Wettability Gradient-Induced Diode: MXene-Engineered Membrane for Passive-Evaporative Cooling
Corresponding Author: Jinlian Hu
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 159
Abstract
Thermoregulatory textiles, leveraging high-emissivity structural materials, have arisen as a promising candidate for personal cooling management; however, their advancement has been hindered by the underperformed water moisture transportation capacity, which impacts on their thermophysiological comfort. Herein, we designed a wettability-gradient-induced-diode (WGID) membrane achieving by MXene-engineered electrospun technology, which could facilitate heat dissipation and moisture-wicking transportation. As a result, the obtained WGID membrane could obtain a cooling temperature of 1.5 °C in the “dry” state, and 7.1 °C in the “wet” state, which was ascribed to its high emissivity of 96.40% in the MIR range, superior thermal conductivity of 0.3349 W m−1 K−1 (based on radiation- and conduction-controlled mechanisms), and unidirectional moisture transportation property. The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation, thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment.
Highlights:
1 Engineering MXene into electrospun nanofibers can effectively enhance its thermal emissivity and conductance, and the unidirectional water transport of the wettability-gradient-induced-diode (WGID) membrane displayed diode-like properties with wettability gradient by tailoring the water contact angle of each single layer.
2 The WGID membrane could achieve a cooling temperature of 1.5 °C in the “dry” state, and 7.1 °C in the “wet” state, with high emissivity of 96.40% in the MIR range, superior thermal conductivity of 0.3349 W m−1 K−1.
3 Zero-energy-consumption for personal cooling management via multiple heat dissipation pathways, including thermal radiation, conduction, and evaporation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4, 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
- J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
- R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10, 1903921 (2020). https://doi.org/10.1002/aenm.201903921
- C. Zou, L. Lao, Q. Chen, J. Fan, D. Shou, Nature-inspired moisture management fabric for unidirectional liquid transport and surface repellence and resistance. Energy Build. 248, 111203 (2021). https://doi.org/10.1016/j.enbuild.2021.111203
- L. Lei, S. Shi, D. Wang, S. Meng, J.-G. Dai et al., Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano 17, 1803–1830 (2023). https://doi.org/10.1021/acsnano.2c10279
- Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano Micro Lett. 15, 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
- J. Dong, Y. Peng, L. Pu, K. Chang, L. Li et al., Perspiration-wicking and luminescent on-skin electronics based on ultrastretchable Janus E-textiles. Nano Lett. 22, 7597–7605 (2022). https://doi.org/10.1021/acs.nanolett.2c02647
- U. Sajjad, K. Hamid, Tauseef-ur-Rehman, M. Sultan, N. Abbas et al., Personal thermal management - A review on strategies, progress, and prospects. Int. Commun. Heat Mass Transf. 130, 105739 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105739
- S. Shi, Y. Han, J. Hu, Robust waterproof and self-adaptive breathable membrane with heat retention property for intelligent protective cloth. Prog. Org. Coat. 137, 105303 (2019). https://doi.org/10.1016/j.porgcoat.2019.105303
- G. Wang, Y. Li, H. Qiu, H. Yan, Y. Zhou, High-performance and wide relative humidity passive evaporative cooling utilizing atmospheric water. Droplet 2, e32 (2023). https://doi.org/10.1002/dro2.32
- J.K. Tong, X. Huang, S.V. Boriskina, J. Loomis, Y. Xu et al., Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2, 769–778 (2015). https://doi.org/10.1021/acsphotonics.5b00140
- Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
- J. Hu, M. Irfan Iqbal, F. Sun, Wool can be cool: water-actuating woolen knitwear for both hot and cold. Adv. Funct. Mater. 30, 2005033 (2020). https://doi.org/10.1002/adfm.202005033
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021). https://doi.org/10.1126/science.abi5484
- B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
- T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
- Y.-N. Song, M.-Q. Lei, L.-F. Deng, J. Lei, Z.-M. Li, Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl. Polym. Mater. 2, 4379–4386 (2020). https://doi.org/10.1021/acsapm.0c00234
- G. Huang, X. Wei, Y. Gu, Z. Kang, L. Lao et al., Heterogeneously engineered porous media for directional and asymmetric liquid transport. Cell Rep. Phys. Sci. 3, 100710 (2022). https://doi.org/10.1016/j.xcrp.2021.100710
- Y. Zhu, R. Haghniaz, M.C. Hartel, S. Guan, J. Bahari et al., A breathable, passive-cooling, non-inflammatory, and biodegradable aerogel electronic skin for wearable physical-electrophysiological-chemical analysis. Adv. Mater. 35, e2209300 (2023). https://doi.org/10.1002/adma.202209300
- J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8, eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
- A.-Q. Xie, L. Zhu, Y. Liang, J. Mao, Y. Liu et al., Fiber-spinning asymmetric assembly for janus-structured bifunctional nanofiber films towards all-weather smart textile. Angew. Chem. Int. Ed. Engl. 61, e202208592 (2022). https://doi.org/10.1002/anie.202208592
- M. Li, Z. Yan, D. Fan, Flexible radiative cooling textiles based on composite nanoporous fibers for personal thermal management. ACS Appl. Mater. Interfaces 15, 17848–17857 (2023). https://doi.org/10.1021/acsami.3c00252
- C. Cui, J. Lu, S. Zhang, J. Su, J. Han, Hierarchical-porous coating coupled with textile for passive daytime radiative cooling and self-cleaning. Sol. Energy Mater. Sol. Cells 247, 111954 (2022). https://doi.org/10.1016/j.solmat.2022.111954
- M. Feng, S. Feng, C. Liu, X. He, M. He et al., Integrated passive cooling fabrics with bioinspired perspiration-wicking for outdoor personal thermal management. Compos. Part B Eng. 264, 110875 (2023). https://doi.org/10.1016/j.compositesb.2023.110875
- M.I. Iqbal, K. Lin, F. Sun, S. Chen, A. Pan et al., Radiative cooling nanofabric for personal thermal management. ACS Appl. Mater. Interfaces 14, 23577–23587 (2022). https://doi.org/10.1021/acsami.2c05115
- X. Li, Y. Yang, Z. Quan, L. Wang, D. Ji et al., Tailoring body surface infrared radiation behavior through colored nanofibers for efficient passive radiative heating textiles. Chem. Eng. J. 430, 133093 (2022). https://doi.org/10.1016/j.cej.2021.133093
- X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su et al., A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16, 2188–2197 (2022). https://doi.org/10.1021/acsnano.1c08227
- B. Gu, F. Fan, Q. Xu, D. Shou, D. Zhao, A nano-structured bilayer asymmetric wettability textile for efficient personal thermal and moisture management in high-temperature environments. Chem. Eng. J. 461, 141919 (2023). https://doi.org/10.1016/j.cej.2023.141919
- L. Lao, D. Shou, Y.S. Wu, J.T. Fan, “Skin-like” fabric for personal moisture management. Sci. Adv. 6, eaaz0013 (2020). https://doi.org/10.1126/sciadv.aaz0013
- Y. Si, S. Shi, Z. Dong, H. Wu, F. Sun et al., Bioinspired stable single-layer Janus fabric with directional water/moisture transport property for integrated personal cooling management. Adv. Fiber Mater. 5, 138–153 (2023). https://doi.org/10.1007/s42765-022-00200-4
- X. Wang, Z. Huang, D. Miao, J. Zhao, J. Yu et al., Biomimetic fibrous Murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics. ACS Nano 13, 1060–1070 (2019). https://doi.org/10.1021/acsnano.8b08242
- D. Miao, Z. Huang, X. Wang, J. Yu, B. Ding, Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small 14, e1801527 (2018). https://doi.org/10.1002/smll.201801527
- F. Li, S. Wang, Z. Wang, K. Jiang, X. Zhao et al., Fouling-proof cooling (FP-cool) fabric hybrid with enhanced sweat-elimination and heat-dissipation for personal thermal regulation. Adv. Funct. Mater. 33, 2370020 (2023). https://doi.org/10.1002/adfm.202370020
- D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22, 680–687 (2022). https://doi.org/10.1021/acs.nanolett.1c03801
- J. He, Q. Zhang, Y. Wu, Y. Ju, Y. Wang et al., Scalable nanofibrous silk fibroin textile with excellent Mie scattering and high sweat evaporation ability for highly efficient passive personal thermal management. Chem. Eng. J. 466, 143127 (2023). https://doi.org/10.1016/j.cej.2023.143127
- M. Soltani, S.K. Lahiri, S. Shabanian, K. Golovin, Surface-engineered double-layered fabrics for continuous, passive fluid transport. Mater. Horiz. 10, 4293–4302 (2023). https://doi.org/10.1039/d3mh00634d
- L. Lei, D. Wang, S. Shi, J. Yang, J. Su et al., Toward low-emissivity passive heating: a supramolecular-enhanced membrane with warmth retention. Mater. Horiz. 10, 4407–4414 (2023). https://doi.org/10.1039/D3MH00768E
- S. Shi, Y. Si, Y. Han, T. Wu, M.I. Iqbal et al., Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications. Adv. Mater. 34, e2107938 (2022). https://doi.org/10.1002/adma.202107938
- D. Miao, X. Wang, J. Yu, B. Ding, A biomimetic transpiration textile for highly efficient personal drying and cooling. Adv. Funct. Mater. 31, 2008705 (2021). https://doi.org/10.1002/adfm.202008705
- X. Li, H. Luo, Maximizing terahertz energy absorption with MXene absorber. Nano-Micro Lett. 15, 198 (2023). https://doi.org/10.1007/s40820-023-01167-6
- F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
- C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15, 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
- R.A. Soomro, P. Zhang, B. Fan, Y. Wei, B. Xu, Progression in the oxidation stability of MXenes. Nano-Micro Lett. 15, 108 (2023). https://doi.org/10.1007/s40820-023-01069-7
- M. Shi, M. Shen, X. Guo, X. Jin, Y. Cao et al., Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 15, 11396–11405 (2021). https://doi.org/10.1021/acsnano.1c00903
- L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
- L. Lei, Z. Cao, J. Li, H. Hu, D. Ho, Multiplying energy storage capacity: in situ polypyrrole electrodeposition for laser-induced graphene electrodes. ACS Appl. Energy Mater. 5, 12790–12797 (2022). https://doi.org/10.1021/acsaem.2c02393
- S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2T x MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
- C. Zhi, S. Shi, S. Meng, H. Wu, Y. Si et al., A biocompatible and antibacterial all-textile structured triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 115, 108734 (2023). https://doi.org/10.1016/j.nanoen.2023.108734
- M. Somani, S. Mukhopadhyay, B. Gupta, Surface features and patterning in hydrolytic functionalization of polyurethane films. Polym. Bull. 79, 2305–2319 (2022). https://doi.org/10.1007/s00289-021-03601-4
- Z. Miao, X. Chen, H. Zhou, P. Liu, S. Fu et al., Interfacing MXene flakes on a magnetic fiber network as a stretchable, flexible, electromagnetic shielding fabric. Nanomaterials 12, 20 (2021). https://doi.org/10.3390/nano12010020
- D. Quéré, Rough ideas on wetting. Phys. A Stat. Mech. Appl. 313, 32–46 (2002). https://doi.org/10.1016/s0378-4371(02)01033-6
- G. McHale, N.J. Shirtcliffe, S. Aqil, C.C. Perry, M.I. Newton, Topography driven spreading. Phys. Rev. Lett. 93, 036102 (2004). https://doi.org/10.1103/PhysRevLett.93.036102
- J. Wang, P. Li, P. Yu, T. Leydecker, I.S. Bayer et al., Efficient photothermal deicing employing superhydrophobic plasmonic MXene composites. Adv. Compos. Hybrid Mater. 5, 3035–3044 (2022). https://doi.org/10.1007/s42114-022-00549-5
