Engineered Radiative Cooling Systems for Thermal-Regulating and Energy-Saving Applications
Corresponding Author: Jinlian Hu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 21
Abstract
Radiative cooling systems (RCSs) possess the distinctive capability to dissipate heat energy via solar and thermal radiation, making them suitable for thermal regulation and energy conservation applications, essential for mitigating the energy crisis. A comprehensive review connecting the advancements in engineered radiative cooling systems (ERCSs), encompassing material and structural design as well as thermal and energy-related applications, is currently absent. Herein, this review begins with a concise summary of the essential concepts of ERCSs, followed by an introduction to engineered materials and structures, containing nature-inspired designs, chromatic materials, meta-structural configurations, and multilayered constructions. It subsequently encapsulates the primary applications, including thermal-regulating textiles and energy-saving devices. Next, it highlights the challenges of ERCSs, including maximized thermoregulatory effects, environmental adaptability, scalability and sustainability, and interdisciplinary integration. It seeks to offer direction for forthcoming fundamental research and industrial advancement of radiative cooling systems in real-world applications.
Highlights:
1 This review thoroughly encapsulates the contemporary advancements in radiative cooling systems, from materials to applications.
2 Comprehensive discussion of the fundamental concepts of radiative cooling systems, engineered materials, thermal-regulating textiles and energy-saving devices.
3 The review critically evaluates the obstacles confronting radiative cooling systems, offering insightful and forward-looking solutions to shape the future trajectory of the discipline.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.L. Stephens, T. L’Ecuyer, The earth’s energy balance. Atmos. Res. 166, 195–203 (2015). https://doi.org/10.1016/j.atmosres.2015.06.024
- M. Auffhammer, P. Baylis, C.H. Hausman, Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc. Natl. Acad. Sci. U. S. A. 114(8), 1886–1891 (2017). https://doi.org/10.1073/pnas.1613193114
- J.N. Munday, Tackling climate change through radiative cooling. Joule 3(9), 2057–2060 (2019). https://doi.org/10.1016/j.joule.2019.07.010
- Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
- J. Ren, D. Zhao, Recent advances in reticular chemistry for clean energy, global warming, and water shortage solutions. Adv. Funct. Mater. 34(43), 2307778 (2024). https://doi.org/10.1002/adfm.202307778
- G. Zhou, Z. Li, Q. Wang, Y. Zhu, P. Hua et al., A multi-material cascade elastocaloric cooling device for large temperature lift. Nat. Energy 9(7), 862–870 (2024). https://doi.org/10.1038/s41560-024-01537-3
- M.M. Hossain, M. Gu, Radiative cooling: principles, progress, and potentials. Adv. Sci. 3(7), 1500360 (2016). https://doi.org/10.1002/advs.201500360
- Z. Zhu, A. Bashir, X. Wu, C. Liu, Y. Zhang et al., Highly integrated phase change and radiative cooling fiber membrane for adaptive personal thermal regulation. Adv. Funct. Mater. 35(9), 2416111 (2025). https://doi.org/10.1002/adfm.202416111
- D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan et al., Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6(2), 021306 (2019). https://doi.org/10.1063/1.5087281
- Y. Qin, Y. He, B. Wu, S. Ma, X. Zhang, Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 156, 218–224 (2017). https://doi.org/10.1016/j.enbuild.2017.09
- F. Liu, Q. Zhang, Angle-selective photonics for smart subambient radiative cooling. Nano-Micro Lett. 17, 178 (2025). https://doi.org/10.1007/s40820-025-01698-0
- T. Wang, S. Zhang, Q. Zhu, J. Zhang, Y. Zhang et al., A trilayer structure with surface binary microsphere array for radiative cooling and heating regulation. ACS Photonics 11(7), 2815–2823 (2024). https://doi.org/10.1021/acsphotonics
- L. Lei, S. Shi, D. Wang, S. Meng, J.-G. Dai et al., Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano 17(3), 1803–1830 (2023). https://doi.org/10.1021/acsnano.2c10279
- Q. Zhang, S. Wang, X. Wang, Y. Jiang, J. Li et al., Recent progress in daytime radiative cooling: advanced material designs and applications. Small Meth. 6(4), 2101379 (2022). https://doi.org/10.1002/smtd.202101379
- M.-C. Huang, M. Yang, X.-J. Guo, C.-H. Xue, H.-D. Wang et al., Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 137, 101144 (2023). https://doi.org/10.1016/j.pmatsci.2023.101144
- G. Smith, A. Gentle, Radiative cooling: energy savings from the sky. Nat. Energy 2(9), 17142 (2017). https://doi.org/10.1038/nenergy.2017.142
- X. Dong, K.-Y. Chan, X. Yin, Y. Zhang, X. Zhao et al., Anisotropic hygroscopic hydrogels with synergistic insulation-radiation-evaporation for high-power and self-sustained passive daytime cooling. Nano-Micro Lett. 17, 240 (2025). https://doi.org/10.1007/s40820-025-01766-5
- W. Gao, Y. Chen, Emerging materials and strategies for passive daytime radiative cooling. Small 19(18), 2206145 (2023). https://doi.org/10.1002/smll.202206145
- C. Wang, H. Chen, F. Wang, Passive daytime radiative cooling materials toward real-world applications. Prog. Mater. Sci. 144, 101276 (2024). https://doi.org/10.1016/j.pmatsci.2024.101276
- X. Zhao, J. Li, K. Dong, J. Wu, Switchable and tunable radiative cooling: mechanisms, applications, and perspectives. ACS Nano 18(28), 18118–18128 (2024). https://doi.org/10.1021/acsnano.4c05929
- X. Yu, J. Chan, C. Chen, Review of radiative cooling materials: performance evaluation and design approaches. Nano Energy 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
- K.-T. Lin, J. Han, K. Li, C. Guo, H. Lin et al., Radiative cooling: Fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond. Nano Energy 80, 105517 (2021). https://doi.org/10.1016/j.nanoen.2020.105517
- J. van de Groep, P. Spinelli, A. Polman, Single-step soft-imprinted large-area nanopatterned antireflection coating. Nano Lett. 15(6), 4223–4228 (2015). https://doi.org/10.1021/acs.nanolett.5b01623
- L. Xie, X. Wang, Y. Bai, X. Zou, X. Liu, Fast-developing dynamic radiative thermal management: full-scale fundamentals, switching methods, applications, and challenges. Nano-Micro Lett. 17, 146 (2025). https://doi.org/10.1007/s40820-025-01676-6
- J. Park, D. Chae, H. Lim, J. Ha, S. Park et al., Daytime radiative cooling sheet functionalized by Al2O3-assisted organic composite. Adv. Sci. 12(12), 2417584 (2025). https://doi.org/10.1002/advs.202417584
- B. Orel, M.K. Gunde, A. Krainer, Radiative cooling efficiency of white pigmented paints. Sol. Energy 50(6), 477–482 (1993). https://doi.org/10.1016/0038-092x(93)90108-z
- D.G. Baranov, Y. Xiao, I.A. Nechepurenko, A. Krasnok, A. Alù et al., Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18(9), 920–930 (2019). https://doi.org/10.1038/s41563-019-0363-y
- S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16(3), 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
- U. Sajjad, K. Hamid, M. Tauseef-ur-Rehman, N.A. Sultan et al., Personal thermal management—a review on strategies, progress, and prospects. Int. Commun. Heat Mass Transf. 130, 105739 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105739
- S. Wu, Y. Cao, Y. Li, W. Sun, Recent advances in material engineering and applications for passive daytime radiative cooling. Adv. Opt. Mater. 11(4), 2202163 (2023). https://doi.org/10.1002/adom.202202163
- Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15, 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
- J.-L. Kou, Z. Jurado, Z. Chen, S. Fan, A.J. Minnich, Daytime radiative cooling using near-black infrared emitters. ACS Photonics 4(3), 626–630 (2017). https://doi.org/10.1021/acsphotonics.6b00991
- Y. Cui, X. Luo, F. Zhang, L. Sun, N. Jin et al., Progress of passive daytime radiative cooling technologies towards commercial applications. Particuology 67, 57–67 (2022). https://doi.org/10.1016/j.partic.2021.10.004
- T.S. Eriksson, C.G. Granqvist, Radiative cooling computed for model atmospheres. Appl. Opt. 21(23), 4381 (1982). https://doi.org/10.1364/ao.21.004381
- S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini et al., The radiative cooling of selective surfaces. Sol. Energy 17(2), 83–89 (1975). https://doi.org/10.1016/0038-092X(75)90062-6
- Y. Si, S. Shi, Z. Dong, H. Wu, F. Sun et al., Bioinspired stable single-layer Janus fabric with directional water/moisture transport property for integrated personal cooling management. Adv. Fiber Mater. 5(1), 138–153 (2023). https://doi.org/10.1007/s42765-022-00200-4
- X. Li, J. Peoples, Z. Huang, Z. Zhao, J. Qiu et al., Full daytime sub-ambient radiative cooling in commercial-like paints with high figure of merit. Cell Rep. Phys. Sci. 1(10), 100221 (2020). https://doi.org/10.1016/j.xcrp.2020.100221
- J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10(1), nwac208 (2023). https://doi.org/10.1093/nsr/nwac208
- W. Xie, C. Xiao, Y. Sun, Y. Fan, B. Zhao et al., Flexible photonic radiative cooling films: fundamentals, fabrication and applications. Adv. Funct. Mater. 33(46), 2305734 (2023). https://doi.org/10.1002/adfm.202305734
- E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013). https://doi.org/10.1021/nl4004283
- H.-Y. Chen, C. Chen, Determining the emissivity and temperature of building materials by infrared thermometer. Constr. Build. Mater. 126, 130–137 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.027
- X. Lan, Y. Wang, J. Peng, Y. Si, J. Ren et al., Designing heat transfer pathways for advanced thermoregulatory textiles. Mater. Today Phys. 17, 100342 (2021). https://doi.org/10.1016/j.mtphys.2021.100342
- X. Lu, P. Xu, H. Wang, T. Yang, J. Hou, Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art. Renew. Sustain. Energy Rev. 65, 1079–1097 (2016). https://doi.org/10.1016/j.rser.2016.07.058
- Z. Li, Q. Chen, Y. Song, B. Zhu, J. Zhu, Fundamentals, materials, and applications for daytime radiative cooling. Adv. Mater. Technol. 5(5), 1901007 (2020). https://doi.org/10.1002/admt.201901007
- X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 370(6518), 786–791 (2020). https://doi.org/10.1126/science.abb0971
- J. Song, W. Zhang, Z. Sun, M. Pan, F. Tian et al., Durable radiative cooling against environmental aging. Nat. Commun. 13, 4805 (2022). https://doi.org/10.1038/s41467-022-32409-7
- J. Li, Y. Liang, W. Li, N. Xu, B. Zhu et al., Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 8(6), eabj9756 (2022). https://doi.org/10.1126/sciadv.abj9756
- Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
- Y. Wang, H. Ji, B. Liu, P. Tang, Y. Chen et al., Radiative cooling: structure design and application. J. Mater. Chem. A 12(17), 9962–9978 (2024). https://doi.org/10.1039/d4ta01158a
- A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
- M.I. Iqbal, K. Lin, F. Sun, S. Chen, A. Pan et al., Radiative cooling nanofabric for personal thermal management. ACS Appl. Mater. Interfaces 14(20), 23577–23587 (2022). https://doi.org/10.1021/acsami.2c05115
- Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1(2), 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
- Y. Dong, W. Meng, F. Wang, H. Han, H. Liang et al., “Warm in winter and cool in summer”: scalable biochameleon inspired temperature-adaptive coating with easy preparation and construction. Nano Lett. 23(19), 9034–9041 (2023). https://doi.org/10.1021/acs.nanolett.3c02733
- J. Jaramillo-Fernandez, H. Yang, L. Schertel, G.L. Whitworth, P.D. Garcia et al., Highly-scattering cellulose-based films for radiative cooling. Adv. Sci. 9(8), 2104758 (2022). https://doi.org/10.1002/advs.202104758
- M. Zhao, H. Zhu, B. Qin, R. Zhu, J. Zhang et al., High-temperature stealth across multi-infrared and microwave bands with efficient radiative thermal management. Nano-Micro Lett. 17(1), 199 (2025). https://doi.org/10.1007/s40820-025-01712-5
