A Special Additive Enables All Cations and Anions Passivation for Stable Perovskite Solar Cells with Efficiency over 23%
Corresponding Author: Shengzhong Liu
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 169
Abstract
Passivating undercoordinated ions is an effective way to reduce the defect densities at the surface and grain boundaries (GBs) of perovskite materials for enhanced photovoltaic performance and stability of perovskite solar cells (PSCs). Here, (BBF) complex is chosen as a multifunctional additive, which contains both C7H9N and BF3 groups working as Lewis base and Lewis acid, respectively, can bond with Pb2+/I− and FA+ on the surface and in the GBs in the perovskite film, affording passivation of both cation and anion defects. The synergistic effect of the C7H9N and BF3 complex slows the crystallization during the perovskite film deposition to improve the crystalline quality, which reduces the trap density and the recombination in the perovskite film to suppress nonradiative recombination loss and minimizes moisture permeation to improve the stability of the perovskite material. Meanwhile, such an additive improves the energy-level alignment between the valence band of the perovskite and the highest occupied molecular orbital of the hole-transporting material, Spiro-OMeTAD. Consequently, our work achieves power conversion efficiency of 23.24%, accompanied by enhanced stability under ambient conditions and light illumination and opens a new avenue for improving the performance of PSCs through the use of a multifunctional complex.
Highlights:
1 A special additive-(benzylamine)trifluoroboron (BBF) is applied to improve the quality of FAMAPbI3 perovskite.
2 BBF concurrently passivates cationic and anionic perovskite defects.
3 The perovskite solar cell with BBF shows a high power conversion efficiency of 23.24% and an excellent stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Best Research−Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed 03/2021)
- J. Chen, N.G. Park, Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31, 1803019 (2019). https://doi.org/10.1002/adma.201803019
- W. Tress, N. Marinova, O. Inganäs, M.K. Nazeeruddin, S.M. Zakeeruddin et al., Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015). https://doi.org/10.1002/aenm.2014008
- J. Xue, R. Wang, Y. Yang, The surface of halide perovskites from nano to bulk. Nat. Rev. Maters. 5, 809 (2020). https://doi.org/10.1038/s41578-020-0221-1
- R. Xia, X.X. Gao, Y. Zhang, N. Drigo, V.I.E. Queloz et al., An efficient approach to fabricate air-stable perovskite solar cells via addition of a self-polymerizing ionic liquid. Adv. Mater. 32, 2003801 (2020). https://doi.org/10.1002/adma.202003801
- T.S. Su, F.T. Eickemeyer, M.A. Hope, F. Jahanbakhshi, M. Mladenovic et al., Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells. J. Am. Chem. Soc. 142, 19980 (2020). https://doi.org/10.1021/jacs.0c08592
- B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou et al., Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 9, 1076 (2018). https://doi.org/10.1038/s41467-018-03169-0
- F. Li, X. Deng, F. Qi, Z. Li, D. Liu et al., Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134 (2020). https://doi.org/10.1021/jacs.0c09845
- N. Liu, C. Yam, First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800 (2018). https://doi.org/10.1039/C8CP00280K
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460 (2019). https://doi.org/10.1038/s41566-019-0398-2
- J. Xia, C. Liang, S. Mei, H. Gu, B. He et al., Deep surface passivation for efficient and hydrophobic perovskite solar cells. J. Mater. Chem. A 9, 2919 (2021). https://doi.org/10.1039/D0TA10535J