- T. Zhou, C. Wu, Y. Wang, A.P. Tomsia, M. Li et al., Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020). https://doi.org/10.1038/s41467-020-15991-6
- S. Zheng, W. Li, Y. Ren, Z. Liu, X. Zou et al., Moisture-wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes. Adv. Mater. 34, e2106570 (2022). https://doi.org/10.1002/adma.202106570
- J. Wu, N. Wang, L. Wang, H. Dong, Y. Zhao et al., Unidirectional water-penetration composite fibrous film via electrospinning. Soft Matter 8, 5996–5999 (2012). https://doi.org/10.1039/C2SM25514F
References
Y. Peng, Y. Cui, Advanced textiles for personal thermal management and energy. Joule 4, 724–742 (2020). https://doi.org/10.1016/j.joule.2020.02.011
J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett. 15, 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren et al., Emerging materials and strategies for personal thermal management. Adv. Energy Mater. 10, 1903921 (2020). https://doi.org/10.1002/aenm.201903921
C. Zou, L. Lao, Q. Chen, J. Fan, D. Shou, Nature-inspired moisture management fabric for unidirectional liquid transport and surface repellence and resistance. Energy Build. 248, 111203 (2021). https://doi.org/10.1016/j.enbuild.2021.111203
L. Lei, S. Shi, D. Wang, S. Meng, J.-G. Dai et al., Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano 17, 1803–1830 (2023). https://doi.org/10.1021/acsnano.2c10279
Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano Micro Lett. 15, 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
J. Dong, Y. Peng, L. Pu, K. Chang, L. Li et al., Perspiration-wicking and luminescent on-skin electronics based on ultrastretchable Janus E-textiles. Nano Lett. 22, 7597–7605 (2022). https://doi.org/10.1021/acs.nanolett.2c02647
U. Sajjad, K. Hamid, Tauseef-ur-Rehman, M. Sultan, N. Abbas et al., Personal thermal management - A review on strategies, progress, and prospects. Int. Commun. Heat Mass Transf. 130, 105739 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105739
S. Shi, Y. Han, J. Hu, Robust waterproof and self-adaptive breathable membrane with heat retention property for intelligent protective cloth. Prog. Org. Coat. 137, 105303 (2019). https://doi.org/10.1016/j.porgcoat.2019.105303
G. Wang, Y. Li, H. Qiu, H. Yan, Y. Zhou, High-performance and wide relative humidity passive evaporative cooling utilizing atmospheric water. Droplet 2, e32 (2023). https://doi.org/10.1002/dro2.32
J.K. Tong, X. Huang, S.V. Boriskina, J. Loomis, Y. Xu et al., Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2, 769–778 (2015). https://doi.org/10.1021/acsphotonics.5b00140
Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
J. Hu, M. Irfan Iqbal, F. Sun, Wool can be cool: water-actuating woolen knitwear for both hot and cold. Adv. Funct. Mater. 30, 2005033 (2020). https://doi.org/10.1002/adfm.202005033
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021). https://doi.org/10.1126/science.abi5484
B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
Y.-N. Song, M.-Q. Lei, L.-F. Deng, J. Lei, Z.-M. Li, Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl. Polym. Mater. 2, 4379–4386 (2020). https://doi.org/10.1021/acsapm.0c00234
G. Huang, X. Wei, Y. Gu, Z. Kang, L. Lao et al., Heterogeneously engineered porous media for directional and asymmetric liquid transport. Cell Rep. Phys. Sci. 3, 100710 (2022). https://doi.org/10.1016/j.xcrp.2021.100710
Y. Zhu, R. Haghniaz, M.C. Hartel, S. Guan, J. Bahari et al., A breathable, passive-cooling, non-inflammatory, and biodegradable aerogel electronic skin for wearable physical-electrophysiological-chemical analysis. Adv. Mater. 35, e2209300 (2023). https://doi.org/10.1002/adma.202209300
J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8, eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
A.-Q. Xie, L. Zhu, Y. Liang, J. Mao, Y. Liu et al., Fiber-spinning asymmetric assembly for janus-structured bifunctional nanofiber films towards all-weather smart textile. Angew. Chem. Int. Ed. Engl. 61, e202208592 (2022). https://doi.org/10.1002/anie.202208592
M. Li, Z. Yan, D. Fan, Flexible radiative cooling textiles based on composite nanoporous fibers for personal thermal management. ACS Appl. Mater. Interfaces 15, 17848–17857 (2023). https://doi.org/10.1021/acsami.3c00252
C. Cui, J. Lu, S. Zhang, J. Su, J. Han, Hierarchical-porous coating coupled with textile for passive daytime radiative cooling and self-cleaning. Sol. Energy Mater. Sol. Cells 247, 111954 (2022). https://doi.org/10.1016/j.solmat.2022.111954
M. Feng, S. Feng, C. Liu, X. He, M. He et al., Integrated passive cooling fabrics with bioinspired perspiration-wicking for outdoor personal thermal management. Compos. Part B Eng. 264, 110875 (2023). https://doi.org/10.1016/j.compositesb.2023.110875
M.I. Iqbal, K. Lin, F. Sun, S. Chen, A. Pan et al., Radiative cooling nanofabric for personal thermal management. ACS Appl. Mater. Interfaces 14, 23577–23587 (2022). https://doi.org/10.1021/acsami.2c05115
X. Li, Y. Yang, Z. Quan, L. Wang, D. Ji et al., Tailoring body surface infrared radiation behavior through colored nanofibers for efficient passive radiative heating textiles. Chem. Eng. J. 430, 133093 (2022). https://doi.org/10.1016/j.cej.2021.133093
X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su et al., A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16, 2188–2197 (2022). https://doi.org/10.1021/acsnano.1c08227
B. Gu, F. Fan, Q. Xu, D. Shou, D. Zhao, A nano-structured bilayer asymmetric wettability textile for efficient personal thermal and moisture management in high-temperature environments. Chem. Eng. J. 461, 141919 (2023). https://doi.org/10.1016/j.cej.2023.141919
L. Lao, D. Shou, Y.S. Wu, J.T. Fan, “Skin-like” fabric for personal moisture management. Sci. Adv. 6, eaaz0013 (2020). https://doi.org/10.1126/sciadv.aaz0013
Y. Si, S. Shi, Z. Dong, H. Wu, F. Sun et al., Bioinspired stable single-layer Janus fabric with directional water/moisture transport property for integrated personal cooling management. Adv. Fiber Mater. 5, 138–153 (2023). https://doi.org/10.1007/s42765-022-00200-4
X. Wang, Z. Huang, D. Miao, J. Zhao, J. Yu et al., Biomimetic fibrous Murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics. ACS Nano 13, 1060–1070 (2019). https://doi.org/10.1021/acsnano.8b08242
D. Miao, Z. Huang, X. Wang, J. Yu, B. Ding, Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small 14, e1801527 (2018). https://doi.org/10.1002/smll.201801527
F. Li, S. Wang, Z. Wang, K. Jiang, X. Zhao et al., Fouling-proof cooling (FP-cool) fabric hybrid with enhanced sweat-elimination and heat-dissipation for personal thermal regulation. Adv. Funct. Mater. 33, 2370020 (2023). https://doi.org/10.1002/adfm.202370020
D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22, 680–687 (2022). https://doi.org/10.1021/acs.nanolett.1c03801
J. He, Q. Zhang, Y. Wu, Y. Ju, Y. Wang et al., Scalable nanofibrous silk fibroin textile with excellent Mie scattering and high sweat evaporation ability for highly efficient passive personal thermal management. Chem. Eng. J. 466, 143127 (2023). https://doi.org/10.1016/j.cej.2023.143127
M. Soltani, S.K. Lahiri, S. Shabanian, K. Golovin, Surface-engineered double-layered fabrics for continuous, passive fluid transport. Mater. Horiz. 10, 4293–4302 (2023). https://doi.org/10.1039/d3mh00634d
L. Lei, D. Wang, S. Shi, J. Yang, J. Su et al., Toward low-emissivity passive heating: a supramolecular-enhanced membrane with warmth retention. Mater. Horiz. 10, 4407–4414 (2023). https://doi.org/10.1039/D3MH00768E