- X. Yu, W. Song, Q. Yu, S. Li, M. Zhu et al., Fast screening compositions of PM2.5 by ATR-FTIR: comparison with results from IC andOC/EC analyzers. J. Environ. Sci. 71, 76–88 (2018). https://doi.org/10.1016/j.jes.2017.11.021
- L. Chen, K. Zhang, M. Ma, S. Tang, F. Li et al., Sub-ambient radiative cooling and its application in buildings. Build. Simul. 13(6), 1165–1189 (2020). https://doi.org/10.1007/s12273-020-0646-x
- K. Zhou, W. Li, B.B. Patel, R. Tao, Y. Chang et al., Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 21(3), 1493–1499 (2021). https://doi.org/10.1021/acs.nanolett.0c04810
- M. Zeyghami, D.Y. Goswami, E. Stefanakos, A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol. Energy Mater. Sol. Cells 178, 115–128 (2018). https://doi.org/10.1016/j.solmat.2018.01.015
- J. Zhang, J. Yuan, J. Liu, Z. Zhou, J. Sui et al., Cover shields for sub-ambient radiative cooling: a literature review. Renew. Sustain. Energy Rev. 143, 110959 (2021). https://doi.org/10.1016/j.rser.2021.110959
- E. Komatsu, New physics from the polarized light of the cosmic microwave background. Nat. Rev. Phys. 4(7), 452–469 (2022). https://doi.org/10.1038/s42254-022-00452-4
- W. Li, S. Fan, Radiative cooling: harvesting the coldness of the universe. Opt. Photonics News 30(11), 32 (2019). https://doi.org/10.1364/opn.30.11.000032
- N. Guo, L. Yu, C. Shi, H. Yan, M. Chen, A facile and effective design for dynamic thermal management based on synchronous solar and thermal radiation regulation. Nano Lett. 24(4), 1447–1453 (2024). https://doi.org/10.1021/acs.nanolett.3c04996
- A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, M.H. Di Capua et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5(10), eaat9480 (2019). https://doi.org/10.1126/sciadv.aat9480
- H. Zhao, Q. Sun, J. Zhou, X. Deng, J. Cui, Switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater. 32(29), 2000870 (2020). https://doi.org/10.1002/adma.202000870
- M. Qin, H. Han, F. Xiong, Z. Shen, Y. Jin et al., Vapor exchange induced ps-based sponge for scalable and efficient daytime radiative cooling. Adv. Funct. Mater. 33(44), 2304073 (2023). https://doi.org/10.1002/adfm.202304073
- W. Huang, Y. Chen, Y. Luo, J. Mandal, W. Li et al., Scalable aqueous processing-based passive daytime radiative cooling coatings. Adv. Funct. Mater. 31(19), 2010334 (2021). https://doi.org/10.1002/adfm.202010334
- Y. Xin, C. Li, W. Gao, Y. Chen, Emerging colored and transparent radiative cooling: fundamentals, progress, and challenges. Mater. Today 83, 355–381 (2025). https://doi.org/10.1016/j.mattod.2024.12.012
- M. Li, C. Lin, K. Li, W. Ma, B. Dopphoopha et al., A UV-reflective organic–inorganic tandem structure for efficient and durable daytime radiative cooling in harsh climates. Small 19(29), 2301159 (2023). https://doi.org/10.1002/smll.202301159
- M.-T. Tsai, S.-W. Chang, Y.-J. Chen, H.-L. Chen, P.-H. Lan et al., Scalable, flame-resistant, superhydrophobic ceramic metafibers for sustainable all-day radiative cooling. Nano Today 48, 101745 (2023). https://doi.org/10.1016/j.nantod.2022.101745
- S. Yu, J.-S. Yu, Z. Chen, Q. Li, Z. Wang et al., Ultrahigh visible-transparency, submicrometer, and polymer-free radiative cooling meta-glass coating for building energy saving. ACS Photonics 11(8), 3412–3423 (2024). https://doi.org/10.1021/acsphotonics.4c00981
- S. Zhang, Z. Liu, W. Zhang, B. Zhao, Z. Wu et al., Multi-bioinspired flexible thermal emitters for all-day radiative cooling and wearable self-powered thermoelectric generation. Nano Energy 123, 109393 (2024). https://doi.org/10.1016/j.nanoen.2024.109393
- L. Du, Z. Zhou, J. Li, B. Hu, C. Wang et al., Highly efficient subambient all-day passive radiative cooling textiles with optically responsive MgO embedded in porous cellulose acetate polymer. Chem. Eng. J. 469, 143765 (2023). https://doi.org/10.1016/j.cej.2023.143765
- Z. Zhou, X. Wang, Y. Ma, B. Hu, J. Zhou, Transparent polymer coatings for energy-efficient daytime window cooling. Cell Rep. Phys. Sci. 1(11), 100231 (2020). https://doi.org/10.1016/j.xcrp.2020.100231
- Q. Yue, L. Zhang, C.-Y. He, B.-H. Liu, W.-M. Wang et al., Polymer composites with hierarchical architecture and dielectric ps for efficient daytime subambient radiative cooling. J. Mater. Chem. A 11(6), 3126–3135 (2023). https://doi.org/10.1039/D2TA07453B
- X. Sun, J. Wei, C. Pan, W. Li, Recent advances in passive daytime radiative cooling coatings: fundamentals, strategies and prospects. Prog. Org. Coat. 196, 108694 (2024). https://doi.org/10.1016/j.porgcoat.2024.108694
- R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37(2), 2401577 (2025). https://doi.org/10.1002/adma.202401577
- Y. Zhang, X. Chen, B. Cai, H. Luan, Q. Zhang et al., Photonics empowered passive radiative cooling. Adv. Photonics Res. 2(4), 2000106 (2021). https://doi.org/10.1002/adpr.202000106
- S. Vall, A. Castell, Radiative cooling as low-grade energy source: a literature review. Renew. Sustain. Energy Rev. 77, 803–820 (2017). https://doi.org/10.1016/j.rser.2017.04.010
- M.G. Meir, J.B. Rekstad, O.M. LØvvik, A study of a polymer-based radiative cooling system. Sol. Energy 73(6), 403–417 (2002). https://doi.org/10.1016/S0038-092X(03)00019-7
- Y. Deng, Y. Yang, Y. Xiao, X. Zeng, H.-L. Xie et al., Annual energy-saving smart windows with actively controllable passive radiative cooling and multimode heating regulation. Adv. Mater. 36(27), 2401869 (2024). https://doi.org/10.1002/adma.202401869
- K. Bu, X. Huang, X. Li, H. Bao, Consistent assessment of the cooling performance of radiative cooling materials. Adv. Funct. Mater. 33(51), 2307191 (2023). https://doi.org/10.1002/adfm.202307191
- E. Akerboom, T. Veeken, C. Hecker, J. van de Groep, A. Polman, Passive radiative cooling of silicon solar modules with photonic silica microcylinders. ACS Photon. 9(12), 3831–3840 (2022). https://doi.org/10.1021/acsphotonics.2c01389
- S. Pian, Z. Wang, C. Lu, P. Wu, Q. Chen et al., Scalable colored Janus fabric scheme for dynamic thermal management. iScience 27(10), 110948 (2024). https://doi.org/10.1016/j.isci.2024.110948
- H. Ma, L. Wang, S. Dou, H. Zhao, M. Huang et al., Flexible daytime radiative cooling enhanced by enabling three-phase composites with scattering interfaces between silica microspheres and hierarchical porous coatings. ACS Appl. Mater. Interfaces 13(16), 19282–19290 (2021). https://doi.org/10.1021/acsami.1c02145
- C. Guo, H. Tang, P. Wang, Q. Xu, H. Pan et al., Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting. Nat. Commun. 15, 6100 (2024). https://doi.org/10.1038/s41467-024-50396-9
- S.Y. Jeong, C.Y. Tso, M. Zouagui, Y.M. Wong, C.Y.H. Chao, A numerical study of daytime passive radiative coolers for space cooling in buildings. Build. Simul. 11(5), 1011–1028 (2018). https://doi.org/10.1007/s12273-018-0474-4
- B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
- L. Xiong, Y. Wei, C. Chen, X. Chen, Q. Fu et al., Thin lamellar films with enhanced mechanical properties for durable radiative cooling. Nat. Commun. 14, 6129 (2023). https://doi.org/10.1038/s41467-023-41797-3
- P. Li, A. Wang, J. Fan, Q. Kang, P. Jiang et al., Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv. Funct. Mater. 32(5), 2109542 (2022). https://doi.org/10.1002/adfm.202109542
- M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
- K.C.S. Ly, X. Liu, X. Song, C. Xiao, P. Wang et al., A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv. Funct. Mater. 32(31), 2203789 (2022). https://doi.org/10.1002/adfm.202203789
- M.-C. Huang, C.-H. Xue, J. Huang, B.-Y. Liu, X.-J. Guo et al., A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling. Chem. Eng. J. 442, 136239 (2022). https://doi.org/10.1016/j.cej.2022.136239
- X. Wu, J. Li, F. Xie, X.-E. Wu, S. Zhao et al., A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15(1), 815 (2024). https://doi.org/10.1038/s41467-024-45095-4
- J. Xu, X. Wu, Y. Li, S. Zhao, F. Lan et al., High-performance radiative cooling sunscreen. Nano Lett. 24(47), 15178–15185 (2024). https://doi.org/10.1021/acs.nanolett.4c04969
- G. Tregnago, Cool ceramics. Nat. Energy 8(12), 1303 (2023). https://doi.org/10.1038/s41560-023-01427-0
- J. Yun, D. Chae, S. So, H. Lim, J. Noh et al., Optimally designed multimaterial microp–polymer composite paints for passive daytime radiative cooling. ACS Photonics 10(8), 2608–2617 (2023). https://doi.org/10.1021/acsphotonics.3c00339
- Y. Deng, Y. Yang, Y. Xiao, H.-L. Xie, R. Lan et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation. Adv. Funct. Mater. 33(35), 2301319 (2023). https://doi.org/10.1002/adfm.202301319
- K.-T. Lin, X. Nian, K. Li, J. Han, N. Zheng et al., Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling. eLight 3, 22 (2023). https://doi.org/10.1186/s43593-023-00053-3
- H. Zhong, P. Zhang, Y. Li, X. Yang, Y. Zhao et al., Highly solar-reflective structures for daytime radiative cooling under high humidity. ACS Appl. Mater. Interfaces 12(46), 51409–51417 (2020). https://doi.org/10.1021/acsami.0c14075
- H. Sun, F. Tang, Q. Chen, L. Xia, C. Guo et al., A recyclable, up-scalable and eco-friendly radiative cooling material for all-day sub-ambient comfort. Chem. Eng. J. 455, 139786 (2023). https://doi.org/10.1016/j.cej.2022.139786
- S.Y. Lee, D. Chae, J. Kim, S. Oh, H. Lim et al., Smart building block with colored radiative cooling devices and quantum dot light emitting diodes. Nanoscale 16(4), 1664–1672 (2024). https://doi.org/10.1039/d3nr04884e
- Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
- E. Miyako, T. Sugino, T. Okazaki, A. Bianco, M. Yudasaka et al., Self-assembled carbon nanotube honeycomb networks using a butterfly wing template as a multifunctional nanobiohybrid. ACS Nano 7(10), 8736–8742 (2013). https://doi.org/10.1021/nn403083v
- H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U. S. A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
- S. An, B. Shi, M. Jiang, B. Fu, C. Song et al., Biological and bioinspired thermal energy regulation and utilization. Chem. Rev. 123(11), 7081–7118 (2023). https://doi.org/10.1021/acs.chemrev.3c00136
- S. Dou, H. Xu, J. Zhao, K. Zhang, N. Li et al., Bioinspired microstructured materials for optical and thermal regulation. Adv. Mater. 33(6), 2000697 (2021). https://doi.org/10.1002/adma.202000697
- J. Yang, X. Zhang, X. Zhang, L. Wang, W. Feng et al., Beyond the visible: bioinspired infrared adaptive materials. Adv. Mater. 33(14), 2004754 (2021). https://doi.org/10.1002/adma.202004754
- H. Ye, Q. Liu, X. Xu, M. Song, Y. Lu et al., Construction strategy for flexible and breathable SiO2/Al/NFs/PET composite fabrics with dual shielding against microwave and infrared-thermal radiations for wearable protective clothing. Polymers 16(1), 6 (2023). https://doi.org/10.3390/polym16010006
- Y. Liu, Z. Feng, C. Xu, A. Chatterjee, A.A. Gorodetsky, Reconfigurable micro- and nano-structured camouflage surfaces inspired by cephalopods. ACS Nano 15(11), 17299–17309 (2021). https://doi.org/10.1021/acsnano.0c09990
- X. Zhang, Y. Yang, P. Xue, C. Valenzuela, Y. Chen et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem. Int. Ed. 61(42), e202211030 (2022). https://doi.org/10.1002/anie.202211030
- H. Kim, J. Choi, K.K. Kim, P. Won, S. Hong et al., Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12, 4658 (2021). https://doi.org/10.1038/s41467-021-24916-w
- N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349(6245), 298–301 (2015). https://doi.org/10.1126/science.aab3564
- H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12(1), 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
- C.-C. Tsai, R.A. Childers, N.N. Shi, C. Ren, J.N. Pelaez et al., Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 551 (2020). https://doi.org/10.1038/s41467-020-14408-8
- C. Xu, G.T. Stiubianu, A.A. Gorodetsky, Adaptive infrared-reflecting systems inspired by cephalopods. Science 359(6383), 1495–1500 (2018). https://doi.org/10.1126/science.aar5191
- S.A. Morin, R.F. Shepherd, S.W. Kwok, A.A. Stokes, A. Nemiroski et al., Camouflage and display for soft machines. Science 337(6096), 828–832 (2012). https://doi.org/10.1126/science.1222149