- S. Tan, I. Yavuz, M.H. Weber, T. Huang, C.-H. Chen et al., Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule 4, 2426 (2020). https://doi.org/10.1016/j.joule.2020.08.016
- S. Yuan, F. Qian, S. Yang, Y. Cai, Q. Wang et al., NbF5: a novel α-phase stabilizer for FA-based perovskite solar cells with high efficiency. Adv. Funct. Mater. 29, 1807850 (2019). https://doi.org/10.1002/adfm.201807850
- F. Qian, S. Yuan, Y. Cai, Y. Han, H. Zhao et al., Novel surface passivation for stable FA0.85MA0.15PbI3 perovskite solar cells with 21.6% efficiency. Sol. RRL 3, 1900072 (2019). https://doi.org/10.1002/solr.201900072
- B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842 (2019). https://doi.org/10.1039/C8CS00853A
- J. Zhang, Z. Jin, L. Liang, H. Wang, D. Bai et al., Iodine-optimized interface for inorganic CsPbI2Br perovskite solar cell to attain high stabilized efficiency exceeding 14%. Adv. Sci. 5, 1801123 (2018). https://doi.org/10.1002/advs.201801123
- Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han et al., Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv. Funct. Mater. 31, 2005776 (2020). https://doi.org/10.1002/adfm.202005776
- Y. Yang, J. Wu, X. Wang, Q. Guo, X. Liu et al., Suppressing vacancy defects and grain boundaries via ostwald ripening for high-performance and stable perovskite solar cells. Adv. Mater. 32, 1904347 (2020). https://doi.org/10.1002/adma.201904347
- L.-L. Jiang, Z.-K. Wang, M. Li, C.-C. Zhang, Q.-Q. Ye et al., Suppressing vacancy defects and grain boundaries via ostwald ripening for high-performance and stable perovskite solar cells. Adv. Funct. Mater. 28, 1705875 (2018). https://doi.org/10.1002/adma.201904347
- K. Zhang, Z. Wang, G. Wang, J. Wang, Y. Li et al., A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity. Nat. Commun. 11, 1006 (2020). https://doi.org/10.1038/s41467-020-14715-0
- R. Wang, J. Xue, K.-L. Wang, Z.-K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509 (2019). http://science.sciencemag.org/content/366/6472/1509
- N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408 (2019). https://doi.org/10.1038/s41560-019-0382-6
- Y. Lv, H. Zhang, J. Wang, L. Chen, L. Bian et al., All-in-one deposition to synergistically manipulate perovskite growth for high-performance solar cell. Research 2020, 1 (2020). https://doi.org/10.34133/2020/2763409
- F. Wang, W. Geng, Y. Zhou, H.-H. Fang, C.-J. Tong et al., Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986 (2016). https://doi.org/10.1002/adma.201603062
- A. Abate, M. Saliba, D.J. Hollman, S.D. Stranks, K. Wojciechowski et al., Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247 (2014). https://doi.org/10.1021/nl500627x
- Z. Fang, W. Chen, Y. Shi, J. Zhao, S. Chu et al., Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20%. Adv. Funct. Mater. 30, 1909754 (2020). https://doi.org/10.1002/adfm.201909754
- H. Zhu, Y. Ren, L. Pan, O. Ouellette, F.T. Eickemeyer et al., Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24%. J. Am. Chem. Soc. 143, 3231 (2021). https://doi.org/10.1021/jacs.0c12802
- B. Li, C. Fei, K. Zheng, X. Qu, T. Pullerits et al., Constructing water-resistant CH3NH3PbI3 perovskite films via coordination interaction. J. Mater. Chem. A 4, 17018 (2016). https://doi.org/10.1039/C6TA06892H
- X. Shi, Y. Wu, J. Chen, M. Cai, Y. Yang et al., Thermally stable perovskite solar cells with efficiency over 21% via a bifunctional additive. J. Mater. Chem. A 8, 7205 (2020). https://doi.org/10.1039/D0TA01255F
- H. Li, G. Wu, W. Li, Y. Zhang, Z. Liu et al., Additive engineering to grow micron-sized grains for stable high efficiency perovskite solar cells. Adv. Sci. 6, 1901241 (2019). https://doi.org/10.1002/advs.201901241
- S. Yuan, Y. Cai, S. Yang, H. Zhao, F. Qian et al., Simultaneous cesium and acetate coalloying improves efficiency and stability of FA0.85MA0.15PbI3 perovskite solar cell with an efficiency of 21.95%. Sol. RRL 3, 1900220 (2019). https://doi.org/10.1002/solr.201900220
- J.-W. Lee, S.-H. Bae, Y.-T. Hsieh, N. De Marco, M. Wang et al., A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 3, 290 (2017). https://doi.org/10.1016/j.chempr.2017.05.020
- T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng et al., Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv. Energy Mater. 9, 1803766 (2019). https://doi.org/10.1002/aenm.201803766
- S. Yang, W. Liu, Y. Han, Z. Liu, W. Zhao et al., 2D Cs2PbI2Cl2 nanosheets for holistic passivation of inorganic CsPbI2Br perovskite solar cells for improved efficiency and stability. Adv. Energy Mater. 10, 2002882 (2020). https://doi.org/10.1002/aenm.202002882
- C. Duan, J. Cui, M. Zhang, Y. Han, S. Yang et al., Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv. Energy Mater. 10, 2000691 (2020). https://doi.org/10.1002/aenm.202000691
- J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung et al., Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Nano Energy 12, 96 (2015). https://doi.org/10.1002/aenm.202000691
- M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu et al., Correlated electron–hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014). https://doi.org/10.1038/ncomms6049
- K.-L. Wang, X.-M. Li, Y.-H. Lou, M. Li, Z.-K. Wang, CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics. Sci. Bull. 66, 347 (2021). https://doi.org/10.1016/j.scib.2020.09.017
- J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016). https://doi.org/10.1038/nenergy.2016.149
- X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
- J.W. Lee, Z. Dai, C. Lee, H.M. Lee, T.H. Han et al., Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317 (2018). https://doi.org/10.1021/jacs.8b01037
- K. Chen, J. Wu, Y. Wang, Q. Guo, Q. Chen et al., Defect passivation by alcohol-soluble small molecules for efficient p–i–n planar perovskite solar cells with high open-circuit voltage. J. Mater. Chem. A 7, 21140 (2019). https://doi.org/10.1039/C9TA06718C
- J.A. Christians, P.A. Miranda Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530 (2015). https://doi.org/10.1021/ja511132a
- J. Xue, R. Wang, K.-L. Wang, Z.-K. Wang, I. Yavuz et al., Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. J. Am. Chem. Soc. 141, 13948 (2019). https://doi.org/10.1021/jacs.9b06940
References
Best Research−Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html (accessed 03/2021)
J. Chen, N.G. Park, Causes and solutions of recombination in perovskite solar cells. Adv. Mater. 31, 1803019 (2019). https://doi.org/10.1002/adma.201803019
W. Tress, N. Marinova, O. Inganäs, M.K. Nazeeruddin, S.M. Zakeeruddin et al., Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 1400812 (2015). https://doi.org/10.1002/aenm.2014008
J. Xue, R. Wang, Y. Yang, The surface of halide perovskites from nano to bulk. Nat. Rev. Maters. 5, 809 (2020). https://doi.org/10.1038/s41578-020-0221-1
R. Xia, X.X. Gao, Y. Zhang, N. Drigo, V.I.E. Queloz et al., An efficient approach to fabricate air-stable perovskite solar cells via addition of a self-polymerizing ionic liquid. Adv. Mater. 32, 2003801 (2020). https://doi.org/10.1002/adma.202003801
T.S. Su, F.T. Eickemeyer, M.A. Hope, F. Jahanbakhshi, M. Mladenovic et al., Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells. J. Am. Chem. Soc. 142, 19980 (2020). https://doi.org/10.1021/jacs.0c08592
