fabricating highly efficient and stable inverted all-inorganic PSCs and perovskite/silicon tandem solar cells.
Highlights:
1 The lanthanide compound of TbCl3 improved the wettability of Me-4PACz and further enhanced crystallization, in which the additional Cl− ions passivate iodine vacancy and improve energy level alignment at buried interface.
2 The inverted CsPbI3 PSCs with TbCl3 achieved a remarkable efficiency of 18.68% and enhanced stability in ambient air.
3 Efficiencies of 29.40% and 25.44% were, respectively, achieved in 4T and 2T all-inorganic perovskite/silicon mechanically tandem devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Duan, K. Zhang, Z. Peng, S. Li, F. Zou et al., Durable all-inorganic perovskite tandem photovoltaics. Nature 637(8048), 1111–1117 (2025). https://doi.org/10.1038/s41586-024-08432-7
- X. Chu, Q. Ye, Z. Wang, C. Zhang, F. Ma et al., Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nat. Energy 8(4), 372–380 (2023). https://doi.org/10.1038/s41560-023-01220-z
- F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
- X. Zhao, T. Liu, Q.C. Burlingame, T. Liu, R. Holley 3rd. et al., Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377(6603), 307–310 (2022). https://doi.org/10.1126/science.abn5679
- L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 15(1), 23 (2022). https://doi.org/10.1007/s40820-022-00995-2
- X. Liu, J. Zhang, H. Wang, Y. Miao, T. Guo et al., CsPbI3 perovskite solar module with certified aperture area efficiency >18% based on ambient-moisture-assisted surface hydrolysis. Joule 8(10), 2851–2862 (2024). https://doi.org/10.1016/j.joule.2024.06.026
- L. Duan, H. Zhang, M. Liu, M. Grätzel, J. Luo, Phase-pure γ-CsPbI3 for efficient inorganic perovskite solar cells. ACS Energy Lett. 7(9), 2911–2918 (2022). https://doi.org/10.1021/acsenergylett.2c01219
- Z. Zhang, R. Ji, M. Kroll, Y.J. Hofstetter, X. Jia et al., Efficient thermally evaporated γ-CsPbI3 perovskite solar cells. Adv. Energy Mater. 11(29), 2100299 (2021). https://doi.org/10.1002/aenm.202100299
- P. Becker, J.A. Márquez, J. Just, A. Al-Ashouri, C. Hages et al., Low temperature synthesis of stable γ-CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation. Adv. Energy Mater. 9(22), 1900555 (2019). https://doi.org/10.1002/aenm.201900555
- H. Yang, T. Xu, W. Chen, Y. Wu, X. Guo et al., Iodonium initiators: paving the air-free oxidation of spiro-OMeTAD for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 63(5), e202316183 (2024). https://doi.org/10.1002/anie.202316183
- T. Zhang, F. Wang, H.-B. Kim, I.-W. Choi, C. Wang et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377(6605), 495–501 (2022). https://doi.org/10.1126/science.abo2757
- L. Ye, J. Wu, S. Catalán-Gómez, L. Yuan, R. Sun et al., Superoxide radical derived metal-free spiro-OMeTAD for highly stable perovskite solar cells. Nat. Commun. 15(1), 7889 (2024). https://doi.org/10.1038/s41467-024-52199-4
- X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han et al., Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13(11), 3823–3847 (2020). https://doi.org/10.1039/d0ee02017f
- T. Wu, L.K. Ono, R. Yoshioka, C. Ding, C. Zhang et al., Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic Sulfonium layers towards long-term operationally stable inverted perovskite solar cells. Energy Environ. Sci. 15(11), 4612–4624 (2022). https://doi.org/10.1039/D2EE01801B
- G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad et al., Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3(39), 19688–19695 (2015). https://doi.org/10.1039/c5ta06398a
- T. Xu, W. Xiang, J. Yang, D.J. Kubicki, W. Tress et al., Interface modification for efficient and stable inverted inorganic perovskite solar cells. Adv. Mater. 35(31), e2303346 (2023). https://doi.org/10.1002/adma.202303346
- Y. Huang, T. Liu, C. Liang, J. Xia, D. Li et al., Towards simplifying the device structure of high-performance perovskite solar cells. Adv. Funct. Mater. 30(28), 2000863 (2020). https://doi.org/10.1002/adfm.202000863
- Z. Zhou, S. Pang, Highly efficient inverted hole-transport-layer-free perovskite solar cells. J. Mater. Chem. A 8(2), 503–512 (2020). https://doi.org/10.1039/c9ta10694d
- J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue et al., Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 11(1), 177 (2020). https://doi.org/10.1038/s41467-019-13909-5
- J. Wang, L. Chen, Z. Qian, G. Ren, J. Wu et al., Optimal intermediate adducts regulate low-temperature CsPbI2Br crystallization for efficient inverted all-inorganic perovskite solar cells. J. Mater. Chem. A 8(47), 25336–25344 (2020). https://doi.org/10.1039/D0TA07663E
- J. Zhang, J. Long, Z. Huang, J. Yang, X. Li et al., Obstructing interfacial reaction between NiOx and perovskite to enable efficient and stable inverted perovskite solar cells. Chem. Eng. J. 426, 131357 (2021). https://doi.org/10.1016/j.cej.2021.131357
- Z. Xu, J. Wang, Z. Liu, C. Xiao, J. Wang et al., Self-assembled monolayer suppresses interfacial reaction between NiOx and perovskite for efficient and stable inverted inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 16(40), 53811–53821 (2024). https://doi.org/10.1021/acsami.4c11177
- W. Zhao, P. Guo, J. Wu, D. Lin, N. Jia et al., TiO2 electron transport layer with p-n homojunctions for efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 191 (2024). https://doi.org/10.1007/s40820-024-01407-3
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- S.A. Paniagua, A.J. Giordano, O.L. Smith, S. Barlow, H. Li et al., Phosphonic acids for interfacial engineering of transparent conductive oxides. Chem. Rev. 116(12), 7117–7158 (2016). https://doi.org/10.1021/acs.chemrev.6b00061
- X. Zheng, Z. Li, Y. Zhang, M. Chen, T. Liu et al., Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8(5), 462–472 (2023). https://doi.org/10.1038/s41560-023-01227-6
- D. Xu, M. Wu, Y. Bai, B. Wang, H. Zhou et al., Record-efficiency inverted CsPbI3 perovskite solar cells enabled by rearrangement and hydrophilic modification of SAMs. Adv. Funct. Mater. 35(2), 2412946 (2025). https://doi.org/10.1002/adfm.202412946
- S.S. Mali, J.V. Patil, S.R. Rondiya, N.Y. Dzade, J.A. Steele et al., Terbium-doped and dual-passivated γ-CsPb(I1–x Brx)3 inorganic perovskite solar cells with improved air thermal stability and high efficiency. Adv. Mater. 34(29), e2203204 (2022). https://doi.org/10.1002/adma.202203204
- Y. Wu, L. Lin, Z. Li, Y. Zhang, Z. Feng et al., Temperature sensing of novel Tb3+/Ho3+/Bi3+ Co-doped lead-free double perovskite Cs2AgInCl6 nanocrystals. J. Lumin. 268, 120430 (2024). https://doi.org/10.1016/j.jlumin.2023.120430
- A. Kulkarni, R. Sarkar, S. Akel, M. Häser, B. Klingebiel et al., A universal strategy of perovskite ink - substrate interaction to overcome the poor wettability of a self-assembled monolayer for reproducible perovskite solar cells. Adv. Funct. Mater. 33(47), 2305812 (2023). https://doi.org/10.1002/adfm.202305812
- A. Sun, C. Tian, R. Zhuang, C. Chen, Y. Zheng et al., High open-circuit voltage (1.197 V) in large-area (1 cm2) inverted perovskite solar cell via interface planarization and highly polar self-assembled monolayer. Adv. Energy Mater. 14(8), 2303941 (2024). https://doi.org/10.1002/aenm.202303941
- A. Farag, T. Feeney, I.M. Hossain, F. Schackmar, P. Fassl et al., Evaporated self-assembled monolayer hole transport layers: lossless interfaces in p-i-n perovskite solar cells. Adv. Energy Mater. 13(8), 2203982 (2023). https://doi.org/10.1002/aenm.202203982
- Y. Wang, S. Akel, B. Klingebiel, T. Kirchartz, Hole transporting bilayers for efficient micrometer-thick perovskite solar cells. Adv. Energy Mater. 14(5), 2302614 (2024). https://doi.org/10.1002/aenm.202302614
- Z. Song, W. Xu, Y. Wu, S. Liu, W. Bi et al., Incorporating of lanthanides ions into perovskite film for efficient and stable perovskite solar cells. Small 16(40), e2001770 (2020). https://doi.org/10.1002/smll.202001770
- T. Lyu, P. Dorenbos, Z. Wei, Designing LiTaO3: Ln3+, Eu3+ (Ln = Tb or Pr) perovskite dosimeter with excellent charge carrier storage capacity and stability for anti-counterfeiting and flexible X-ray imaging. Chem. Eng. J. 461, 141685 (2023). https://doi.org/10.1016/j.cej.2023.141685
- C. Qiu, X. Lin, Y. Wang, G. Feng, C. Ling et al., Exploring the charge dynamics and energy loss in printable mesoscopic perovskite solar cells. Adv. Energy Mater. 12(47), 2202813 (2022). https://doi.org/10.1002/aenm.202202813
- A. Al-Ashouri, M. Marčinskas, E. Kasparavičius, T. Malinauskas, A. Palmstrom et al., Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells. ACS Energy Lett. 8(2), 898–900 (2023). https://doi.org/10.1021/acsenergylett.2c02629
- R. Zhuang, L. Wang, J. Qiu, L. Xie, X. Miao et al., Effect of molecular configuration of additives on perovskite crystallization and hot carriers behavior in perovskite solar cells. Chem. Eng. J. 463, 142449 (2023). https://doi.org/10.1016/j.cej.2023.142449
- Q. Ye, F. Ma, Y. Zhao, S. Yu, Z. Chu et al., Stabilizing γ-CsPbI3 perovskite via phenylethylammonium for efficient solar cells with open-circuit voltage over 1.3 V. Small 16(50), e2005246 (2020). https://doi.org/10.1002/smll.202005246
- Y. Cui, J. Shi, F. Meng, B. Yu, S. Tan et al., A versatile molten-salt induction strategy to achieve efficient CsPbI3 perovskite solar cells with a high open-circuit voltage. Adv. Mater. 34(45), 2205028 (2022). https://doi.org/10.1002/adma.202205028
- S. Liu, J. Lyu, D. Zhou, X. Zhuang, Z. Shi et al., Dual modification engineering via lanthanide-based halide quantum dots and black phosphorus enabled efficient perovskite solar cells with high open-voltage of 123.5 V. Adv. Funct. Mater. 32(19), 2112647 (2022). https://doi.org/10.1002/adfm.202112647
- F. Liu, Q. Dong, M.K. Wong, A.B. Djurišić, A. Ng, Z. Ren, J. Dai, Is excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater. 6(7), 1502206 (2016). https://doi.org/10.1002/aenm.201502206
- H. Zhong, X. Liu, M. Liu, S. Yin, Z. Jia et al., Suppressing the crystallographic disorders induced by excess PbI2 to achieve trade-off between efficiency and stability for PbI2-rich perovskite solar cells. Nano Energy 105, 108014 (2023). https://doi.org/10.1016/j.nanoen.2022.108014
- W. Chai, W. Zhu, Z. Zhang, D. Liu, Y. Ni et al., CsPbBr3 seeds improve crystallization and energy level alignment for highly efficient CsPbl3 perovskite solar cells. Chem. Eng. J. 452, 139292 (2023). https://doi.org/10.1016/j.cej.2022.139292
- J. Zhang, B. Che, W. Zhao, Y. Fang, R. Han et al., Polar species for effective dielectric regulation to achieve high-performance CsPbI3 solar cells. Adv. Mater. 34(41), 2202735 (2022). https://doi.org/10.1002/adma.202202735
- H. Wang, Q. Zhang, Z. Lin, H. Liu, X. Wei et al., Spatially selective defect management of CsPbI3 films for high-performance carbon-based inorganic perovskite solar cells. Sci. Bull. 69(8), 1050–1060 (2024). https://doi.org/10.1016/j.scib.2024.01.038
- S. Wang, T. Sakurai, W.J. Wen, Y.B. Qi, Energy level alignment at interfaces in metal halide perovskite solar cells. Adv. Mater. Interfaces 5(22), 1800260 (2018). https://doi.org/10.1002/admi.201800260
- M. Zhang, Q. Chen, R. Xue, Y. Zhan, C. Wang et al., Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10(1), 4593 (2019). https://doi.org/10.1038/s41467-019-12613-8
- Z. Saki, K. Aitola, K. Sveinbjörnsson, W. Yang, S. Svanström et al., The synergistic effect of dimethyl sulfoxide vapor treatment and C60 electron transporting layer towards enhancing current collection in mixed-ion inverted perovskite solar cells. J. Power. Sources 405, 70–79 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.100
- X. Deng, D. Zhang, Y. Chen, S. Yang, characteristic mode analysis: application to electromagnetic radiation, scattering, and coupling problems. Chin. J. Electron. 32(4), 663–677 (2023). https://doi.org/10.23919/cje.2022.00.200
- Y. Chen, J. Wu, S. Zhang, X. Zhu, B. Zou et al., Effective energy transfer boosts emission of rare-earth double perovskites: the bridge role of Sb(III) doping. J. Phys. Chem. Lett. 14(31), 7108–7117 (2023). https://doi.org/10.1021/acs.jpclett.3c01825
- R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino, J.B. Patel, H.J. Snaith, Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6(8), 1502458 (2016). https://doi.org/10.1002/aenm.201502458
- J. Tian, Q. Xue, X. Tang, Y. Chen, N. Li et al., Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv. Mater. 31(23), 1901152 (2019). https://doi.org/10.1002/adma.201901152
- H. Wang, M. Yang, W. Cai, Z. Zang, Suppressing phase segregation in CsPbIBr2 films via anchoring halide ions toward underwater solar cells. Nano Lett. 23(10), 4479–4486 (2023). https://doi.org/10.1021/acs.nanolett.3c00815
- H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker et al., Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7, 80–85 (2014). https://doi.org/10.1016/j.nanoen.2014.04.017
- M.B. Faheem, B. Khan, C. Feng, M.U. Farooq, F. Raziq et al., All-inorganic perovskite solar cells: energetics, key challenges, and strategies toward commercialization. ACS Energy Lett. 5(1), 290–320 (2020). https://doi.org/10.1021/acsenergylett.9b02338
- H. Li, W. Zhang, Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120(18), 9835–9950 (2020). https://doi.org/10.1021/acs.chemrev.9b00780
- T. Han, W. Zhu, T. Wang, M. Yang, Y. Zhou et al., MXene-interconnected two-terminal, mechanically-stacked perovskite/silicon tandem solar cell with high efficiency. Adv. Funct. Mater. 34(12), 2311679 (2024). https://doi.org/10.1002/adfm.202311679
- X. Lian, Y. Shi, X. Shen, X. Wan, Z. Cai et al., Design of high performance MXene/oxide structure memristors for image recognition applications. Chin. J. Electron. 33(2), 336–345 (2024). https://doi.org/10.23919/cje.2022.00.125
References
C. Duan, K. Zhang, Z. Peng, S. Li, F. Zou et al., Durable all-inorganic perovskite tandem photovoltaics. Nature 637(8048), 1111–1117 (2025). https://doi.org/10.1038/s41586-024-08432-7
X. Chu, Q. Ye, Z. Wang, C. Zhang, F. Ma et al., Surface in situ reconstruction of inorganic perovskite films enabling long carrier lifetimes and solar cells with 21% efficiency. Nat. Energy 8(4), 372–380 (2023). https://doi.org/10.1038/s41560-023-01220-z
F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
X. Zhao, T. Liu, Q.C. Burlingame, T. Liu, R. Holley 3rd. et al., Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 377(6603), 307–310 (2022). https://doi.org/10.1126/science.abn5679
L. Liu, H. Xiao, K. Jin, Z. Xiao, X. Du et al., 4-terminal inorganic perovskite/organic tandem solar cells offer 22% efficiency. Nano-Micro Lett. 15(1), 23 (2022). https://doi.org/10.1007/s40820-022-00995-2
X. Liu, J. Zhang, H. Wang, Y. Miao, T. Guo et al., CsPbI3 perovskite solar module with certified aperture area efficiency >18% based on ambient-moisture-assisted surface hydrolysis. Joule 8(10), 2851–2862 (2024). https://doi.org/10.1016/j.joule.2024.06.026
L. Duan, H. Zhang, M. Liu, M. Grätzel, J. Luo, Phase-pure γ-CsPbI3 for efficient inorganic perovskite solar cells. ACS Energy Lett. 7(9), 2911–2918 (2022). https://doi.org/10.1021/acsenergylett.2c01219
Z. Zhang, R. Ji, M. Kroll, Y.J. Hofstetter, X. Jia et al., Efficient thermally evaporated γ-CsPbI3 perovskite solar cells. Adv. Energy Mater. 11(29), 2100299 (2021). https://doi.org/10.1002/aenm.202100299
P. Becker, J.A. Márquez, J. Just, A. Al-Ashouri, C. Hages et al., Low temperature synthesis of stable γ-CsPbI3 perovskite layers for solar cells obtained by high throughput experimentation. Adv. Energy Mater. 9(22), 1900555 (2019). https://doi.org/10.1002/aenm.201900555
H. Yang, T. Xu, W. Chen, Y. Wu, X. Guo et al., Iodonium initiators: paving the air-free oxidation of spiro-OMeTAD for efficient and stable perovskite solar cells. Angew. Chem. Int. Ed. 63(5), e202316183 (2024). https://doi.org/10.1002/anie.202316183
T. Zhang, F. Wang, H.-B. Kim, I.-W. Choi, C. Wang et al., Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377(6605), 495–501 (2022). https://doi.org/10.1126/science.abo2757
L. Ye, J. Wu, S. Catalán-Gómez, L. Yuan, R. Sun et al., Superoxide radical derived metal-free spiro-OMeTAD for highly stable perovskite solar cells. Nat. Commun. 15(1), 7889 (2024). https://doi.org/10.1038/s41467-024-52199-4
X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han et al., Efficiency progress of inverted perovskite solar cells. Energy Environ. Sci. 13(11), 3823–3847 (2020). https://doi.org/10.1039/d0ee02017f
T. Wu, L.K. Ono, R. Yoshioka, C. Ding, C. Zhang et al., Elimination of light-induced degradation at the nickel oxide-perovskite heterojunction by aprotic Sulfonium layers towards long-term operationally stable inverted perovskite solar cells. Energy Environ. Sci. 15(11), 4612–4624 (2022). https://doi.org/10.1039/D2EE01801B
G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad et al., Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3(39), 19688–19695 (2015). https://doi.org/10.1039/c5ta06398a