- S. Son, D. Chae, H. Lim, J. Ha, J. Park et al., Temperature-sensitive colored radiative cooling materials with efficient cooling performance. Adv. Eng. Mater. 25(6), 2201254 (2023). https://doi.org/10.1002/adem.202201254
- X. Wang, Q. Zhang, S. Wang, C. Jin, B. Zhu et al., Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci. Bull. 67(18), 1874–1881 (2022). https://doi.org/10.1016/j.scib.2022.08.028
- H.H. Kim, S. Kwak, J. Lee, E. Im, A.P. Raman et al., Structured fluids as colorful paintable radiative coolers. Cell Rep. Phys. Sci. 5(7), 102068 (2024). https://doi.org/10.1016/j.xcrp.2024.102068
- Y. Peng, L. Fan, W. Jin, Y. Ye, Z. Huang et al., Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 5(4), 339–347 (2022). https://doi.org/10.1038/s41893-021-00836-x
- L.M. Lozano, S. Hong, Y. Huang, H. Zandavi, Y.A.E. Aoud, Y. Tsurimaki, J. Zhou, Y. Xu, R.M. Osgood, G. Chen, S.V. Boriskina, Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt. Mater. Express 9, 1990 (2019). https://doi.org/10.1364/OME.9.001990
- C.G. Granqvist, A. Hjortsberg, Surfaces for radiative cooling: silicon monoxide films on aluminum. Appl. Phys. Lett. 36(2), 139–141 (1980). https://doi.org/10.1063/1.91406
- W. Li, Y. Shi, Z. Chen, S. Fan, Photonic thermal management of coloured objects. Nat. Commun. 9, 4240 (2018). https://doi.org/10.1038/s41467-018-06535-0
- S. Yu, Q. Zhang, Y. Wang, Y. Lv, R. Ma, Photonic-structure colored radiative coolers for daytime subambient cooling. Nano Lett. 22(12), 4925–4932 (2022). https://doi.org/10.1021/acs.nanolett.2c01570
- Y. Zhu, H. Luo, C. Yang, B. Qin, P. Ghosh et al., Color-preserving passive radiative cooling for an actively temperature-regulated enclosure. Light Sci. Appl. 11(1), 122 (2022). https://doi.org/10.1038/s41377-022-00810-y
- R. Ali Yalçın, E. Blandre, K. Joulain, J. Drévillon, Colored radiative cooling coatings with nanops. ACS Photonics 7(5), 1312–1322 (2020). https://doi.org/10.1021/acsphotonics.0c00513
- L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou et al., Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3(6), 1478–1486 (2019). https://doi.org/10.1016/j.joule.2019.03.015
- S. Son, S. Jeon, D. Chae, S.Y. Lee, Y. Liu et al., Colored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative cooling. Nano Energy 79, 105461 (2021). https://doi.org/10.1016/j.nanoen.2020.105461
- S. Min, S. Jeon, K. Yun, J. Shin, All-color sub-ambient radiative cooling based on photoluminescence. ACS Photonics 9(4), 1196–1205 (2022). https://doi.org/10.1021/acsphotonics.1c01648
- Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C.-C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6(17), eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
- W. Zhu, B. Droguet, Q. Shen, Y. Zhang, T.G. Parton, X. Shan, R.M. Parker, M.F.L. De Volder, T. Deng, S. Vignolini, T. Li, Structurally colored radiative cooling cellulosic films. Adv. Sci. 9(26), 2202061 (2022). https://doi.org/10.1002/advs.202202061
- X. Li, H. Xu, Y. Yang, F. Li, S. Ramakrishna et al., Selective spectral absorption of nanofibers for color-preserving daytime radiative cooling. Mater. Horiz. 10(7), 2487–2495 (2023). https://doi.org/10.1039/d3mh00391d
- J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
- W. Gao, Z. Lei, K. Wu, Y. Chen, Reconfigurable and renewable nano-micro-structured plastics for radiative cooling. Adv. Funct. Mater. 31(21), 2100535 (2021). https://doi.org/10.1002/adfm.202100535
- J. Liu, Y. Wei, Y. Zhong, L. Zhang, B. Wang et al., Hierarchical gradient structural porous metamaterial with selective spectral response for daytime passive radiative cooling. Adv. Funct. Mater. 34(45), 2406393 (2024). https://doi.org/10.1002/adfm.202406393
- D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22(2), 680–687 (2022). https://doi.org/10.1021/acs.nanolett.1c03801
- K. Lin, S. Chen, Y. Zeng, T.C. Ho, Y. Zhu et al., Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382(6671), 691–697 (2023). https://doi.org/10.1126/science.adi4725
- L. Zhou, J. Zhao, H. Huang, F. Nan, G. Zhou et al., Flexible polymer photonic films with embedded microvoids for high-performance passive daytime radiative cooling. ACS Photonics 8(11), 3301–3307 (2021). https://doi.org/10.1021/acsphotonics.1c01149
- M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan et al., Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 21(3), 1412–1418 (2021). https://doi.org/10.1021/acs.nanolett.0c04241
- C. Feng, P. Yang, H. Liu, M. Mao, Y. Liu et al., Bilayer porous polymer for efficient passive building cooling. Nano Energy 85, 105971 (2021). https://doi.org/10.1016/j.nanoen.2021.105971
- J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
- J. Fei, D. Han, J. Ge, X. Wang, S.W. Koh et al., Switchable surface coating for bifunctional passive radiative cooling and solar heating. Adv. Funct. Mater. 32(27), 2203582 (2022). https://doi.org/10.1002/adfm.202203582
- P. Yao, Z. Chen, T. Liu, X. Liao, Z. Yang et al., Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 34(51), e2208236 (2022). https://doi.org/10.1002/adma.202208236
- X. Liu, M. Zhang, Y. Hou, Y. Pan, C. Liu et al., Hierarchically superhydrophobic stereo-complex poly (lactic acid) aerogel for daytime radiative cooling. Adv. Funct. Mater. 32(46), 2207414 (2022). https://doi.org/10.1002/adfm.202207414
- T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
- Y.Y. Zhu, R. Haghniaz, M.C. Hartel, S. Guan, J. Bahari et al., A breathable, passive-cooling, non-inflammatory, and biodegradable aerogel electronic skin for wearable physical-electrophysiological-chemical analysis. Adv. Mater. 35(10), e2209300 (2023). https://doi.org/10.1002/adma.202209300
- J.-H. Zhang, Z. Li, J. Xu, J. Li, K. Yan et al., Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 13(1), 5839 (2022). https://doi.org/10.1038/s41467-022-33454-y
- D. Li, X. Liu, W. Li, Z. Lin, B. Zhu et al., Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16(2), 153–158 (2021). https://doi.org/10.1038/s41565-020-00800-4
- X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su et al., A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16(2), 2188–2197 (2022). https://doi.org/10.1021/acsnano.1c08227
- D. Chae, M. Kim, P.H. Jung, S. Son, J. Seo et al., Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl. Mater. Interfaces 12(7), 8073–8081 (2020). https://doi.org/10.1021/acsami.9b16742
- X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30(5), 1907562 (2020). https://doi.org/10.1002/adfm.201907562
- B. Xie, H. Liao, H. Tu, J. Mei, M. Hou et al., Sandwich structured composite film with double barrier radiative cooling, adjustable heating, and multi-reflective electromagnetic interference shielding for all-weather protection. ACS Photonics 11(11), 5039–5049 (2024). https://doi.org/10.1021/acsphotonics.4c01718
- W. Li, H. Zhan, N. Huang, Y. Ying, J. Yu et al., Scalable and flexible multi-layer prismatic photonic metamaterial film for efficient daytime radiative cooling. Small Methods 8(7), e2301258 (2024). https://doi.org/10.1002/smtd.202301258
- P. Du, X. Zhao, X. Zhan, X. Li, K. Hou et al., A high-performance passive radiative cooling metafabric with Janus wettability and thermal conduction. Small 20(43), e2403751 (2024). https://doi.org/10.1002/smll.202403751
- L. Lei, S. Meng, Y. Si, S. Shi, H. Wu et al., Wettability gradient-induced diode: MXene-engineered membrane for passive-evaporative cooling. Nano-Micro Lett. 16, 159 (2024). https://doi.org/10.1007/s40820-024-01359-8
- X.-E. Wu, Y. Wang, X. Liang, Y. Zhang, P. Bi et al., Durable radiative cooling multilayer silk textile with excellent comprehensive performance. Adv. Funct. Mater. 34(11), 2313539 (2024). https://doi.org/10.1002/adfm.202313539
- Z. Yan, H. Zhai, D. Fan, Q. Li, A trimode textile designed with hierarchical core-shell nanofiber structure for all-weather radiative personal thermal management. Nano Today 51, 101897 (2023). https://doi.org/10.1016/j.nantod.2023.101897
- X. Mei, T. Wang, Y. Zhang, T. Huang, M. Chen et al., Scalable bilayer thin coatings with enhanced thermal dissipation for passive daytime radiative cooling. Chem. Eng. J. 495, 153182 (2024). https://doi.org/10.1016/j.cej.2024.153182
- C. Lin, Y. Li, C. Chi, Y.S. Kwon, J. Huang et al., A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 34(12), e2109350 (2022). https://doi.org/10.1002/adma.202109350
- A. O’Cass, An assessment of consumers product, purchase decision, advertising and consumption involvement in fashion clothing. J. Econ. Psychol. 21(5), 545–576 (2000). https://doi.org/10.1016/S0167-4870(00)00018-0
- V.M. Correia, T. Stephenson, S.J. Judd, Characterisation of textile wastewaters—a review. Environ. Technol. 15(10), 917–929 (1994). https://doi.org/10.1080/09593339409385500
- S.V. Lomov, G. Huysmans, Y. Luo, R.S. Parnas, A. Prodromou et al., Textile composites: modelling strategies. Compos. Part A Appl. Sci. Manuf. 32(10), 1379–1394 (2001). https://doi.org/10.1016/S1359-835X(01)00038-0
- K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A 2(28), 10776 (2014). https://doi.org/10.1039/c4ta00203b
- R.G. Belliveau, S.A. DeJong, N.D. Boltin, Z. Lu, B.M. Cassidy et al., Mid-infrared emissivity of nylon, cotton, acrylic, and polyester fabrics as a function of moisture content. Text. Res. J. 90(13–14), 1431–1445 (2020). https://doi.org/10.1177/0040517519888825
- C. Zhi, S. Shi, H. Wu, Y. Si, S. Zhang et al., Emerging trends of nanofibrous piezoelectric and triboelectric applications: mechanisms, electroactive materials, and designed architectures. Adv. Mater. 36(26), 2401264 (2024). https://doi.org/10.1002/adma.202401264
- J. Dong, Y. Feng, K. Lin, B. Zhou, F. Su et al., A stretchable electromagnetic interference shielding fabric with dual-mode passive personal thermal management. Adv. Funct. Mater. 34(13), 2310774 (2024). https://doi.org/10.1002/adfm.202310774
- P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303), 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
- W. Li, Y. Zhang, S. Guo, Z. Yu, J. Kang et al., Multifunctional sandwich-structured super-hygroscopic zinc-based MOF-overlayed cooling wearables for special personal thermal management. Small 20(23), e2311272 (2024). https://doi.org/10.1002/smll.202311272
- F.L. Zhu, Q.Q. Feng, Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int. J. Therm. Sci. 165, 106899 (2021). https://doi.org/10.1016/j.ijthermalsci.2021.106899
- Q. Gao, S. Agarwal, A. Greiner, T. Zhang, Electrospun fiber-based flexible electronics: fiber fabrication, device platform, functionality integration and applications. Prog. Mater. Sci. 137, 101139 (2023). https://doi.org/10.1016/j.pmatsci.2023.101139
- Y. Xin, Q. Wang, C. Fu, S. Du, L. Hou et al., Alumina fiber membrane prepared by electrospinning technology for passive daytime radiative cooling. Adv. Funct. Mater. 35(3), 2413813 (2025). https://doi.org/10.1002/adfm.202413813
- S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16, 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
- L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), e1802152 (2018). https://doi.org/10.1002/adma.201802152
- B. Zhu, W. Li, Q. Zhang, D. Li, X. Liu et al., Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16(12), 1342–1348 (2021). https://doi.org/10.1038/s41565-021-00987-0
- S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
- R. Wu, C. Sui, T.-H. Chen, Z. Zhou, Q. Li et al., Spectrally engineered textile for radiative cooling against urban heat islands. Science 384(6701), 1203–1212 (2024). https://doi.org/10.1126/science.adl0653
- C.-Q. Ma, C.-H. Xue, X.-J. Guo, W. Shi, H.-D. Wang et al., Fabrication of passive cooling fabric as thermal management curtain for building energy-saving. Chem. Eng. J. 497, 154431 (2024). https://doi.org/10.1016/j.cej.2024.154431
- P. Wu, J. Gu, X. Liu, Y. Ren, X. Mi et al., A robust core-shell nanofabric with personal protection, health monitoring and physical comfort for smart sportswear. Adv. Mater. 36(47), e2411131 (2024). https://doi.org/10.1002/adma.202411131
