Electrolyte Additive-Assembled Interconnecting Molecules–Zinc Anode Interface for Zinc-Ion Hybrid Supercapacitors
Corresponding Author: Liubing Dong
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 268
Abstract
Zinc-ion hybrid supercapacitors (ZHSs) are promising energy storage systems integrating high energy density and high-power density, whereas they are plagued by the poor electrochemical stability and inferior kinetics of zinc anodes. Herein, we report an electrolyte additive-assembled interconnecting molecules–zinc anode interface, realizing highly stable and fast-kinetics zinc anodes for ZHSs. The sulfobutyl groups-grafted β-cyclodextrin (SC) supramolecules as a trace additive in ZnSO4 electrolytes not only adsorb on zinc anodes but also self-assemble into an interconnecting molecule interface benefiting from the mutual attraction between the electron-rich sulfobutyl group and the electron-poor cavity of the adjacent SC supramolecule. The interconnecting molecules–zinc anode interface provides abundant anion-trapping cavities and zincophilic groups to enhance Zn2+ transference number and homogenize Zn2+ deposition sites, and meanwhile, it accelerates the desolvation of hydrated Zn2+ to improve zinc deposition kinetics and inhibit active water molecules from inducing parasitic reactions at the zinc deposition interface, making zinc anodes present superior reversibility with 99.7% Coulombic efficiency, ~ 30 times increase in operation lifetime and an outstanding cumulative capacity at large current densities. ZHSs with 20,000-cycle life and optimized rate capability are thereby achieved. This work provides an inspiring strategy for designing zinc anode interfaces to promote the development of ZHSs.
Highlights:
1 An important topic about zinc-ion hybrid supercapacitors is proposed, i.e., how to achieve not only ultrastable but also fast-kinetics zinc anodes to match capacitive cathodes featuring ultralong cycle life and fast charge storage ability.
2 An electrolyte additive-assembled interconnecting molecules–zinc anode interface is proposed, and its regulation mechanisms on zinc plating/stripping behaviors are revealed.
3 A scalable strategy is reported for achieving highly stable and fast-rate zinc anodes toward zinc-based electrochemical energy storage systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
- C. Shin, L. Yao, S.-Y. Jeong, T.N. Ng, Zinc-copper dual-ion electrolytes to suppress dendritic growth and increase anode utilization in zinc ion capacitors. Sci. Adv. 10(1), eadf9951 (2024). https://doi.org/10.1126/sciadv.adf9951
- Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
- S. Liu, R. Zhang, C. Wang, J. Mao, D. Chao et al., Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 136(17), e202400045 (2024). https://doi.org/10.1002/ange.202400045
- L. Ding, L. Wang, J. Gao, T. Yan, H. Li et al., Facile Zn2+ desolvation enabled by local coordination engineering for long-cycling aqueous zinc-ion batteries. Adv. Funct. Mater. 33(32), 2301648 (2023). https://doi.org/10.1002/adfm.202301648
- Y. Jiang, Z. Wan, X. He, J. Yang, Fine-tuning electrolyte concentration and metal–organic framework surface toward actuating fast Zn2+ dehydration for aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 62(44), e202307274 (2023). https://doi.org/10.1002/anie.202307274
- H. Zhang, X. Gan, Z. Song, J. Zhou, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed. 62(13), e202217833 (2023). https://doi.org/10.1002/anie.202217833
- P. Xiao, H. Li, J. Fu, C. Zeng, Y. Zhao et al., An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy Environ. Sci. 15(4), 1638–1646 (2022). https://doi.org/10.1039/D1EE03882F
- Z. Cai, Y. Ou, B. Zhang, J. Wang, L. Fu et al., A replacement reaction enabled interdigitated metal/solid electrolyte architecture for battery cycling at 20 mA cm−2 and 20 mAh cm−2. J. Am. Chem. Soc. 143(8), 3143–3152 (2021). https://doi.org/10.1021/jacs.0c11753
- J. Lu, T. Wang, J. Yang, X. Shen, H. Pang et al., Multifunctional self-assembled bio-interfacial layers for high-performance zinc metal anodes. Angew. Chem. Int. Ed. 63(42), e202409838 (2024). https://doi.org/10.1002/anie.202409838
- Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
- Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15(11), 4748–4760 (2022). https://doi.org/10.1039/D2EE02687B
- Y. Dai, C. Zhang, W. Zhang, L. Cui, C. Ye et al., Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators. Angew. Chem. Int. Ed. 62(18), e202301192 (2023). https://doi.org/10.1002/anie.202301192
- Q. Hu, J. Hou, Y. Liu, L. Li, Q. Ran et al., Modulating zinc metal reversibility by confined antifluctuator film for durable and dendrite-free zinc ion batteries. Adv. Mater. 35(36), 2303336 (2023). https://doi.org/10.1002/adma.202303336
- H. Tian, G. Feng, Q. Wang, Z. Li, W. Zhang et al., Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat. Commun. 13(1), 7922 (2022). https://doi.org/10.1038/s41467-022-35618-2
- G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11(19), 2003927 (2021). https://doi.org/10.1002/aenm.202003927
- