Simultaneously Regulating Uniform Zn2+ Flux and Electron Conduction by MOF/rGO Interlayers for High-Performance Zn Anodes
Corresponding Author: Feng Pan
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 73
Abstract
Owing to the merits of low cost, high safety and environmental benignity, rechargeable aqueous Zn-based batteries (ZBs) have gained tremendous attention in recent years. Nevertheless, the poor reversibility of Zn anodes that originates from dendrite growth, surface passivation and corrosion, severely hinders the further development of ZBs. To tackle these issues, here we report a Janus separator based on a Zn-ion conductive metal–organic framework (MOF) and reduced graphene oxide (rGO), which is able to regulate uniform Zn2+ flux and electron conduction simultaneously during battery operation. Facilitated by the MOF/rGO bifunctional interlayers, the Zn anodes demonstrate stable plating/stripping behavior (over 500 h at 1 mA cm−2), high Coulombic efficiency (99.2% at 2 mA cm−2 after 100 cycles) and reduced redox barrier. Moreover, it is also found that the Zn corrosion can be effectively retarded through diminishing the potential discrepancy on Zn surface. Such a separator engineering also saliently promotes the overall performance of Zn|MnO2 full cells, which deliver nearly 100% capacity retention after 2000 cycles at 4 A g−1 and high power density over 10 kW kg−1. This work provides a feasible route to the high-performance Zn anodes for ZBs.
Highlights:
1 Dendrite-free stable Zn plating/stripping was achieved for over 500 h at 2 mA cm−2.
2 No short-circuit for 10 mAh cm−2 of Zn plating.
3 Zn|MnO2 cells delivered nearly 100% capacity retention over 2000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12, 3288–3304 (2019). https://doi.org/10.1039/C9EE02526J
- M. Song, H. Tan, D. Chao, H. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
- X. Zeng, J. Hao, Z. Wang, J. Mao, Z. Guo, Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 20, 410–437 (2019). https://doi.org/10.1016/j.ensm.2019.04.022
- Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31, 1903778 (2019). https://doi.org/10.1002/adma.201903778
- Q. Zhao, X. Chen, Z. Wang, L. Yang, R. Qin et al., Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small 15, 1904545 (2019). https://doi.org/10.1002/smll.201904545
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- W. Li, C. Han, Y. Wang, H. Liu, Structural modulation of manganese oxides for zinc-ion batteries. Chin. J. Struct. Chem. 39, 31–35 (2020). https://doi.org/10.14102/j.cnki.0254-5861.2011-2706
- L. Ma, S. Chen, H. Li, Z. Ruan, Z. Tang et al., Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode. Energy Environ. Sci. 11, 2521–2530 (2018). https://doi.org/10.1039/C8EE01415A
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- P. He, M. Yan, G. Zhang, R. Sun, L. Chen et al., Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017). https://doi.org/10.1002/aenm.201601920
- L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
- H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
- X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12, 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a supersaturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, Y. Yu, X. Zhu et al., Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9, 9681–9687 (2017). https://doi.org/10.1021/acsami.6b16560
- L. Chen, M. Yan, Z. Mei, L. Mai, Research progress and prospect of aqueous zinc ion battery. J. Inorg. Mater. 32, 225–234 (2017). https://doi.org/10.15541/jim20160192
- C. Chen, K. Matsumoto, K. Kubota, R. Hagiwara, Q. Xu, A room-temperature molten hydrate electrolyte for rechargeable zinc–air batteries. Adv. Energy Mater. 9, 1900196 (2019). https://doi.org/10.1002/aenm.201900196
- Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903675 (2019). https://doi.org/10.1002/adma.201903675
- D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018). https://doi.org/10.1002/adma.201803181
- Z. Kang, C. Wu, L. Dong, W. Liu, J. Mou et al., 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain. Chem. Eng. 7, 3364–3371 (2019). https://doi.org/10.1021/acssuschemeng.8b05568