- J. Wu, Y. Wang, P. Song, M. Sang, Z. Fan et al., Asymmetric aramid aerogel composite with durable and covert thermal management via Janus heat transfer structure. Nano Lett. 24(44), 14020–14027 (2024). https://doi.org/10.1021/acs.nanolett.4c03652
- Q. Zhang, M. Wang, T. Chen, Z. Chen, D. Liu, Z. Zhang, L. Zhuo, Y. Wang, X. Xiao, B. Zhu, L. Li, W. Xu, Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202409807
- Y. Fang, X. Zhao, G. Chen, T. Tat, J. Chen, Smart polyethylene textiles for radiative and evaporative cooling. Joule 5(4), 752–754 (2021). https://doi.org/10.1016/j.joule.2021.03.019
- D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Sandwich-structured textiles with hierarchically nanofibrous network and Janus wettability for outdoor personal thermal and moisture management. Chem. Eng. J. 450, 138012 (2022). https://doi.org/10.1016/j.cej.2022.138012
- J. Hu, M.I. Iqbal, F. Sun, Wool can be cool: water-actuating woolen knitwear for both hot and cold. Adv. Funct. Mater. 30(51), 2005033 (2020). https://doi.org/10.1002/adfm.202005033
- Y. Peng, J. Dong, Y. Gu, Y. Zhang, J. Long et al., Smart temperature-adaptive thermal regulation textiles integrating passive radiative cooling and reversible heat storage. Nano Energy 131, 110311 (2024). https://doi.org/10.1016/j.nanoen.2024.110311
- C. Lan, M. Liang, J. Meng, Q. Mao, W. Ma et al., Humidity-responsive actuator-based smart personal thermal management fabrics achieved by solar thermal heating and sweat-evaporation cooling. ACS Nano 19(8), 8294–8302 (2025). https://doi.org/10.1021/acsnano.4c18643
- X.A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng et al., Dynamic gating of infrared radiation in a textile. Science 363(6427), 619–623 (2019). https://doi.org/10.1126/science.aau1217
- Y. Lin, N. Cheng, N. Meng, C. Wang, X. Wang et al., A patterned knitted fabric with reversible gating stability for dynamic moisture management of human body. Adv. Funct. Mater. 33(44), 2304109 (2023). https://doi.org/10.1002/adfm.202304109
- J. Xu, F. Liang, Z. Wang, X. Chao, Y. Gu et al., A durable, breathable, and weather-adaptive coating driven by p self-assembly for radiative cooling and energy harvesting. Nano Energy 124, 109489 (2024). https://doi.org/10.1016/j.nanoen.2024.109489
- S. Wang, Y. Zhou, T. Jiang, R. Yang, G. Tan et al., Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 89, 106440 (2021). https://doi.org/10.1016/j.nanoen.2021.106440
- S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374(6574), 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
- J. Chen, L. Lu, Development of radiative cooling and its integration with buildings: a comprehensive review. Sol. Energy 212, 125–151 (2020). https://doi.org/10.1016/j.solener.2020.10.013
- S.Y. Heo, G.J. Lee, D.H. Kim, Y.J. Kim, S. Ishii et al., A janus emitter for passive heat release from enclosures. Sci. Adv. 6(36), eabb1906 (2020). https://doi.org/10.1126/sciadv.abb1906
- S. Liu, Y. Du, R. Zhang, H. He, A. Pan et al., Perovskite smart windows: the light manipulator in energy-efficient buildings. Adv. Mater. 36(17), e2306423 (2024). https://doi.org/10.1002/adma.202306423
- J. Jin, Z. Zhu, Y. Ming, Y. Zhou, J. Shang et al., Spontaneous bifacial capping of perovskite film for efficient and mechanically stable flexible solar cell. Nat. Commun. 16(1), 90 (2025). https://doi.org/10.1038/s41467-024-55652-6
- K. Tang, K. Dong, J. Li, M.P. Gordon, F.G. Reichertz et al., Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374(6574), 1504–1509 (2021). https://doi.org/10.1126/science.abf7136
- B. Deng, Y. Zhu, X. Wang, J. Zhu, M. Liu et al., An ultrafast, energy-efficient electrochromic and thermochromic device for smart windows. Adv. Mater. 35(35), e2302685 (2023). https://doi.org/10.1002/adma.202302685
- S. Liu, C. Sui, M. Harbinson, M. Pudlo, H. Perera et al., A scalable microstructure photonic coating fabricated by roll-to-roll “defects” for daytime subambient passive radiative cooling. Nano Lett. 23(17), 7767–7774 (2023). https://doi.org/10.1021/acs.nanolett.3c00111
- N.M. Mohammad, Y. Zhang, W. Xu, S.S. Aranke, D. Carne et al., Highly tunable cellulosic hydrogels with dynamic solar modulation for energy-efficient windows. Small 20(27), 2303706 (2024). https://doi.org/10.1002/smll.202303706
- T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
- Q. Zhang, C. Qi, X. Wang, B. Zhu, W. Li et al., Daytime radiative cooling dressings for accelerating wound healing under sunlight. Nat. Chem. Eng. 1(4), 301–310 (2024). https://doi.org/10.1038/s44286-024-00050-4
- W. Zhu, Y. Zhang, C. Zhang, X. Shan, A.K. Rao et al., Radiative cooling sorbent towards all weather ambient water harvesting. Commun. Eng. 2, 35 (2023). https://doi.org/10.1038/s44172-023-00082-3
- J. Li, Y. Fu, J. Zhou, K. Yao, X. Ma et al., Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci. Adv. 9(14), eadg1837 (2023). https://doi.org/10.1126/sciadv.adg1837
- S. Kim, J.H. Park, J.W. Lee, Y. Kim, Y.T. Kang, Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell. Nat. Commun. 14, 2374 (2023). https://doi.org/10.1038/s41467-023-38081-9
- A.P. Raman, W. Li, S. Fan, Generating light from darkness. Joule 3(11), 2679–2686 (2019). https://doi.org/10.1016/j.joule.2019.08.009
- X. Xue, M. Qiu, Y. Li, Q.M. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), e1906751 (2020). https://doi.org/10.1002/adma.201906751
- Y. Ding, Z. Pang, K. Lan, Y. Yao, G. Panzarasa et al., Emerging engineered wood for building applications. Chem. Rev. 123(5), 1843–1888 (2023). https://doi.org/10.1021/acs.chemrev.2c00450
- X. Li, J. Peoples, P. Yao, X. Ruan, Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 13(18), 21733–21739 (2021). https://doi.org/10.1021/acsami.1c02368
- Y. Li, W. Li, T. Han, X. Zheng, J. Li et al., Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6(6), 488–507 (2021). https://doi.org/10.1038/s41578-021-00283-2
- P. Chen, P. Zhang, J. Sun, Y. Hou, X. Liu, Cooling wound dressings: Prospects for clinical practice. Clin. Transl. Med. 14(10), e70064 (2024). https://doi.org/10.1002/ctm2.70064
- W. Shi, N. Song, Y. Huang, C. He, M. Zhang et al., Improved cooling performance of hydrogel wound dressings via integrating thermal conductivity and heat storage capacity for burn therapy. Biomacromol 23(3), 889–902 (2022). https://doi.org/10.1021/acs.biomac.1c01334
- D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd et al., Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3(1), 111–123 (2019). https://doi.org/10.1016/j.joule.2018.10.006
- I. Haechler, H. Park, G. Schnoering, T. Gulich, M. Rohner et al., Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv. 7(26), eabf3978 (2021). https://doi.org/10.1126/sciadv.abf3978
- Z. Xi, S. Li, L. Yu, H. Yan, M. Chen, All-day freshwater harvesting by selective solar absorption and radiative cooling. ACS Appl. Mater. Interfaces 14(22), 26255–26263 (2022). https://doi.org/10.1021/acsami.2c05409
- K.W. Lee, J. Yi, M.K. Kim, D.R. Kim, Transparent radiative cooling cover window for flexible and foldable electronic displays. Nat. Commun. 15, 4443 (2024). https://doi.org/10.1038/s41467-024-48840-x
- J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett 15, 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
- Y. Jung, M. Kim, S. Jeong, S. Hong, S.H. Ko, Strain-insensitive outdoor wearable electronics by thermally robust nanofibrous radiative cooler. ACS Nano 18(3), 2312–2324 (2024). https://doi.org/10.1021/acsnano.3c10241
- B. Xie, H. Wu, Material design and integrating strategies for thermoregulatory e-skins with heating and cooling functions. Device 2(12), 100640 (2024). https://doi.org/10.1016/j.device.2024.100640
- W.B. Han, S.Y. Heo, D. Kim, S.M. Yang, G.J. Ko et al., Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci. Adv. 9(5), eadf5883 (2023). https://doi.org/10.1126/sciadv.adf5883
- W. Li, S. Buddhiraju, S. Fan, Thermodynamic limits for simultaneous energy harvesting from the hot Sun and cold outer space. Light. Sci. Appl. 9, 68 (2020). https://doi.org/10.1038/s41377-020-0296-x
- L. Zhu, A. Raman, K.X. Wang, M. Abou Anoma, S. Fan, Radiative cooling of solar cells. Optica 1(1), 32 (2014). https://doi.org/10.1364/optica.1.000032
- J. Liu, Y. Zhou, Z. Zhou, Y. Du, C. Wang et al., Passive photovoltaic cooling: advances toward low-temperature operation. Adv. Energy Mater. 14(2), 2302662 (2024). https://doi.org/10.1002/aenm.202302662
- B. Zhao, M. Hu, X. Ao, N. Chen, Q. Xuan et al., Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling. Appl. Energy 252, 113432 (2019). https://doi.org/10.1016/j.apenergy.2019.113432
- H. Sun, F. Tang, Y. Bi, H. Sun, L. Huang et al., Hierarchically porous cellulose membrane via self-assembly engineering for ultra high-power thermoelectrical generation in natural convection. Adv. Funct. Mater. 33(52), 2307960 (2023). https://doi.org/10.1002/adfm.202307960
- C.-H. Wang, H. Chen, Z.-Y. Jiang, X.-X. Zhang, F.-Q. Wang, Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation. Appl. Energy 331, 120425 (2023). https://doi.org/10.1016/j.apenergy.2022.120425
- S. Zhang, Z. Wu, Z. Liu, Z. Hu, An emerging energy technology: self-uninterrupted electricity power harvesting from the Sun and cold space. Adv. Energy Mater. 13(19), 2300260 (2023). https://doi.org/10.1002/aenm.202300260
- Q. Zhang, H. Cheng, S. Zhang, Y. Li, Z. Li et al., Advancements and challenges in thermoregulating textiles: smart clothing for enhanced personal thermal management. Chem. Eng. J. 488, 151040 (2024). https://doi.org/10.1016/j.cej.2024.151040
- N. Guo, C. Shi, N. Warren, E.A. Sprague-Klein, B.W. Sheldon et al., Challenges and opportunities for passive thermoregulation. Adv. Energy Mater. 14(34), 2401776 (2024). https://doi.org/10.1002/aenm.202401776
- C. Lin, K. Li, M. Li, B. Dopphoopha, J. Zheng et al., Pushing radiative cooling technology to real applications. Adv. Mater. 37(23), e2409738 (2025). https://doi.org/10.1002/adma.202409738
- B. Ko, J. Noh, D. Chae, C. Lee, H. Lim et al., Neutral-colored transparent radiative cooler by tailoring solar absorption with punctured Bragg reflectors. Adv. Funct. Mater. 34(52), 2410613 (2024). https://doi.org/10.1002/adfm.202410613
- H. Yu, J. Lu, J. Yan, T. Bai, Z. Niu et al., Selective emission fabric for indoor and outdoor passive radiative cooling in personal thermal management. Nano-Micro Lett. 17(1), 192 (2025). https://doi.org/10.1007/s40820-025-01713-4
- S. Wang, Y. Wu, M. Pu, M. Xu, R. Zhang et al., A versatile strategy for concurrent passive daytime radiative cooling and sustainable energy harvesting. Small 20(6), e2305706 (2024). https://doi.org/10.1002/smll.202305706
- J. Lu, Y. Fan, X. Lou, W. Xie, B. Zhao et al., Diatomite-based recyclable and green coating for efficient radiative cooling. Biomimetics 9(1), 50 (2024). https://doi.org/10.3390/biomimetics9010050
- Y. Jung, S.H. Ko, Radiative cooling technology with artificial intelligence. iScience 27(12), 111325 (2024). https://doi.org/10.1016/j.isci.2024.111325
- J. Xi, Y. Lou, L. Meng, C. Deng, Y. Chu et al., Smart cellulose-based Janus fabrics with switchable liquid transportation for personal moisture and thermal management. Nano-Micro Lett. 17, 14 (2025). https://doi.org/10.1007/s40820-024-01510-5
References
G.L. Stephens, T. L’Ecuyer, The earth’s energy balance. Atmos. Res. 166, 195–203 (2015). https://doi.org/10.1016/j.atmosres.2015.06.024
M. Auffhammer, P. Baylis, C.H. Hausman, Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc. Natl. Acad. Sci. U. S. A. 114(8), 1886–1891 (2017). https://doi.org/10.1073/pnas.1613193114
J.N. Munday, Tackling climate change through radiative cooling. Joule 3(9), 2057–2060 (2019). https://doi.org/10.1016/j.joule.2019.07.010
Z. Zhang, M. Yu, C. Ma, L. He, X. He et al., A Janus smart window for temperature-adaptive radiative cooling and adjustable solar transmittance. Nano-Micro Lett. 17(1), 233 (2025). https://doi.org/10.1007/s40820-025-01740-1