S. Shi, Y. Si, Y. Han, T. Wu, M.I. Iqbal et al., Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications. Adv. Mater. 34, e2107938 (2022). https://doi.org/10.1002/adma.202107938
D. Miao, X. Wang, J. Yu, B. Ding, A biomimetic transpiration textile for highly efficient personal drying and cooling. Adv. Funct. Mater. 31, 2008705 (2021). https://doi.org/10.1002/adfm.202008705
X. Li, H. Luo, Maximizing terahertz energy absorption with MXene absorber. Nano-Micro Lett. 15, 198 (2023). https://doi.org/10.1007/s40820-023-01167-6
F. Wu, P. Hu, F. Hu, Z. Tian, J. Tang et al., Multifunctional MXene/C aerogels for enhanced microwave absorption and thermal insulation. Nano-Micro Lett. 15, 194 (2023). https://doi.org/10.1007/s40820-023-01158-7
C. Zhi, S. Shi, S. Zhang, Y. Si, J. Yang et al., Bioinspired all-fibrous directional moisture-wicking electronic skins for biomechanical energy harvesting and all-range health sensing. Nano-Micro Lett. 15, 60 (2023). https://doi.org/10.1007/s40820-023-01028-2
R.A. Soomro, P. Zhang, B. Fan, Y. Wei, B. Xu, Progression in the oxidation stability of MXenes. Nano-Micro Lett. 15, 108 (2023). https://doi.org/10.1007/s40820-023-01069-7
M. Shi, M. Shen, X. Guo, X. Jin, Y. Cao et al., Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 15, 11396–11405 (2021). https://doi.org/10.1021/acsnano.1c00903
L.-X. Liu, W. Chen, H.-B. Zhang, L. Ye, Z. Wang et al., Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency. Nano-Micro Lett. 14, 111 (2022). https://doi.org/10.1007/s40820-022-00853-1
L. Lei, Z. Cao, J. Li, H. Hu, D. Ho, Multiplying energy storage capacity: in situ polypyrrole electrodeposition for laser-induced graphene electrodes. ACS Appl. Energy Mater. 5, 12790–12797 (2022). https://doi.org/10.1021/acsaem.2c02393
S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu et al., Highly electrically conductive three-dimensional Ti3C2T x MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12, 11193–11202 (2018). https://doi.org/10.1021/acsnano.8b05739
C. Zhi, S. Shi, S. Meng, H. Wu, Y. Si et al., A biocompatible and antibacterial all-textile structured triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 115, 108734 (2023). https://doi.org/10.1016/j.nanoen.2023.108734
M. Somani, S. Mukhopadhyay, B. Gupta, Surface features and patterning in hydrolytic functionalization of polyurethane films. Polym. Bull. 79, 2305–2319 (2022). https://doi.org/10.1007/s00289-021-03601-4
Z. Miao, X. Chen, H. Zhou, P. Liu, S. Fu et al., Interfacing MXene flakes on a magnetic fiber network as a stretchable, flexible, electromagnetic shielding fabric. Nanomaterials 12, 20 (2021). https://doi.org/10.3390/nano12010020
D. Quéré, Rough ideas on wetting. Phys. A Stat. Mech. Appl. 313, 32–46 (2002). https://doi.org/10.1016/s0378-4371(02)01033-6
G. McHale, N.J. Shirtcliffe, S. Aqil, C.C. Perry, M.I. Newton, Topography driven spreading. Phys. Rev. Lett. 93, 036102 (2004). https://doi.org/10.1103/PhysRevLett.93.036102
J. Wang, P. Li, P. Yu, T. Leydecker, I.S. Bayer et al., Efficient photothermal deicing employing superhydrophobic plasmonic MXene composites. Adv. Compos. Hybrid Mater. 5, 3035–3044 (2022). https://doi.org/10.1007/s42114-022-00549-5
T. Zhou, C. Wu, Y. Wang, A.P. Tomsia, M. Li et al., Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020). https://doi.org/10.1038/s41467-020-15991-6
S. Zheng, W. Li, Y. Ren, Z. Liu, X. Zou et al., Moisture-wicking, breathable, and intrinsically antibacterial electronic skin based on dual-gradient poly(ionic liquid) nanofiber membranes. Adv. Mater. 34, e2106570 (2022). https://doi.org/10.1002/adma.202106570
J. Wu, N. Wang, L. Wang, H. Dong, Y. Zhao et al., Unidirectional water-penetration composite fibrous film via electrospinning. Soft Matter 8, 5996–5999 (2012). https://doi.org/10.1039/C2SM25514F