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- W. Kao-ian, R. Pornprasertsuk, P. Thamyongkit, T. Maiyalagan, S. Kheawhom, Rechargeable zinc-ion battery based on choline chloride-urea deep eutectic solvent. J. Electrochem. Soc. 166, A1063–A1069 (2019). https://doi.org/10.1149/2.0641906jes
- M. Liu, L. Yang, H. Liu, A. Amine, Q. Zhao et al., Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl. Mater. Interfaces 11, 32046–32051 (2019). https://doi.org/10.1021/acsami.9b11243
- H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
- P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30, 1908528 (2020). https://doi.org/10.1002/adfm.201908528
- X. Sun, H. Huo, Y. Chen, R. Li, N. Zhao et al., Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci. 13, 127–134 (2019). https://doi.org/10.1039/C9EE01903K
- Z. Wang, J. Hu, L. Han, Z. Wang, H. Wang et al., A MOF-based single-Ion Zn2+ solid electrolyte leading to dendrite-free rechargeable zn batteries. Nano Energy 56, 92–99 (2019). https://doi.org/10.1016/j.nanoen.2018.11.038
- H. Furukawa, F. Gándara, Y. Zhang, J. Jiang, W.L. Queen et al., Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014). https://doi.org/10.1021/ja500330a
- C.A. Trickett, T.M. Osborn Popp, J. Su, C. Yan, J. Weisberg et al., Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst. Nat. Chem. 11, 170–176 (2018). https://doi.org/10.1038/s41557-018-0171-z
- J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987). https://doi.org/10.1016/0032-3861(87)90394-6
- J.L. Dye, M.P. Faber, D.J. Karl, Transference numbers and conductances of multivalent salts in aqueous solution: zinc sulfate and zinc perchlorate. J. Am. Chem. Soc. 82, 314–318 (1960). https://doi.org/10.1021/ja01487a016
- Z. Wang, W. Huang, J. Hua, Y. Wang, H. Yi et al., An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li–S batteries. Small Methods 4, 2000082 (2020). https://doi.org/10.1002/smtd.202000082
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
- T. Foroozan, V. Yurkiv, S. Sharifi Asl, R. Rojaee, F. Mashayek et al., Non-dendritic Zn electrodeposition enabled by zincophilic graphene substrates. ACS Appl. Mater. Interfaces 11, 44077–44089 (2019). https://doi.org/10.1021/acsami.9b13174
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- C. Sun, Y.P. Li, J. Jin, J. Yang, Z. Wen, ZnO nanoarrays modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries. J. Mater. Chem. A 7, 7752–7759 (2019). https://doi.org/10.1039/C9TA00862D
- J. Yu, Y. Lyu, J. Liu, M.B. Effat, S.C.T. Kwok et al., Enabling nonflammable Li-metal batteries via electrolyte functionalization and interface engineering. J. Mater. Chem. A 7, 17995–18002 (2019). https://doi.org/10.1039/C9TA03784E
- S. Luo, L. Xie, F. Han, W. Wei, Y. Huang et al., Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery. Adv. Funct. Mater. 29, 1901336 (2019). https://doi.org/10.1002/adfm.201901336
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- M. Han, J. Huang, S. Liang, L. Shan, X. Xie et al., Oxygen defects in β-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. Science 23, 100797 (2020). https://doi.org/10.1016/j.isci.2019.100797
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012). https://doi.org/10.1002/anie.201106307
- Y. Jiang, D. Ba, Y. Li, J. Liu, Noninterference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 toward neutral Zn–Mn batteries with superior performance. Adv. Sci. 7, 1902795 (2020). https://doi.org/10.1002/advs.201902795
- J. Lee, J.B. Ju, W.I. Cho, B.W. Cho, S.H. Oh, Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochim. Acta 112, 138–143 (2013). https://doi.org/10.1016/j.electacta.2013.08.136
- L. Li, T.K.A. Hoang, J. Zhi, M. Han, S. Li et al., Functioning mechanism of the secondary aqueous Zn-β-MnO2 battery. ACS Appl. Mater. Interfaces 12, 12834–12846 (2020). https://doi.org/10.1021/acsami.9b22758
- M. Liu, Q. Zhao, H. Liu, J. Yang, X. Chen et al., Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 64, 103942 (2019). https://doi.org/10.1016/j.nanoen.2019.103942
- Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
- K.Y. Kwon, T.H. Jo, J.S. Kim, F. Hasan, H.D. Yoo, A chronocoulometric method to measure the corrosion rate on zinc metal electrodes. ACS Appl. Mater. Interfaces 12, 42612–42621 (2020). https://doi.org/10.1021/acsami.0c06560
References
B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12, 3288–3304 (2019). https://doi.org/10.1039/C9EE02526J
M. Song, H. Tan, D. Chao, H. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018). https://doi.org/10.1002/adfm.201802564
G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 3, 2480–2501 (2018). https://doi.org/10.1021/acsenergylett.8b01426
X. Zeng, J. Hao, Z. Wang, J. Mao, Z. Guo, Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Mater. 20, 410–437 (2019). https://doi.org/10.1016/j.ensm.2019.04.022
Q. Yang, G. Liang, Y. Guo, Z. Liu, B. Yan et al., Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries. Adv. Mater. 31, 1903778 (2019). https://doi.org/10.1002/adma.201903778
Q. Zhao, X. Chen, Z. Wang, L. Yang, R. Qin et al., Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small 15, 1904545 (2019). https://doi.org/10.1002/smll.201904545
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
W. Li, C. Han, Y. Wang, H. Liu, Structural modulation of manganese oxides for zinc-ion batteries. Chin. J. Struct. Chem. 39, 31–35 (2020). https://doi.org/10.14102/j.cnki.0254-5861.2011-2706
L. Ma, S. Chen, H. Li, Z. Ruan, Z. Tang et al., Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode. Energy Environ. Sci. 11, 2521–2530 (2018). https://doi.org/10.1039/C8EE01415A
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
P. He, M. Yan, G. Zhang, R. Sun, L. Chen et al., Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater. 7, 1601920 (2017). https://doi.org/10.1002/aenm.201601920
L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 5, 1400930 (2015). https://doi.org/10.1002/aenm.201400930
H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
X. Pu, B. Jiang, X. Wang, W. Liu, L. Dong et al., High-performance aqueous zinc-ion batteries realized by MOF materials. Nano-Micro Lett. 12, 152 (2020). https://doi.org/10.1007/s40820-020-00487-1
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a supersaturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
K.E.K. Sun, T.K.A. Hoang, T.N.L. Doan, Y. Yu, X. Zhu et al., Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries. ACS Appl. Mater. Interfaces 9, 9681–9687 (2017). https://doi.org/10.1021/acsami.6b16560
L. Chen, M. Yan, Z. Mei, L. Mai, Research progress and prospect of aqueous zinc ion battery. J. Inorg. Mater. 32, 225–234 (2017). https://doi.org/10.15541/jim20160192
C. Chen, K. Matsumoto, K. Kubota, R. Hagiwara, Q. Xu, A room-temperature molten hydrate electrolyte for rechargeable zinc–air batteries. Adv. Energy Mater. 9, 1900196 (2019). https://doi.org/10.1002/aenm.201900196
Y. Zeng, X. Zhang, R. Qin, X. Liu, P. Fang et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 31, 1903675 (2019). https://doi.org/10.1002/adma.201903675
D. Chao, C. Zhu, M. Song, P. Liang, X. Zhang et al., A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 30, 1803181 (2018). https://doi.org/10.1002/adma.201803181
Z. Kang, C. Wu, L. Dong, W. Liu, J. Mou et al., 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. ACS Sustain. Chem. Eng. 7, 3364–3371 (2019). https://doi.org/10.1021/acssuschemeng.8b05568
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019). https://doi.org/10.1039/C9EE00596J
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
W. Kao-ian, R. Pornprasertsuk, P. Thamyongkit, T. Maiyalagan, S. Kheawhom, Rechargeable zinc-ion battery based on choline chloride-urea deep eutectic solvent. J. Electrochem. Soc. 166, A1063–A1069 (2019). https://doi.org/10.1149/2.0641906jes
M. Liu, L. Yang, H. Liu, A. Amine, Q. Zhao et al., Artificial solid-electrolyte interface facilitating dendrite-free zinc metal anodes via nanowetting effect. ACS Appl. Mater. Interfaces 11, 32046–32051 (2019). https://doi.org/10.1021/acsami.9b11243