J. Ren, D. Zhao, Recent advances in reticular chemistry for clean energy, global warming, and water shortage solutions. Adv. Funct. Mater. 34(43), 2307778 (2024). https://doi.org/10.1002/adfm.202307778
G. Zhou, Z. Li, Q. Wang, Y. Zhu, P. Hua et al., A multi-material cascade elastocaloric cooling device for large temperature lift. Nat. Energy 9(7), 862–870 (2024). https://doi.org/10.1038/s41560-024-01537-3
M.M. Hossain, M. Gu, Radiative cooling: principles, progress, and potentials. Adv. Sci. 3(7), 1500360 (2016). https://doi.org/10.1002/advs.201500360
Z. Zhu, A. Bashir, X. Wu, C. Liu, Y. Zhang et al., Highly integrated phase change and radiative cooling fiber membrane for adaptive personal thermal regulation. Adv. Funct. Mater. 35(9), 2416111 (2025). https://doi.org/10.1002/adfm.202416111
D. Zhao, A. Aili, Y. Zhai, S. Xu, G. Tan et al., Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6(2), 021306 (2019). https://doi.org/10.1063/1.5087281
Y. Qin, Y. He, B. Wu, S. Ma, X. Zhang, Regulating top albedo and bottom emissivity of concrete roof tiles for reducing building heat gains. Energy Build. 156, 218–224 (2017). https://doi.org/10.1016/j.enbuild.2017.09
F. Liu, Q. Zhang, Angle-selective photonics for smart subambient radiative cooling. Nano-Micro Lett. 17, 178 (2025). https://doi.org/10.1007/s40820-025-01698-0
T. Wang, S. Zhang, Q. Zhu, J. Zhang, Y. Zhang et al., A trilayer structure with surface binary microsphere array for radiative cooling and heating regulation. ACS Photonics 11(7), 2815–2823 (2024). https://doi.org/10.1021/acsphotonics
L. Lei, S. Shi, D. Wang, S. Meng, J.-G. Dai et al., Recent advances in thermoregulatory clothing: materials, mechanisms, and perspectives. ACS Nano 17(3), 1803–1830 (2023). https://doi.org/10.1021/acsnano.2c10279
Q. Zhang, S. Wang, X. Wang, Y. Jiang, J. Li et al., Recent progress in daytime radiative cooling: advanced material designs and applications. Small Meth. 6(4), 2101379 (2022). https://doi.org/10.1002/smtd.202101379
M.-C. Huang, M. Yang, X.-J. Guo, C.-H. Xue, H.-D. Wang et al., Scalable multifunctional radiative cooling materials. Prog. Mater. Sci. 137, 101144 (2023). https://doi.org/10.1016/j.pmatsci.2023.101144
G. Smith, A. Gentle, Radiative cooling: energy savings from the sky. Nat. Energy 2(9), 17142 (2017). https://doi.org/10.1038/nenergy.2017.142
X. Dong, K.-Y. Chan, X. Yin, Y. Zhang, X. Zhao et al., Anisotropic hygroscopic hydrogels with synergistic insulation-radiation-evaporation for high-power and self-sustained passive daytime cooling. Nano-Micro Lett. 17, 240 (2025). https://doi.org/10.1007/s40820-025-01766-5
W. Gao, Y. Chen, Emerging materials and strategies for passive daytime radiative cooling. Small 19(18), 2206145 (2023). https://doi.org/10.1002/smll.202206145
C. Wang, H. Chen, F. Wang, Passive daytime radiative cooling materials toward real-world applications. Prog. Mater. Sci. 144, 101276 (2024). https://doi.org/10.1016/j.pmatsci.2024.101276
X. Zhao, J. Li, K. Dong, J. Wu, Switchable and tunable radiative cooling: mechanisms, applications, and perspectives. ACS Nano 18(28), 18118–18128 (2024). https://doi.org/10.1021/acsnano.4c05929
X. Yu, J. Chan, C. Chen, Review of radiative cooling materials: performance evaluation and design approaches. Nano Energy 88, 106259 (2021). https://doi.org/10.1016/j.nanoen.2021.106259
K.-T. Lin, J. Han, K. Li, C. Guo, H. Lin et al., Radiative cooling: Fundamental physics, atmospheric influences, materials and structural engineering, applications and beyond. Nano Energy 80, 105517 (2021). https://doi.org/10.1016/j.nanoen.2020.105517
J. van de Groep, P. Spinelli, A. Polman, Single-step soft-imprinted large-area nanopatterned antireflection coating. Nano Lett. 15(6), 4223–4228 (2015). https://doi.org/10.1021/acs.nanolett.5b01623
L. Xie, X. Wang, Y. Bai, X. Zou, X. Liu, Fast-developing dynamic radiative thermal management: full-scale fundamentals, switching methods, applications, and challenges. Nano-Micro Lett. 17, 146 (2025). https://doi.org/10.1007/s40820-025-01676-6
J. Park, D. Chae, H. Lim, J. Ha, S. Park et al., Daytime radiative cooling sheet functionalized by Al2O3-assisted organic composite. Adv. Sci. 12(12), 2417584 (2025). https://doi.org/10.1002/advs.202417584
B. Orel, M.K. Gunde, A. Krainer, Radiative cooling efficiency of white pigmented paints. Sol. Energy 50(6), 477–482 (1993). https://doi.org/10.1016/0038-092x(93)90108-z
D.G. Baranov, Y. Xiao, I.A. Nechepurenko, A. Krasnok, A. Alù et al., Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18(9), 920–930 (2019). https://doi.org/10.1038/s41563-019-0363-y
S. Fan, W. Li, Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16(3), 182–190 (2022). https://doi.org/10.1038/s41566-021-00921-9
U. Sajjad, K. Hamid, M. Tauseef-ur-Rehman, N.A. Sultan et al., Personal thermal management—a review on strategies, progress, and prospects. Int. Commun. Heat Mass Transf. 130, 105739 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2021.105739
S. Wu, Y. Cao, Y. Li, W. Sun, Recent advances in material engineering and applications for passive daytime radiative cooling. Adv. Opt. Mater. 11(4), 2202163 (2023). https://doi.org/10.1002/adom.202202163
Y. Jung, M. Kim, T. Kim, J. Ahn, J. Lee et al., Functional materials and innovative strategies for wearable thermal management applications. Nano-Micro Lett. 15, 160 (2023). https://doi.org/10.1007/s40820-023-01126-1
J.-L. Kou, Z. Jurado, Z. Chen, S. Fan, A.J. Minnich, Daytime radiative cooling using near-black infrared emitters. ACS Photonics 4(3), 626–630 (2017). https://doi.org/10.1021/acsphotonics.6b00991
Y. Cui, X. Luo, F. Zhang, L. Sun, N. Jin et al., Progress of passive daytime radiative cooling technologies towards commercial applications. Particuology 67, 57–67 (2022). https://doi.org/10.1016/j.partic.2021.10.004
T.S. Eriksson, C.G. Granqvist, Radiative cooling computed for model atmospheres. Appl. Opt. 21(23), 4381 (1982). https://doi.org/10.1364/ao.21.004381
S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini et al., The radiative cooling of selective surfaces. Sol. Energy 17(2), 83–89 (1975). https://doi.org/10.1016/0038-092X(75)90062-6
Y. Si, S. Shi, Z. Dong, H. Wu, F. Sun et al., Bioinspired stable single-layer Janus fabric with directional water/moisture transport property for integrated personal cooling management. Adv. Fiber Mater. 5(1), 138–153 (2023). https://doi.org/10.1007/s42765-022-00200-4
X. Li, J. Peoples, Z. Huang, Z. Zhao, J. Qiu et al., Full daytime sub-ambient radiative cooling in commercial-like paints with high figure of merit. Cell Rep. Phys. Sci. 1(10), 100221 (2020). https://doi.org/10.1016/j.xcrp.2020.100221
J. Liang, J. Wu, J. Guo, H. Li, X. Zhou et al., Radiative cooling for passive thermal management towards sustainable carbon neutrality. Natl. Sci. Rev. 10(1), nwac208 (2023). https://doi.org/10.1093/nsr/nwac208
W. Xie, C. Xiao, Y. Sun, Y. Fan, B. Zhao et al., Flexible photonic radiative cooling films: fundamentals, fabrication and applications. Adv. Funct. Mater. 33(46), 2305734 (2023). https://doi.org/10.1002/adfm.202305734
E. Rephaeli, A. Raman, S. Fan, Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13(4), 1457–1461 (2013). https://doi.org/10.1021/nl4004283
H.-Y. Chen, C. Chen, Determining the emissivity and temperature of building materials by infrared thermometer. Constr. Build. Mater. 126, 130–137 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.027
X. Lan, Y. Wang, J. Peng, Y. Si, J. Ren et al., Designing heat transfer pathways for advanced thermoregulatory textiles. Mater. Today Phys. 17, 100342 (2021). https://doi.org/10.1016/j.mtphys.2021.100342
X. Lu, P. Xu, H. Wang, T. Yang, J. Hou, Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art. Renew. Sustain. Energy Rev. 65, 1079–1097 (2016). https://doi.org/10.1016/j.rser.2016.07.058
Z. Li, Q. Chen, Y. Song, B. Zhu, J. Zhu, Fundamentals, materials, and applications for daytime radiative cooling. Adv. Mater. Technol. 5(5), 1901007 (2020). https://doi.org/10.1002/admt.201901007
X. Yin, R. Yang, G. Tan, S. Fan, Terrestrial radiative cooling: Using the cold universe as a renewable and sustainable energy source. Science 370(6518), 786–791 (2020). https://doi.org/10.1126/science.abb0971
J. Song, W. Zhang, Z. Sun, M. Pan, F. Tian et al., Durable radiative cooling against environmental aging. Nat. Commun. 13, 4805 (2022). https://doi.org/10.1038/s41467-022-32409-7
J. Li, Y. Liang, W. Li, N. Xu, B. Zhu et al., Protecting ice from melting under sunlight via radiative cooling. Sci. Adv. 8(6), eabj9756 (2022). https://doi.org/10.1126/sciadv.abj9756
Z. Chen, L. Zhu, A. Raman, S. Fan, Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016). https://doi.org/10.1038/ncomms13729
Y. Wang, H. Ji, B. Liu, P. Tang, Y. Chen et al., Radiative cooling: structure design and application. J. Mater. Chem. A 12(17), 9962–9978 (2024). https://doi.org/10.1039/d4ta01158a
A.P. Raman, M. Abou Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515(7528), 540–544 (2014). https://doi.org/10.1038/nature13883
M.I. Iqbal, K. Lin, F. Sun, S. Chen, A. Pan et al., Radiative cooling nanofabric for personal thermal management. ACS Appl. Mater. Interfaces 14(20), 23577–23587 (2022). https://doi.org/10.1021/acsami.2c05115
Y. Peng, J. Chen, A.Y. Song, P.B. Catrysse, P.-C. Hsu et al., Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1(2), 105–112 (2018). https://doi.org/10.1038/s41893-018-0023-2
Y. Dong, W. Meng, F. Wang, H. Han, H. Liang et al., “Warm in winter and cool in summer”: scalable biochameleon inspired temperature-adaptive coating with easy preparation and construction. Nano Lett. 23(19), 9034–9041 (2023). https://doi.org/10.1021/acs.nanolett.3c02733
J. Jaramillo-Fernandez, H. Yang, L. Schertel, G.L. Whitworth, P.D. Garcia et al., Highly-scattering cellulose-based films for radiative cooling. Adv. Sci. 9(8), 2104758 (2022). https://doi.org/10.1002/advs.202104758
M. Zhao, H. Zhu, B. Qin, R. Zhu, J. Zhang et al., High-temperature stealth across multi-infrared and microwave bands with efficient radiative thermal management. Nano-Micro Lett. 17(1), 199 (2025). https://doi.org/10.1007/s40820-025-01712-5
X. Yu, W. Song, Q. Yu, S. Li, M. Zhu et al., Fast screening compositions of PM2.5 by ATR-FTIR: comparison with results from IC andOC/EC analyzers. J. Environ. Sci. 71, 76–88 (2018). https://doi.org/10.1016/j.jes.2017.11.021
L. Chen, K. Zhang, M. Ma, S. Tang, F. Li et al., Sub-ambient radiative cooling and its application in buildings. Build. Simul. 13(6), 1165–1189 (2020). https://doi.org/10.1007/s12273-020-0646-x
K. Zhou, W. Li, B.B. Patel, R. Tao, Y. Chang et al., Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling. Nano Lett. 21(3), 1493–1499 (2021). https://doi.org/10.1021/acs.nanolett.0c04810
M. Zeyghami, D.Y. Goswami, E. Stefanakos, A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol. Energy Mater. Sol. Cells 178, 115–128 (2018). https://doi.org/10.1016/j.solmat.2018.01.015
J. Zhang, J. Yuan, J. Liu, Z. Zhou, J. Sui et al., Cover shields for sub-ambient radiative cooling: a literature review. Renew. Sustain. Energy Rev. 143, 110959 (2021). https://doi.org/10.1016/j.rser.2021.110959
E. Komatsu, New physics from the polarized light of the cosmic microwave background. Nat. Rev. Phys. 4(7), 452–469 (2022). https://doi.org/10.1038/s42254-022-00452-4
W. Li, S. Fan, Radiative cooling: harvesting the coldness of the universe. Opt. Photonics News 30(11), 32 (2019). https://doi.org/10.1364/opn.30.11.000032
N. Guo, L. Yu, C. Shi, H. Yan, M. Chen, A facile and effective design for dynamic thermal management based on synchronous solar and thermal radiation regulation. Nano Lett. 24(4), 1447–1453 (2024). https://doi.org/10.1021/acs.nanolett.3c04996
A. Leroy, B. Bhatia, C.C. Kelsall, A. Castillejo-Cuberos, M.H. Di Capua et al., High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 5(10), eaat9480 (2019). https://doi.org/10.1126/sciadv.aat9480
H. Zhao, Q. Sun, J. Zhou, X. Deng, J. Cui, Switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater. 32(29), 2000870 (2020). https://doi.org/10.1002/adma.202000870