T. Xu, W. Xiang, J. Yang, D.J. Kubicki, W. Tress et al., Interface modification for efficient and stable inverted inorganic perovskite solar cells. Adv. Mater. 35(31), e2303346 (2023). https://doi.org/10.1002/adma.202303346
Y. Huang, T. Liu, C. Liang, J. Xia, D. Li et al., Towards simplifying the device structure of high-performance perovskite solar cells. Adv. Funct. Mater. 30(28), 2000863 (2020). https://doi.org/10.1002/adfm.202000863
Z. Zhou, S. Pang, Highly efficient inverted hole-transport-layer-free perovskite solar cells. J. Mater. Chem. A 8(2), 503–512 (2020). https://doi.org/10.1039/c9ta10694d
J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue et al., Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 11(1), 177 (2020). https://doi.org/10.1038/s41467-019-13909-5
J. Wang, L. Chen, Z. Qian, G. Ren, J. Wu et al., Optimal intermediate adducts regulate low-temperature CsPbI2Br crystallization for efficient inverted all-inorganic perovskite solar cells. J. Mater. Chem. A 8(47), 25336–25344 (2020). https://doi.org/10.1039/D0TA07663E
J. Zhang, J. Long, Z. Huang, J. Yang, X. Li et al., Obstructing interfacial reaction between NiOx and perovskite to enable efficient and stable inverted perovskite solar cells. Chem. Eng. J. 426, 131357 (2021). https://doi.org/10.1016/j.cej.2021.131357
Z. Xu, J. Wang, Z. Liu, C. Xiao, J. Wang et al., Self-assembled monolayer suppresses interfacial reaction between NiOx and perovskite for efficient and stable inverted inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 16(40), 53811–53821 (2024). https://doi.org/10.1021/acsami.4c11177
W. Zhao, P. Guo, J. Wu, D. Lin, N. Jia et al., TiO2 electron transport layer with p-n homojunctions for efficient and stable perovskite solar cells. Nano-Micro Lett. 16(1), 191 (2024). https://doi.org/10.1007/s40820-024-01407-3
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
S.A. Paniagua, A.J. Giordano, O.L. Smith, S. Barlow, H. Li et al., Phosphonic acids for interfacial engineering of transparent conductive oxides. Chem. Rev. 116(12), 7117–7158 (2016). https://doi.org/10.1021/acs.chemrev.6b00061
X. Zheng, Z. Li, Y. Zhang, M. Chen, T. Liu et al., Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8(5), 462–472 (2023). https://doi.org/10.1038/s41560-023-01227-6
D. Xu, M. Wu, Y. Bai, B. Wang, H. Zhou et al., Record-efficiency inverted CsPbI3 perovskite solar cells enabled by rearrangement and hydrophilic modification of SAMs. Adv. Funct. Mater. 35(2), 2412946 (2025). https://doi.org/10.1002/adfm.202412946
S.S. Mali, J.V. Patil, S.R. Rondiya, N.Y. Dzade, J.A. Steele et al., Terbium-doped and dual-passivated γ-CsPb(I1–x Brx)3 inorganic perovskite solar cells with improved air thermal stability and high efficiency. Adv. Mater. 34(29), e2203204 (2022). https://doi.org/10.1002/adma.202203204
Y. Wu, L. Lin, Z. Li, Y. Zhang, Z. Feng et al., Temperature sensing of novel Tb3+/Ho3+/Bi3+ Co-doped lead-free double perovskite Cs2AgInCl6 nanocrystals. J. Lumin. 268, 120430 (2024). https://doi.org/10.1016/j.jlumin.2023.120430
A. Kulkarni, R. Sarkar, S. Akel, M. Häser, B. Klingebiel et al., A universal strategy of perovskite ink - substrate interaction to overcome the poor wettability of a self-assembled monolayer for reproducible perovskite solar cells. Adv. Funct. Mater. 33(47), 2305812 (2023). https://doi.org/10.1002/adfm.202305812