B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou et al., Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat. Commun. 9, 1076 (2018). https://doi.org/10.1038/s41467-018-03169-0
F. Li, X. Deng, F. Qi, Z. Li, D. Liu et al., Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134 (2020). https://doi.org/10.1021/jacs.0c09845
N. Liu, C. Yam, First-principles study of intrinsic defects in formamidinium lead triiodide perovskite solar cell absorbers. Phys. Chem. Chem. Phys. 20, 6800 (2018). https://doi.org/10.1039/C8CP00280K
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460 (2019). https://doi.org/10.1038/s41566-019-0398-2
J. Xia, C. Liang, S. Mei, H. Gu, B. He et al., Deep surface passivation for efficient and hydrophobic perovskite solar cells. J. Mater. Chem. A 9, 2919 (2021). https://doi.org/10.1039/D0TA10535J
S. Tan, I. Yavuz, M.H. Weber, T. Huang, C.-H. Chen et al., Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule 4, 2426 (2020). https://doi.org/10.1016/j.joule.2020.08.016
S. Yuan, F. Qian, S. Yang, Y. Cai, Q. Wang et al., NbF5: a novel α-phase stabilizer for FA-based perovskite solar cells with high efficiency. Adv. Funct. Mater. 29, 1807850 (2019). https://doi.org/10.1002/adfm.201807850
F. Qian, S. Yuan, Y. Cai, Y. Han, H. Zhao et al., Novel surface passivation for stable FA0.85MA0.15PbI3 perovskite solar cells with 21.6% efficiency. Sol. RRL 3, 1900072 (2019). https://doi.org/10.1002/solr.201900072
B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842 (2019). https://doi.org/10.1039/C8CS00853A
J. Zhang, Z. Jin, L. Liang, H. Wang, D. Bai et al., Iodine-optimized interface for inorganic CsPbI2Br perovskite solar cell to attain high stabilized efficiency exceeding 14%. Adv. Sci. 5, 1801123 (2018). https://doi.org/10.1002/advs.201801123
Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han et al., Multifunctional enhancement for highly stable and efficient perovskite solar cells. Adv. Funct. Mater. 31, 2005776 (2020). https://doi.org/10.1002/adfm.202005776
Y. Yang, J. Wu, X. Wang, Q. Guo, X. Liu et al., Suppressing vacancy defects and grain boundaries via ostwald ripening for high-performance and stable perovskite solar cells. Adv. Mater. 32, 1904347 (2020). https://doi.org/10.1002/adma.201904347
L.-L. Jiang, Z.-K. Wang, M. Li, C.-C. Zhang, Q.-Q. Ye et al., Suppressing vacancy defects and grain boundaries via ostwald ripening for high-performance and stable perovskite solar cells. Adv. Funct. Mater. 28, 1705875 (2018). https://doi.org/10.1002/adma.201904347
K. Zhang, Z. Wang, G. Wang, J. Wang, Y. Li et al., A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity. Nat. Commun. 11, 1006 (2020). https://doi.org/10.1038/s41467-020-14715-0
R. Wang, J. Xue, K.-L. Wang, Z.-K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509 (2019). http://science.sciencemag.org/content/366/6472/1509
N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4, 408 (2019). https://doi.org/10.1038/s41560-019-0382-6
Y. Lv, H. Zhang, J. Wang, L. Chen, L. Bian et al., All-in-one deposition to synergistically manipulate perovskite growth for high-performance solar cell. Research 2020, 1 (2020). https://doi.org/10.34133/2020/2763409
F. Wang, W. Geng, Y. Zhou, H.-H. Fang, C.-J. Tong et al., Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 28, 9986 (2016). https://doi.org/10.1002/adma.201603062
A. Abate, M. Saliba, D.J. Hollman, S.D. Stranks, K. Wojciechowski et al., Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells. Nano Lett. 14, 3247 (2014). https://doi.org/10.1021/nl500627x
Z. Fang, W. Chen, Y. Shi, J. Zhao, S. Chu et al., Dual passivation of perovskite defects for light-emitting diodes with external quantum efficiency exceeding 20%. Adv. Funct. Mater. 30, 1909754 (2020). https://doi.org/10.1002/adfm.201909754
H. Zhu, Y. Ren, L. Pan, O. Ouellette, F.T. Eickemeyer et al., Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24%. J. Am. Chem. Soc. 143, 3231 (2021). https://doi.org/10.1021/jacs.0c12802
B. Li, C. Fei, K. Zheng, X. Qu, T. Pullerits et al., Constructing water-resistant CH3NH3PbI3 perovskite films via coordination interaction. J. Mater. Chem. A 4, 17018 (2016). https://doi.org/10.1039/C6TA06892H
X. Shi, Y. Wu, J. Chen, M. Cai, Y. Yang et al., Thermally stable perovskite solar cells with efficiency over 21% via a bifunctional additive. J. Mater. Chem. A 8, 7205 (2020). https://doi.org/10.1039/D0TA01255F
H. Li, G. Wu, W. Li, Y. Zhang, Z. Liu et al., Additive engineering to grow micron-sized grains for stable high efficiency perovskite solar cells. Adv. Sci. 6, 1901241 (2019). https://doi.org/10.1002/advs.201901241
S. Yuan, Y. Cai, S. Yang, H. Zhao, F. Qian et al., Simultaneous cesium and acetate coalloying improves efficiency and stability of FA0.85MA0.15PbI3 perovskite solar cell with an efficiency of 21.95%. Sol. RRL 3, 1900220 (2019). https://doi.org/10.1002/solr.201900220
J.-W. Lee, S.-H. Bae, Y.-T. Hsieh, N. De Marco, M. Wang et al., A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 3, 290 (2017). https://doi.org/10.1016/j.chempr.2017.05.020
T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng et al., Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv. Energy Mater. 9, 1803766 (2019). https://doi.org/10.1002/aenm.201803766
S. Yang, W. Liu, Y. Han, Z. Liu, W. Zhao et al., 2D Cs2PbI2Cl2 nanosheets for holistic passivation of inorganic CsPbI2Br perovskite solar cells for improved efficiency and stability. Adv. Energy Mater. 10, 2002882 (2020). https://doi.org/10.1002/aenm.202002882
C. Duan, J. Cui, M. Zhang, Y. Han, S. Yang et al., Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Adv. Energy Mater. 10, 2000691 (2020). https://doi.org/10.1002/aenm.202000691
J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung et al., Precursor engineering for ambient-compatible antisolvent-free fabrication of high-efficiency CsPbI2Br perovskite solar cells. Nano Energy 12, 96 (2015). https://doi.org/10.1002/aenm.202000691
M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu et al., Correlated electron–hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014). https://doi.org/10.1038/ncomms6049
K.-L. Wang, X.-M. Li, Y.-H. Lou, M. Li, Z.-K. Wang, CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics. Sci. Bull. 66, 347 (2021). https://doi.org/10.1016/j.scib.2020.09.017
J.M. Ball, A. Petrozza, Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016). https://doi.org/10.1038/nenergy.2016.149
X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017). https://doi.org/10.1038/nenergy.2017.102
J.W. Lee, Z. Dai, C. Lee, H.M. Lee, T.H. Han et al., Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317 (2018). https://doi.org/10.1021/jacs.8b01037
K. Chen, J. Wu, Y. Wang, Q. Guo, Q. Chen et al., Defect passivation by alcohol-soluble small molecules for efficient p–i–n planar perovskite solar cells with high open-circuit voltage. J. Mater. Chem. A 7, 21140 (2019). https://doi.org/10.1039/C9TA06718C
J.A. Christians, P.A. Miranda Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530 (2015). https://doi.org/10.1021/ja511132a
J. Xue, R. Wang, K.-L. Wang, Z.-K. Wang, I. Yavuz et al., Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. J. Am. Chem. Soc. 141, 13948 (2019). https://doi.org/10.1021/jacs.9b06940