M. Qin, H. Han, F. Xiong, Z. Shen, Y. Jin et al., Vapor exchange induced ps-based sponge for scalable and efficient daytime radiative cooling. Adv. Funct. Mater. 33(44), 2304073 (2023). https://doi.org/10.1002/adfm.202304073
W. Huang, Y. Chen, Y. Luo, J. Mandal, W. Li et al., Scalable aqueous processing-based passive daytime radiative cooling coatings. Adv. Funct. Mater. 31(19), 2010334 (2021). https://doi.org/10.1002/adfm.202010334
Y. Xin, C. Li, W. Gao, Y. Chen, Emerging colored and transparent radiative cooling: fundamentals, progress, and challenges. Mater. Today 83, 355–381 (2025). https://doi.org/10.1016/j.mattod.2024.12.012
M. Li, C. Lin, K. Li, W. Ma, B. Dopphoopha et al., A UV-reflective organic–inorganic tandem structure for efficient and durable daytime radiative cooling in harsh climates. Small 19(29), 2301159 (2023). https://doi.org/10.1002/smll.202301159
M.-T. Tsai, S.-W. Chang, Y.-J. Chen, H.-L. Chen, P.-H. Lan et al., Scalable, flame-resistant, superhydrophobic ceramic metafibers for sustainable all-day radiative cooling. Nano Today 48, 101745 (2023). https://doi.org/10.1016/j.nantod.2022.101745
S. Yu, J.-S. Yu, Z. Chen, Q. Li, Z. Wang et al., Ultrahigh visible-transparency, submicrometer, and polymer-free radiative cooling meta-glass coating for building energy saving. ACS Photonics 11(8), 3412–3423 (2024). https://doi.org/10.1021/acsphotonics.4c00981
S. Zhang, Z. Liu, W. Zhang, B. Zhao, Z. Wu et al., Multi-bioinspired flexible thermal emitters for all-day radiative cooling and wearable self-powered thermoelectric generation. Nano Energy 123, 109393 (2024). https://doi.org/10.1016/j.nanoen.2024.109393
L. Du, Z. Zhou, J. Li, B. Hu, C. Wang et al., Highly efficient subambient all-day passive radiative cooling textiles with optically responsive MgO embedded in porous cellulose acetate polymer. Chem. Eng. J. 469, 143765 (2023). https://doi.org/10.1016/j.cej.2023.143765
Z. Zhou, X. Wang, Y. Ma, B. Hu, J. Zhou, Transparent polymer coatings for energy-efficient daytime window cooling. Cell Rep. Phys. Sci. 1(11), 100231 (2020). https://doi.org/10.1016/j.xcrp.2020.100231
Q. Yue, L. Zhang, C.-Y. He, B.-H. Liu, W.-M. Wang et al., Polymer composites with hierarchical architecture and dielectric ps for efficient daytime subambient radiative cooling. J. Mater. Chem. A 11(6), 3126–3135 (2023). https://doi.org/10.1039/D2TA07453B
X. Sun, J. Wei, C. Pan, W. Li, Recent advances in passive daytime radiative cooling coatings: fundamentals, strategies and prospects. Prog. Org. Coat. 196, 108694 (2024). https://doi.org/10.1016/j.porgcoat.2024.108694
R. Liu, S. Wang, Z. Zhou, K. Zhang, G. Wang et al., Materials in radiative cooling technologies. Adv. Mater. 37(2), 2401577 (2025). https://doi.org/10.1002/adma.202401577
Y. Zhang, X. Chen, B. Cai, H. Luan, Q. Zhang et al., Photonics empowered passive radiative cooling. Adv. Photonics Res. 2(4), 2000106 (2021). https://doi.org/10.1002/adpr.202000106
S. Vall, A. Castell, Radiative cooling as low-grade energy source: a literature review. Renew. Sustain. Energy Rev. 77, 803–820 (2017). https://doi.org/10.1016/j.rser.2017.04.010
M.G. Meir, J.B. Rekstad, O.M. LØvvik, A study of a polymer-based radiative cooling system. Sol. Energy 73(6), 403–417 (2002). https://doi.org/10.1016/S0038-092X(03)00019-7
Y. Deng, Y. Yang, Y. Xiao, X. Zeng, H.-L. Xie et al., Annual energy-saving smart windows with actively controllable passive radiative cooling and multimode heating regulation. Adv. Mater. 36(27), 2401869 (2024). https://doi.org/10.1002/adma.202401869
K. Bu, X. Huang, X. Li, H. Bao, Consistent assessment of the cooling performance of radiative cooling materials. Adv. Funct. Mater. 33(51), 2307191 (2023). https://doi.org/10.1002/adfm.202307191
E. Akerboom, T. Veeken, C. Hecker, J. van de Groep, A. Polman, Passive radiative cooling of silicon solar modules with photonic silica microcylinders. ACS Photon. 9(12), 3831–3840 (2022). https://doi.org/10.1021/acsphotonics.2c01389
S. Pian, Z. Wang, C. Lu, P. Wu, Q. Chen et al., Scalable colored Janus fabric scheme for dynamic thermal management. iScience 27(10), 110948 (2024). https://doi.org/10.1016/j.isci.2024.110948
H. Ma, L. Wang, S. Dou, H. Zhao, M. Huang et al., Flexible daytime radiative cooling enhanced by enabling three-phase composites with scattering interfaces between silica microspheres and hierarchical porous coatings. ACS Appl. Mater. Interfaces 13(16), 19282–19290 (2021). https://doi.org/10.1021/acsami.1c02145
C. Guo, H. Tang, P. Wang, Q. Xu, H. Pan et al., Radiative cooling assisted self-sustaining and highly efficient moisture energy harvesting. Nat. Commun. 15, 6100 (2024). https://doi.org/10.1038/s41467-024-50396-9
S.Y. Jeong, C.Y. Tso, M. Zouagui, Y.M. Wong, C.Y.H. Chao, A numerical study of daytime passive radiative coolers for space cooling in buildings. Build. Simul. 11(5), 1011–1028 (2018). https://doi.org/10.1007/s12273-018-0474-4
B. Xiang, R. Zhang, Y. Luo, S. Zhang, L. Xu et al., 3D porous polymer film with designed pore architecture and auto-deposited SiO2 for highly efficient passive radiative cooling. Nano Energy 81, 105600 (2021). https://doi.org/10.1016/j.nanoen.2020.105600
L. Xiong, Y. Wei, C. Chen, X. Chen, Q. Fu et al., Thin lamellar films with enhanced mechanical properties for durable radiative cooling. Nat. Commun. 14, 6129 (2023). https://doi.org/10.1038/s41467-023-41797-3
P. Li, A. Wang, J. Fan, Q. Kang, P. Jiang et al., Thermo-optically designed scalable photonic films with high thermal conductivity for subambient and above-ambient radiative cooling. Adv. Funct. Mater. 32(5), 2109542 (2022). https://doi.org/10.1002/adfm.202109542
M. Shi, Z. Song, J. Ni, X. Du, Y. Cao et al., Dual-mode porous polymeric films with coral-like hierarchical structure for all-day radiative cooling and heating. ACS Nano 17(3), 2029–2038 (2023). https://doi.org/10.1021/acsnano.2c07293
K.C.S. Ly, X. Liu, X. Song, C. Xiao, P. Wang et al., A dual-mode infrared asymmetric photonic structure for all-season passive radiative cooling and heating. Adv. Funct. Mater. 32(31), 2203789 (2022). https://doi.org/10.1002/adfm.202203789
M.-C. Huang, C.-H. Xue, J. Huang, B.-Y. Liu, X.-J. Guo et al., A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling. Chem. Eng. J. 442, 136239 (2022). https://doi.org/10.1016/j.cej.2022.136239
X. Wu, J. Li, F. Xie, X.-E. Wu, S. Zhao et al., A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15(1), 815 (2024). https://doi.org/10.1038/s41467-024-45095-4
J. Xu, X. Wu, Y. Li, S. Zhao, F. Lan et al., High-performance radiative cooling sunscreen. Nano Lett. 24(47), 15178–15185 (2024). https://doi.org/10.1021/acs.nanolett.4c04969
G. Tregnago, Cool ceramics. Nat. Energy 8(12), 1303 (2023). https://doi.org/10.1038/s41560-023-01427-0
J. Yun, D. Chae, S. So, H. Lim, J. Noh et al., Optimally designed multimaterial microp–polymer composite paints for passive daytime radiative cooling. ACS Photonics 10(8), 2608–2617 (2023). https://doi.org/10.1021/acsphotonics.3c00339
Y. Deng, Y. Yang, Y. Xiao, H.-L. Xie, R. Lan et al., Ultrafast switchable passive radiative cooling smart windows with synergistic optical modulation. Adv. Funct. Mater. 33(35), 2301319 (2023). https://doi.org/10.1002/adfm.202301319
K.-T. Lin, X. Nian, K. Li, J. Han, N. Zheng et al., Highly efficient flexible structured metasurface by roll-to-roll printing for diurnal radiative cooling. eLight 3, 22 (2023). https://doi.org/10.1186/s43593-023-00053-3
H. Zhong, P. Zhang, Y. Li, X. Yang, Y. Zhao et al., Highly solar-reflective structures for daytime radiative cooling under high humidity. ACS Appl. Mater. Interfaces 12(46), 51409–51417 (2020). https://doi.org/10.1021/acsami.0c14075
H. Sun, F. Tang, Q. Chen, L. Xia, C. Guo et al., A recyclable, up-scalable and eco-friendly radiative cooling material for all-day sub-ambient comfort. Chem. Eng. J. 455, 139786 (2023). https://doi.org/10.1016/j.cej.2022.139786
S.Y. Lee, D. Chae, J. Kim, S. Oh, H. Lim et al., Smart building block with colored radiative cooling devices and quantum dot light emitting diodes. Nanoscale 16(4), 1664–1672 (2024). https://doi.org/10.1039/d3nr04884e
Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou et al., Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355(6329), 1062–1066 (2017). https://doi.org/10.1126/science.aai7899
E. Miyako, T. Sugino, T. Okazaki, A. Bianco, M. Yudasaka et al., Self-assembled carbon nanotube honeycomb networks using a butterfly wing template as a multifunctional nanobiohybrid. ACS Nano 7(10), 8736–8742 (2013). https://doi.org/10.1021/nn403083v
H. Zhang, K.C.S. Ly, X. Liu, Z. Chen, M. Yan et al., Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl. Acad. Sci. U. S. A. 117(26), 14657–14666 (2020). https://doi.org/10.1073/pnas.2001802117
S. An, B. Shi, M. Jiang, B. Fu, C. Song et al., Biological and bioinspired thermal energy regulation and utilization. Chem. Rev. 123(11), 7081–7118 (2023). https://doi.org/10.1021/acs.chemrev.3c00136
S. Dou, H. Xu, J. Zhao, K. Zhang, N. Li et al., Bioinspired microstructured materials for optical and thermal regulation. Adv. Mater. 33(6), 2000697 (2021). https://doi.org/10.1002/adma.202000697
J. Yang, X. Zhang, X. Zhang, L. Wang, W. Feng et al., Beyond the visible: bioinspired infrared adaptive materials. Adv. Mater. 33(14), 2004754 (2021). https://doi.org/10.1002/adma.202004754
H. Ye, Q. Liu, X. Xu, M. Song, Y. Lu et al., Construction strategy for flexible and breathable SiO2/Al/NFs/PET composite fabrics with dual shielding against microwave and infrared-thermal radiations for wearable protective clothing. Polymers 16(1), 6 (2023). https://doi.org/10.3390/polym16010006
Y. Liu, Z. Feng, C. Xu, A. Chatterjee, A.A. Gorodetsky, Reconfigurable micro- and nano-structured camouflage surfaces inspired by cephalopods. ACS Nano 15(11), 17299–17309 (2021). https://doi.org/10.1021/acsnano.0c09990
X. Zhang, Y. Yang, P. Xue, C. Valenzuela, Y. Chen et al., Three-dimensional electrochromic soft photonic crystals based on MXene-integrated blue phase liquid crystals for bioinspired visible and infrared camouflage. Angew. Chem. Int. Ed. 61(42), e202211030 (2022). https://doi.org/10.1002/anie.202211030
H. Kim, J. Choi, K.K. Kim, P. Won, S. Hong et al., Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin. Nat. Commun. 12, 4658 (2021). https://doi.org/10.1038/s41467-021-24916-w
N.N. Shi, C.-C. Tsai, F. Camino, G.D. Bernard, N. Yu et al., Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349(6245), 298–301 (2015). https://doi.org/10.1126/science.aab3564
H. Zhu, Q. Li, C. Tao, Y. Hong, Z. Xu et al., Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12(1), 1805 (2021). https://doi.org/10.1038/s41467-021-22051-0
C.-C. Tsai, R.A. Childers, N.N. Shi, C. Ren, J.N. Pelaez et al., Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 551 (2020). https://doi.org/10.1038/s41467-020-14408-8
C. Xu, G.T. Stiubianu, A.A. Gorodetsky, Adaptive infrared-reflecting systems inspired by cephalopods. Science 359(6383), 1495–1500 (2018). https://doi.org/10.1126/science.aar5191
S.A. Morin, R.F. Shepherd, S.W. Kwok, A.A. Stokes, A. Nemiroski et al., Camouflage and display for soft machines. Science 337(6096), 828–832 (2012). https://doi.org/10.1126/science.1222149
S. Son, D. Chae, H. Lim, J. Ha, J. Park et al., Temperature-sensitive colored radiative cooling materials with efficient cooling performance. Adv. Eng. Mater. 25(6), 2201254 (2023). https://doi.org/10.1002/adem.202201254
X. Wang, Q. Zhang, S. Wang, C. Jin, B. Zhu et al., Sub-ambient full-color passive radiative cooling under sunlight based on efficient quantum-dot photoluminescence. Sci. Bull. 67(18), 1874–1881 (2022). https://doi.org/10.1016/j.scib.2022.08.028
H.H. Kim, S. Kwak, J. Lee, E. Im, A.P. Raman et al., Structured fluids as colorful paintable radiative coolers. Cell Rep. Phys. Sci. 5(7), 102068 (2024). https://doi.org/10.1016/j.xcrp.2024.102068
Y. Peng, L. Fan, W. Jin, Y. Ye, Z. Huang et al., Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 5(4), 339–347 (2022). https://doi.org/10.1038/s41893-021-00836-x