A. Sun, C. Tian, R. Zhuang, C. Chen, Y. Zheng et al., High open-circuit voltage (1.197 V) in large-area (1 cm2) inverted perovskite solar cell via interface planarization and highly polar self-assembled monolayer. Adv. Energy Mater. 14(8), 2303941 (2024). https://doi.org/10.1002/aenm.202303941
A. Farag, T. Feeney, I.M. Hossain, F. Schackmar, P. Fassl et al., Evaporated self-assembled monolayer hole transport layers: lossless interfaces in p-i-n perovskite solar cells. Adv. Energy Mater. 13(8), 2203982 (2023). https://doi.org/10.1002/aenm.202203982
Y. Wang, S. Akel, B. Klingebiel, T. Kirchartz, Hole transporting bilayers for efficient micrometer-thick perovskite solar cells. Adv. Energy Mater. 14(5), 2302614 (2024). https://doi.org/10.1002/aenm.202302614
Z. Song, W. Xu, Y. Wu, S. Liu, W. Bi et al., Incorporating of lanthanides ions into perovskite film for efficient and stable perovskite solar cells. Small 16(40), e2001770 (2020). https://doi.org/10.1002/smll.202001770
T. Lyu, P. Dorenbos, Z. Wei, Designing LiTaO3: Ln3+, Eu3+ (Ln = Tb or Pr) perovskite dosimeter with excellent charge carrier storage capacity and stability for anti-counterfeiting and flexible X-ray imaging. Chem. Eng. J. 461, 141685 (2023). https://doi.org/10.1016/j.cej.2023.141685
C. Qiu, X. Lin, Y. Wang, G. Feng, C. Ling et al., Exploring the charge dynamics and energy loss in printable mesoscopic perovskite solar cells. Adv. Energy Mater. 12(47), 2202813 (2022). https://doi.org/10.1002/aenm.202202813
A. Al-Ashouri, M. Marčinskas, E. Kasparavičius, T. Malinauskas, A. Palmstrom et al., Wettability improvement of a carbazole-based hole-selective monolayer for reproducible perovskite solar cells. ACS Energy Lett. 8(2), 898–900 (2023). https://doi.org/10.1021/acsenergylett.2c02629
R. Zhuang, L. Wang, J. Qiu, L. Xie, X. Miao et al., Effect of molecular configuration of additives on perovskite crystallization and hot carriers behavior in perovskite solar cells. Chem. Eng. J. 463, 142449 (2023). https://doi.org/10.1016/j.cej.2023.142449
Q. Ye, F. Ma, Y. Zhao, S. Yu, Z. Chu et al., Stabilizing γ-CsPbI3 perovskite via phenylethylammonium for efficient solar cells with open-circuit voltage over 1.3 V. Small 16(50), e2005246 (2020). https://doi.org/10.1002/smll.202005246
Y. Cui, J. Shi, F. Meng, B. Yu, S. Tan et al., A versatile molten-salt induction strategy to achieve efficient CsPbI3 perovskite solar cells with a high open-circuit voltage. Adv. Mater. 34(45), 2205028 (2022). https://doi.org/10.1002/adma.202205028
S. Liu, J. Lyu, D. Zhou, X. Zhuang, Z. Shi et al., Dual modification engineering via lanthanide-based halide quantum dots and black phosphorus enabled efficient perovskite solar cells with high open-voltage of 123.5 V. Adv. Funct. Mater. 32(19), 2112647 (2022). https://doi.org/10.1002/adfm.202112647
F. Liu, Q. Dong, M.K. Wong, A.B. Djurišić, A. Ng, Z. Ren, J. Dai, Is excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater. 6(7), 1502206 (2016). https://doi.org/10.1002/aenm.201502206
H. Zhong, X. Liu, M. Liu, S. Yin, Z. Jia et al., Suppressing the crystallographic disorders induced by excess PbI2 to achieve trade-off between efficiency and stability for PbI2-rich perovskite solar cells. Nano Energy 105, 108014 (2023). https://doi.org/10.1016/j.nanoen.2022.108014
W. Chai, W. Zhu, Z. Zhang, D. Liu, Y. Ni et al., CsPbBr3 seeds improve crystallization and energy level alignment for highly efficient CsPbl3 perovskite solar cells. Chem. Eng. J. 452, 139292 (2023). https://doi.org/10.1016/j.cej.2022.139292