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30, 1908528 (2020). https://doi.org/10.1002/adfm.201908528
X. Sun, H. Huo, Y. Chen, R. Li, N. Zhao et al., Design of a mixed conductive garnet/Li interface for dendrite-free solid lithium metal batteries. Energy Environ. Sci. 13, 127–134 (2019). https://doi.org/10.1039/C9EE01903K
Z. Wang, J. Hu, L. Han, Z. Wang, H. Wang et al., A MOF-based single-Ion Zn2+ solid electrolyte leading to dendrite-free rechargeable zn batteries. Nano Energy 56, 92–99 (2019). https://doi.org/10.1016/j.nanoen.2018.11.038
H. Furukawa, F. Gándara, Y. Zhang, J. Jiang, W.L. Queen et al., Water adsorption in porous metal–organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014). https://doi.org/10.1021/ja500330a
C.A. Trickett, T.M. Osborn Popp, J. Su, C. Yan, J. Weisberg et al., Identification of the strong Brønsted acid site in a metal–organic framework solid acid catalyst. Nat. Chem. 11, 170–176 (2018). https://doi.org/10.1038/s41557-018-0171-z
J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987). https://doi.org/10.1016/0032-3861(87)90394-6
J.L. Dye, M.P. Faber, D.J. Karl, Transference numbers and conductances of multivalent salts in aqueous solution: zinc sulfate and zinc perchlorate. J. Am. Chem. Soc. 82, 314–318 (1960). https://doi.org/10.1021/ja01487a016
Z. Wang, W. Huang, J. Hua, Y. Wang, H. Yi et al., An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li–S batteries. Small Methods 4, 2000082 (2020). https://doi.org/10.1002/smtd.202000082
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019). https://doi.org/10.1126/science.aax6873
T. Foroozan, V. Yurkiv, S. Sharifi Asl, R. Rojaee, F. Mashayek et al., Non-dendritic Zn electrodeposition enabled by zincophilic graphene substrates. ACS Appl. Mater. Interfaces 11, 44077–44089 (2019). https://doi.org/10.1021/acsami.9b13174
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
C. Sun, Y.P. Li, J. Jin, J. Yang, Z. Wen, ZnO nanoarrays modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries. J. Mater. Chem. A 7, 7752–7759 (2019). https://doi.org/10.1039/C9TA00862D
J. Yu, Y. Lyu, J. Liu, M.B. Effat, S.C.T. Kwok et al., Enabling nonflammable Li-metal batteries via electrolyte functionalization and interface engineering. J. Mater. Chem. A 7, 17995–18002 (2019). https://doi.org/10.1039/C9TA03784E
S. Luo, L. Xie, F. Han, W. Wei, Y. Huang et al., Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery. Adv. Funct. Mater. 29, 1901336 (2019). https://doi.org/10.1002/adfm.201901336
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138, 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
M. Han, J. Huang, S. Liang, L. Shan, X. Xie et al., Oxygen defects in β-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. Science 23, 100797 (2020). https://doi.org/10.1016/j.isci.2019.100797
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933–935 (2012). https://doi.org/10.1002/anie.201106307
Y. Jiang, D. Ba, Y. Li, J. Liu, Noninterference revealing of “layered to layered” zinc storage mechanism of δ-MnO2 toward neutral Zn–Mn batteries with superior performance. Adv. Sci. 7, 1902795 (2020). https://doi.org/10.1002/advs.201902795
J. Lee, J.B. Ju, W.I. Cho, B.W. Cho, S.H. Oh, Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochim. Acta 112, 138–143 (2013). https://doi.org/10.1016/j.electacta.2013.08.136
L. Li, T.K.A. Hoang, J. Zhi, M. Han, S. Li et al., Functioning mechanism of the secondary aqueous Zn-β-MnO2 battery. ACS Appl. Mater. Interfaces 12, 12834–12846 (2020). https://doi.org/10.1021/acsami.9b22758
M. Liu, Q. Zhao, H. Liu, J. Yang, X. Chen et al., Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy 64, 103942 (2019). https://doi.org/10.1016/j.nanoen.2019.103942
Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu et al., Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater. 27, 205–211 (2020). https://doi.org/10.1016/j.ensm.2020.01.032
K.Y. Kwon, T.H. Jo, J.S. Kim, F. Hasan, H.D. Yoo, A chronocoulometric method to measure the corrosion rate on zinc metal electrodes. ACS Appl. Mater. Interfaces 12, 42612–42621 (2020). https://doi.org/10.1021/acsami.0c06560