L.M. Lozano, S. Hong, Y. Huang, H. Zandavi, Y.A.E. Aoud, Y. Tsurimaki, J. Zhou, Y. Xu, R.M. Osgood, G. Chen, S.V. Boriskina, Optical engineering of polymer materials and composites for simultaneous color and thermal management. Opt. Mater. Express 9, 1990 (2019). https://doi.org/10.1364/OME.9.001990
C.G. Granqvist, A. Hjortsberg, Surfaces for radiative cooling: silicon monoxide films on aluminum. Appl. Phys. Lett. 36(2), 139–141 (1980). https://doi.org/10.1063/1.91406
W. Li, Y. Shi, Z. Chen, S. Fan, Photonic thermal management of coloured objects. Nat. Commun. 9, 4240 (2018). https://doi.org/10.1038/s41467-018-06535-0
S. Yu, Q. Zhang, Y. Wang, Y. Lv, R. Ma, Photonic-structure colored radiative coolers for daytime subambient cooling. Nano Lett. 22(12), 4925–4932 (2022). https://doi.org/10.1021/acs.nanolett.2c01570
Y. Zhu, H. Luo, C. Yang, B. Qin, P. Ghosh et al., Color-preserving passive radiative cooling for an actively temperature-regulated enclosure. Light Sci. Appl. 11(1), 122 (2022). https://doi.org/10.1038/s41377-022-00810-y
R. Ali Yalçın, E. Blandre, K. Joulain, J. Drévillon, Colored radiative cooling coatings with nanops. ACS Photonics 7(5), 1312–1322 (2020). https://doi.org/10.1021/acsphotonics.0c00513
L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou et al., Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 3(6), 1478–1486 (2019). https://doi.org/10.1016/j.joule.2019.03.015
S. Son, S. Jeon, D. Chae, S.Y. Lee, Y. Liu et al., Colored emitters with silica-embedded perovskite nanocrystals for efficient daytime radiative cooling. Nano Energy 79, 105461 (2021). https://doi.org/10.1016/j.nanoen.2020.105461
S. Min, S. Jeon, K. Yun, J. Shin, All-color sub-ambient radiative cooling based on photoluminescence. ACS Photonics 9(4), 1196–1205 (2022). https://doi.org/10.1021/acsphotonics.1c01648
Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C.-C. Tsai et al., Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 6(17), eaaz5413 (2020). https://doi.org/10.1126/sciadv.aaz5413
W. Zhu, B. Droguet, Q. Shen, Y. Zhang, T.G. Parton, X. Shan, R.M. Parker, M.F.L. De Volder, T. Deng, S. Vignolini, T. Li, Structurally colored radiative cooling cellulosic films. Adv. Sci. 9(26), 2202061 (2022). https://doi.org/10.1002/advs.202202061
X. Li, H. Xu, Y. Yang, F. Li, S. Ramakrishna et al., Selective spectral absorption of nanofibers for color-preserving daytime radiative cooling. Mater. Horiz. 10(7), 2487–2495 (2023). https://doi.org/10.1039/d3mh00391d
J. Li, X. Wang, D. Liang, N. Xu, B. Zhu et al., A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. Sci. Adv. 8(32), eabq0411 (2022). https://doi.org/10.1126/sciadv.abq0411
W. Gao, Z. Lei, K. Wu, Y. Chen, Reconfigurable and renewable nano-micro-structured plastics for radiative cooling. Adv. Funct. Mater. 31(21), 2100535 (2021). https://doi.org/10.1002/adfm.202100535
J. Liu, Y. Wei, Y. Zhong, L. Zhang, B. Wang et al., Hierarchical gradient structural porous metamaterial with selective spectral response for daytime passive radiative cooling. Adv. Funct. Mater. 34(45), 2406393 (2024). https://doi.org/10.1002/adfm.202406393
D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Integration of Janus wettability and heat conduction in hierarchically designed textiles for all-day personal radiative cooling. Nano Lett. 22(2), 680–687 (2022). https://doi.org/10.1021/acs.nanolett.1c03801
K. Lin, S. Chen, Y. Zeng, T.C. Ho, Y. Zhu et al., Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382(6671), 691–697 (2023). https://doi.org/10.1126/science.adi4725
L. Zhou, J. Zhao, H. Huang, F. Nan, G. Zhou et al., Flexible polymer photonic films with embedded microvoids for high-performance passive daytime radiative cooling. ACS Photonics 8(11), 3301–3307 (2021). https://doi.org/10.1021/acsphotonics.1c01149
M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan et al., Designing mesoporous photonic structures for high-performance passive daytime radiative cooling. Nano Lett. 21(3), 1412–1418 (2021). https://doi.org/10.1021/acs.nanolett.0c04241
C. Feng, P. Yang, H. Liu, M. Mao, Y. Liu et al., Bilayer porous polymer for efficient passive building cooling. Nano Energy 85, 105971 (2021). https://doi.org/10.1016/j.nanoen.2021.105971
J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun et al., Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362(6412), 315–319 (2018). https://doi.org/10.1126/science.aat9513
J. Fei, D. Han, J. Ge, X. Wang, S.W. Koh et al., Switchable surface coating for bifunctional passive radiative cooling and solar heating. Adv. Funct. Mater. 32(27), 2203582 (2022). https://doi.org/10.1002/adfm.202203582
P. Yao, Z. Chen, T. Liu, X. Liao, Z. Yang et al., Spider-silk-inspired nanocomposite polymers for durable daytime radiative cooling. Adv. Mater. 34(51), e2208236 (2022). https://doi.org/10.1002/adma.202208236
X. Liu, M. Zhang, Y. Hou, Y. Pan, C. Liu et al., Hierarchically superhydrophobic stereo-complex poly (lactic acid) aerogel for daytime radiative cooling. Adv. Funct. Mater. 32(46), 2207414 (2022). https://doi.org/10.1002/adfm.202207414
T. Wang, Y. Wu, L. Shi, X. Hu, M. Chen et al., A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 12, 365 (2021). https://doi.org/10.1038/s41467-020-20646-7
Y.Y. Zhu, R. Haghniaz, M.C. Hartel, S. Guan, J. Bahari et al., A breathable, passive-cooling, non-inflammatory, and biodegradable aerogel electronic skin for wearable physical-electrophysiological-chemical analysis. Adv. Mater. 35(10), e2209300 (2023). https://doi.org/10.1002/adma.202209300
J.-H. Zhang, Z. Li, J. Xu, J. Li, K. Yan et al., Versatile self-assembled electrospun micropyramid arrays for high-performance on-skin devices with minimal sensory interference. Nat. Commun. 13(1), 5839 (2022). https://doi.org/10.1038/s41467-022-33454-y
D. Li, X. Liu, W. Li, Z. Lin, B. Zhu et al., Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16(2), 153–158 (2021). https://doi.org/10.1038/s41565-020-00800-4
X. Zhang, W. Yang, Z. Shao, Y. Li, Y. Su et al., A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 16(2), 2188–2197 (2022). https://doi.org/10.1021/acsnano.1c08227
D. Chae, M. Kim, P.H. Jung, S. Son, J. Seo et al., Spectrally selective inorganic-based multilayer emitter for daytime radiative cooling. ACS Appl. Mater. Interfaces 12(7), 8073–8081 (2020). https://doi.org/10.1021/acsami.9b16742
X. Wang, X. Liu, Z. Li, H. Zhang, Z. Yang et al., Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 30(5), 1907562 (2020). https://doi.org/10.1002/adfm.201907562
B. Xie, H. Liao, H. Tu, J. Mei, M. Hou et al., Sandwich structured composite film with double barrier radiative cooling, adjustable heating, and multi-reflective electromagnetic interference shielding for all-weather protection. ACS Photonics 11(11), 5039–5049 (2024). https://doi.org/10.1021/acsphotonics.4c01718
W. Li, H. Zhan, N. Huang, Y. Ying, J. Yu et al., Scalable and flexible multi-layer prismatic photonic metamaterial film for efficient daytime radiative cooling. Small Methods 8(7), e2301258 (2024). https://doi.org/10.1002/smtd.202301258
P. Du, X. Zhao, X. Zhan, X. Li, K. Hou et al., A high-performance passive radiative cooling metafabric with Janus wettability and thermal conduction. Small 20(43), e2403751 (2024). https://doi.org/10.1002/smll.202403751
L. Lei, S. Meng, Y. Si, S. Shi, H. Wu et al., Wettability gradient-induced diode: MXene-engineered membrane for passive-evaporative cooling. Nano-Micro Lett. 16, 159 (2024). https://doi.org/10.1007/s40820-024-01359-8
X.-E. Wu, Y. Wang, X. Liang, Y. Zhang, P. Bi et al., Durable radiative cooling multilayer silk textile with excellent comprehensive performance. Adv. Funct. Mater. 34(11), 2313539 (2024). https://doi.org/10.1002/adfm.202313539
Z. Yan, H. Zhai, D. Fan, Q. Li, A trimode textile designed with hierarchical core-shell nanofiber structure for all-weather radiative personal thermal management. Nano Today 51, 101897 (2023). https://doi.org/10.1016/j.nantod.2023.101897
X. Mei, T. Wang, Y. Zhang, T. Huang, M. Chen et al., Scalable bilayer thin coatings with enhanced thermal dissipation for passive daytime radiative cooling. Chem. Eng. J. 495, 153182 (2024). https://doi.org/10.1016/j.cej.2024.153182
C. Lin, Y. Li, C. Chi, Y.S. Kwon, J. Huang et al., A solution-processed inorganic emitter with high spectral selectivity for efficient subambient radiative cooling in hot humid climates. Adv. Mater. 34(12), e2109350 (2022). https://doi.org/10.1002/adma.202109350
A. O’Cass, An assessment of consumers product, purchase decision, advertising and consumption involvement in fashion clothing. J. Econ. Psychol. 21(5), 545–576 (2000). https://doi.org/10.1016/S0167-4870(00)00018-0
V.M. Correia, T. Stephenson, S.J. Judd, Characterisation of textile wastewaters—a review. Environ. Technol. 15(10), 917–929 (1994). https://doi.org/10.1080/09593339409385500
S.V. Lomov, G. Huysmans, Y. Luo, R.S. Parnas, A. Prodromou et al., Textile composites: modelling strategies. Compos. Part A Appl. Sci. Manuf. 32(10), 1379–1394 (2001). https://doi.org/10.1016/S1359-835X(01)00038-0
K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective. J. Mater. Chem. A 2(28), 10776 (2014). https://doi.org/10.1039/c4ta00203b
R.G. Belliveau, S.A. DeJong, N.D. Boltin, Z. Lu, B.M. Cassidy et al., Mid-infrared emissivity of nylon, cotton, acrylic, and polyester fabrics as a function of moisture content. Text. Res. J. 90(13–14), 1431–1445 (2020). https://doi.org/10.1177/0040517519888825
C. Zhi, S. Shi, H. Wu, Y. Si, S. Zhang et al., Emerging trends of nanofibrous piezoelectric and triboelectric applications: mechanisms, electroactive materials, and designed architectures. Adv. Mater. 36(26), 2401264 (2024). https://doi.org/10.1002/adma.202401264
J. Dong, Y. Feng, K. Lin, B. Zhou, F. Su et al., A stretchable electromagnetic interference shielding fabric with dual-mode passive personal thermal management. Adv. Funct. Mater. 34(13), 2310774 (2024). https://doi.org/10.1002/adfm.202310774
P.-C. Hsu, A.Y. Song, P.B. Catrysse, C. Liu, Y. Peng et al., Radiative human body cooling by nanoporous polyethylene textile. Science 353(6303), 1019–1023 (2016). https://doi.org/10.1126/science.aaf5471
W. Li, Y. Zhang, S. Guo, Z. Yu, J. Kang et al., Multifunctional sandwich-structured super-hygroscopic zinc-based MOF-overlayed cooling wearables for special personal thermal management. Small 20(23), e2311272 (2024). https://doi.org/10.1002/smll.202311272
F.L. Zhu, Q.Q. Feng, Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments. Int. J. Therm. Sci. 165, 106899 (2021). https://doi.org/10.1016/j.ijthermalsci.2021.106899
Q. Gao, S. Agarwal, A. Greiner, T. Zhang, Electrospun fiber-based flexible electronics: fiber fabrication, device platform, functionality integration and applications. Prog. Mater. Sci. 137, 101139 (2023). https://doi.org/10.1016/j.pmatsci.2023.101139
Y. Xin, Q. Wang, C. Fu, S. Du, L. Hou et al., Alumina fiber membrane prepared by electrospinning technology for passive daytime radiative cooling. Adv. Funct. Mater. 35(3), 2413813 (2025). https://doi.org/10.1002/adfm.202413813
S. Xue, G. Huang, Q. Chen, X. Wang, J. Fan et al., Personal thermal management by radiative cooling and heating. Nano-Micro Lett. 16, 153 (2024). https://doi.org/10.1007/s40820-024-01360-1
L. Cai, A.Y. Song, W. Li, P.-C. Hsu, D. Lin et al., Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 30(35), e1802152 (2018). https://doi.org/10.1002/adma.201802152
B. Zhu, W. Li, Q. Zhang, D. Li, X. Liu et al., Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16(12), 1342–1348 (2021). https://doi.org/10.1038/s41565-021-00987-0
S. Zeng, S. Pian, M. Su, Z. Wang, M. Wu et al., Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373(6555), 692–696 (2021). https://doi.org/10.1126/science.abi5484
R. Wu, C. Sui, T.-H. Chen, Z. Zhou, Q. Li et al., Spectrally engineered textile for radiative cooling against urban heat islands. Science 384(6701), 1203–1212 (2024). https://doi.org/10.1126/science.adl0653