J. Zhang, B. Che, W. Zhao, Y. Fang, R. Han et al., Polar species for effective dielectric regulation to achieve high-performance CsPbI3 solar cells. Adv. Mater. 34(41), 2202735 (2022). https://doi.org/10.1002/adma.202202735
H. Wang, Q. Zhang, Z. Lin, H. Liu, X. Wei et al., Spatially selective defect management of CsPbI3 films for high-performance carbon-based inorganic perovskite solar cells. Sci. Bull. 69(8), 1050–1060 (2024). https://doi.org/10.1016/j.scib.2024.01.038
S. Wang, T. Sakurai, W.J. Wen, Y.B. Qi, Energy level alignment at interfaces in metal halide perovskite solar cells. Adv. Mater. Interfaces 5(22), 1800260 (2018). https://doi.org/10.1002/admi.201800260
M. Zhang, Q. Chen, R. Xue, Y. Zhan, C. Wang et al., Reconfiguration of interfacial energy band structure for high-performance inverted structure perovskite solar cells. Nat. Commun. 10(1), 4593 (2019). https://doi.org/10.1038/s41467-019-12613-8
Z. Saki, K. Aitola, K. Sveinbjörnsson, W. Yang, S. Svanström et al., The synergistic effect of dimethyl sulfoxide vapor treatment and C60 electron transporting layer towards enhancing current collection in mixed-ion inverted perovskite solar cells. J. Power. Sources 405, 70–79 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.100
X. Deng, D. Zhang, Y. Chen, S. Yang, characteristic mode analysis: application to electromagnetic radiation, scattering, and coupling problems. Chin. J. Electron. 32(4), 663–677 (2023). https://doi.org/10.23919/cje.2022.00.200
Y. Chen, J. Wu, S. Zhang, X. Zhu, B. Zou et al., Effective energy transfer boosts emission of rare-earth double perovskites: the bridge role of Sb(III) doping. J. Phys. Chem. Lett. 14(31), 7108–7117 (2023). https://doi.org/10.1021/acs.jpclett.3c01825
R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino, J.B. Patel, H.J. Snaith, Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6(8), 1502458 (2016). https://doi.org/10.1002/aenm.201502458
J. Tian, Q. Xue, X. Tang, Y. Chen, N. Li et al., Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability. Adv. Mater. 31(23), 1901152 (2019). https://doi.org/10.1002/adma.201901152
H. Wang, M. Yang, W. Cai, Z. Zang, Suppressing phase segregation in CsPbIBr2 films via anchoring halide ions toward underwater solar cells. Nano Lett. 23(10), 4479–4486 (2023). https://doi.org/10.1021/acs.nanolett.3c00815
H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker et al., Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7, 80–85 (2014). https://doi.org/10.1016/j.nanoen.2014.04.017
M.B. Faheem, B. Khan, C. Feng, M.U. Farooq, F. Raziq et al., All-inorganic perovskite solar cells: energetics, key challenges, and strategies toward commercialization. ACS Energy Lett. 5(1), 290–320 (2020). https://doi.org/10.1021/acsenergylett.9b02338
H. Li, W. Zhang, Perovskite tandem solar cells: from fundamentals to commercial deployment. Chem. Rev. 120(18), 9835–9950 (2020). https://doi.org/10.1021/acs.chemrev.9b00780
T. Han, W. Zhu, T. Wang, M. Yang, Y. Zhou et al., MXene-interconnected two-terminal, mechanically-stacked perovskite/silicon tandem solar cell with high efficiency. Adv. Funct. Mater. 34(12), 2311679 (2024). https://doi.org/10.1002/adfm.202311679
X. Lian, Y. Shi, X. Shen, X. Wan, Z. Cai et al., Design of high performance MXene/oxide structure memristors for image recognition applications. Chin. J. Electron. 33(2), 336–345 (2024). https://doi.org/10.23919/cje.2022.00.125