C.-Q. Ma, C.-H. Xue, X.-J. Guo, W. Shi, H.-D. Wang et al., Fabrication of passive cooling fabric as thermal management curtain for building energy-saving. Chem. Eng. J. 497, 154431 (2024). https://doi.org/10.1016/j.cej.2024.154431
P. Wu, J. Gu, X. Liu, Y. Ren, X. Mi et al., A robust core-shell nanofabric with personal protection, health monitoring and physical comfort for smart sportswear. Adv. Mater. 36(47), e2411131 (2024). https://doi.org/10.1002/adma.202411131
J. Wu, Y. Wang, P. Song, M. Sang, Z. Fan et al., Asymmetric aramid aerogel composite with durable and covert thermal management via Janus heat transfer structure. Nano Lett. 24(44), 14020–14027 (2024). https://doi.org/10.1021/acs.nanolett.4c03652
Q. Zhang, M. Wang, T. Chen, Z. Chen, D. Liu, Z. Zhang, L. Zhuo, Y. Wang, X. Xiao, B. Zhu, L. Li, W. Xu, Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202409807
Y. Fang, X. Zhao, G. Chen, T. Tat, J. Chen, Smart polyethylene textiles for radiative and evaporative cooling. Joule 5(4), 752–754 (2021). https://doi.org/10.1016/j.joule.2021.03.019
D. Miao, N. Cheng, X. Wang, J. Yu, B. Ding, Sandwich-structured textiles with hierarchically nanofibrous network and Janus wettability for outdoor personal thermal and moisture management. Chem. Eng. J. 450, 138012 (2022). https://doi.org/10.1016/j.cej.2022.138012
J. Hu, M.I. Iqbal, F. Sun, Wool can be cool: water-actuating woolen knitwear for both hot and cold. Adv. Funct. Mater. 30(51), 2005033 (2020). https://doi.org/10.1002/adfm.202005033
Y. Peng, J. Dong, Y. Gu, Y. Zhang, J. Long et al., Smart temperature-adaptive thermal regulation textiles integrating passive radiative cooling and reversible heat storage. Nano Energy 131, 110311 (2024). https://doi.org/10.1016/j.nanoen.2024.110311
C. Lan, M. Liang, J. Meng, Q. Mao, W. Ma et al., Humidity-responsive actuator-based smart personal thermal management fabrics achieved by solar thermal heating and sweat-evaporation cooling. ACS Nano 19(8), 8294–8302 (2025). https://doi.org/10.1021/acsnano.4c18643
X.A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng et al., Dynamic gating of infrared radiation in a textile. Science 363(6427), 619–623 (2019). https://doi.org/10.1126/science.aau1217
Y. Lin, N. Cheng, N. Meng, C. Wang, X. Wang et al., A patterned knitted fabric with reversible gating stability for dynamic moisture management of human body. Adv. Funct. Mater. 33(44), 2304109 (2023). https://doi.org/10.1002/adfm.202304109
J. Xu, F. Liang, Z. Wang, X. Chao, Y. Gu et al., A durable, breathable, and weather-adaptive coating driven by p self-assembly for radiative cooling and energy harvesting. Nano Energy 124, 109489 (2024). https://doi.org/10.1016/j.nanoen.2024.109489
S. Wang, Y. Zhou, T. Jiang, R. Yang, G. Tan et al., Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 89, 106440 (2021). https://doi.org/10.1016/j.nanoen.2021.106440
S. Wang, T. Jiang, Y. Meng, R. Yang, G. Tan et al., Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374(6574), 1501–1504 (2021). https://doi.org/10.1126/science.abg0291
J. Chen, L. Lu, Development of radiative cooling and its integration with buildings: a comprehensive review. Sol. Energy 212, 125–151 (2020). https://doi.org/10.1016/j.solener.2020.10.013
S.Y. Heo, G.J. Lee, D.H. Kim, Y.J. Kim, S. Ishii et al., A janus emitter for passive heat release from enclosures. Sci. Adv. 6(36), eabb1906 (2020). https://doi.org/10.1126/sciadv.abb1906
S. Liu, Y. Du, R. Zhang, H. He, A. Pan et al., Perovskite smart windows: the light manipulator in energy-efficient buildings. Adv. Mater. 36(17), e2306423 (2024). https://doi.org/10.1002/adma.202306423
J. Jin, Z. Zhu, Y. Ming, Y. Zhou, J. Shang et al., Spontaneous bifacial capping of perovskite film for efficient and mechanically stable flexible solar cell. Nat. Commun. 16(1), 90 (2025). https://doi.org/10.1038/s41467-024-55652-6
K. Tang, K. Dong, J. Li, M.P. Gordon, F.G. Reichertz et al., Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374(6574), 1504–1509 (2021). https://doi.org/10.1126/science.abf7136
B. Deng, Y. Zhu, X. Wang, J. Zhu, M. Liu et al., An ultrafast, energy-efficient electrochromic and thermochromic device for smart windows. Adv. Mater. 35(35), e2302685 (2023). https://doi.org/10.1002/adma.202302685
S. Liu, C. Sui, M. Harbinson, M. Pudlo, H. Perera et al., A scalable microstructure photonic coating fabricated by roll-to-roll “defects” for daytime subambient passive radiative cooling. Nano Lett. 23(17), 7767–7774 (2023). https://doi.org/10.1021/acs.nanolett.3c00111
N.M. Mohammad, Y. Zhang, W. Xu, S.S. Aranke, D. Carne et al., Highly tunable cellulosic hydrogels with dynamic solar modulation for energy-efficient windows. Small 20(27), 2303706 (2024). https://doi.org/10.1002/smll.202303706
T. Li, Y. Zhai, S. He, W. Gan, Z. Wei et al., A radiative cooling structural material. Science 364(6442), 760–763 (2019). https://doi.org/10.1126/science.aau9101
Q. Zhang, C. Qi, X. Wang, B. Zhu, W. Li et al., Daytime radiative cooling dressings for accelerating wound healing under sunlight. Nat. Chem. Eng. 1(4), 301–310 (2024). https://doi.org/10.1038/s44286-024-00050-4
W. Zhu, Y. Zhang, C. Zhang, X. Shan, A.K. Rao et al., Radiative cooling sorbent towards all weather ambient water harvesting. Commun. Eng. 2, 35 (2023). https://doi.org/10.1038/s44172-023-00082-3
J. Li, Y. Fu, J. Zhou, K. Yao, X. Ma et al., Ultrathin, soft, radiative cooling interfaces for advanced thermal management in skin electronics. Sci. Adv. 9(14), eadg1837 (2023). https://doi.org/10.1126/sciadv.adg1837
S. Kim, J.H. Park, J.W. Lee, Y. Kim, Y.T. Kang, Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell. Nat. Commun. 14, 2374 (2023). https://doi.org/10.1038/s41467-023-38081-9
A.P. Raman, W. Li, S. Fan, Generating light from darkness. Joule 3(11), 2679–2686 (2019). https://doi.org/10.1016/j.joule.2019.08.009
X. Xue, M. Qiu, Y. Li, Q.M. Zhang, S. Li et al., Creating an eco-friendly building coating with smart subambient radiative cooling. Adv. Mater. 32(42), e1906751 (2020). https://doi.org/10.1002/adma.201906751
Y. Ding, Z. Pang, K. Lan, Y. Yao, G. Panzarasa et al., Emerging engineered wood for building applications. Chem. Rev. 123(5), 1843–1888 (2023). https://doi.org/10.1021/acs.chemrev.2c00450
X. Li, J. Peoples, P. Yao, X. Ruan, Ultrawhite BaSO4 paints and films for remarkable daytime subambient radiative cooling. ACS Appl. Mater. Interfaces 13(18), 21733–21739 (2021). https://doi.org/10.1021/acsami.1c02368
Y. Li, W. Li, T. Han, X. Zheng, J. Li et al., Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6(6), 488–507 (2021). https://doi.org/10.1038/s41578-021-00283-2
P. Chen, P. Zhang, J. Sun, Y. Hou, X. Liu, Cooling wound dressings: Prospects for clinical practice. Clin. Transl. Med. 14(10), e70064 (2024). https://doi.org/10.1002/ctm2.70064
W. Shi, N. Song, Y. Huang, C. He, M. Zhang et al., Improved cooling performance of hydrogel wound dressings via integrating thermal conductivity and heat storage capacity for burn therapy. Biomacromol 23(3), 889–902 (2022). https://doi.org/10.1021/acs.biomac.1c01334
D. Zhao, A. Aili, Y. Zhai, J. Lu, D. Kidd et al., Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3(1), 111–123 (2019). https://doi.org/10.1016/j.joule.2018.10.006
I. Haechler, H. Park, G. Schnoering, T. Gulich, M. Rohner et al., Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Sci. Adv. 7(26), eabf3978 (2021). https://doi.org/10.1126/sciadv.abf3978
Z. Xi, S. Li, L. Yu, H. Yan, M. Chen, All-day freshwater harvesting by selective solar absorption and radiative cooling. ACS Appl. Mater. Interfaces 14(22), 26255–26263 (2022). https://doi.org/10.1021/acsami.2c05409
K.W. Lee, J. Yi, M.K. Kim, D.R. Kim, Transparent radiative cooling cover window for flexible and foldable electronic displays. Nat. Commun. 15, 4443 (2024). https://doi.org/10.1038/s41467-024-48840-x
J. Dong, Y. Peng, Y. Zhang, Y. Chai, J. Long et al., Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring. Nano-Micro Lett 15, 181 (2023). https://doi.org/10.1007/s40820-023-01156-9
Y. Jung, M. Kim, S. Jeong, S. Hong, S.H. Ko, Strain-insensitive outdoor wearable electronics by thermally robust nanofibrous radiative cooler. ACS Nano 18(3), 2312–2324 (2024). https://doi.org/10.1021/acsnano.3c10241
B. Xie, H. Wu, Material design and integrating strategies for thermoregulatory e-skins with heating and cooling functions. Device 2(12), 100640 (2024). https://doi.org/10.1016/j.device.2024.100640
W.B. Han, S.Y. Heo, D. Kim, S.M. Yang, G.J. Ko et al., Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci. Adv. 9(5), eadf5883 (2023). https://doi.org/10.1126/sciadv.adf5883
W. Li, S. Buddhiraju, S. Fan, Thermodynamic limits for simultaneous energy harvesting from the hot Sun and cold outer space. Light. Sci. Appl. 9, 68 (2020). https://doi.org/10.1038/s41377-020-0296-x
L. Zhu, A. Raman, K.X. Wang, M. Abou Anoma, S. Fan, Radiative cooling of solar cells. Optica 1(1), 32 (2014). https://doi.org/10.1364/optica.1.000032
J. Liu, Y. Zhou, Z. Zhou, Y. Du, C. Wang et al., Passive photovoltaic cooling: advances toward low-temperature operation. Adv. Energy Mater. 14(2), 2302662 (2024). https://doi.org/10.1002/aenm.202302662
B. Zhao, M. Hu, X. Ao, N. Chen, Q. Xuan et al., Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling. Appl. Energy 252, 113432 (2019). https://doi.org/10.1016/j.apenergy.2019.113432
H. Sun, F. Tang, Y. Bi, H. Sun, L. Huang et al., Hierarchically porous cellulose membrane via self-assembly engineering for ultra high-power thermoelectrical generation in natural convection. Adv. Funct. Mater. 33(52), 2307960 (2023). https://doi.org/10.1002/adfm.202307960
C.-H. Wang, H. Chen, Z.-Y. Jiang, X.-X. Zhang, F.-Q. Wang, Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation. Appl. Energy 331, 120425 (2023). https://doi.org/10.1016/j.apenergy.2022.120425
S. Zhang, Z. Wu, Z. Liu, Z. Hu, An emerging energy technology: self-uninterrupted electricity power harvesting from the Sun and cold space. Adv. Energy Mater. 13(19), 2300260 (2023). https://doi.org/10.1002/aenm.202300260
Q. Zhang, H. Cheng, S. Zhang, Y. Li, Z. Li et al., Advancements and challenges in thermoregulating textiles: smart clothing for enhanced personal thermal management. Chem. Eng. J. 488, 151040 (2024). https://doi.org/10.1016/j.cej.2024.151040
N. Guo, C. Shi, N. Warren, E.A. Sprague-Klein, B.W. Sheldon et al., Challenges and opportunities for passive thermoregulation. Adv. Energy Mater. 14(34), 2401776 (2024). https://doi.org/10.1002/aenm.202401776
C. Lin, K. Li, M. Li, B. Dopphoopha, J. Zheng et al., Pushing radiative cooling technology to real applications. Adv. Mater. 37(23), e2409738 (2025). https://doi.org/10.1002/adma.202409738
B. Ko, J. Noh, D. Chae, C. Lee, H. Lim et al., Neutral-colored transparent radiative cooler by tailoring solar absorption with punctured Bragg reflectors. Adv. Funct. Mater. 34(52), 2410613 (2024). https://doi.org/10.1002/adfm.202410613
H. Yu, J. Lu, J. Yan, T. Bai, Z. Niu et al., Selective emission fabric for indoor and outdoor passive radiative cooling in personal thermal management. Nano-Micro Lett. 17(1), 192 (2025). https://doi.org/10.1007/s40820-025-01713-4
S. Wang, Y. Wu, M. Pu, M. Xu, R. Zhang et al., A versatile strategy for concurrent passive daytime radiative cooling and sustainable energy harvesting. Small 20(6), e2305706 (2024). https://doi.org/10.1002/smll.202305706
J. Lu, Y. Fan, X. Lou, W. Xie, B. Zhao et al., Diatomite-based recyclable and green coating for efficient radiative cooling. Biomimetics 9(1), 50 (2024). https://doi.org/10.3390/biomimetics9010050
Y. Jung, S.H. Ko, Radiative cooling technology with artificial intelligence. iScience 27(12), 111325 (2024). https://doi.org/10.1016/j.isci.2024.111325
J. Xi, Y. Lou, L. Meng, C. Deng, Y. Chu et al., Smart cellulose-based Janus fabrics with switchable liquid transportation for personal moisture and thermal management. Nano-Micro Lett. 17, 14 (2025). https://doi.org/10.1007/s40820-024-01510-5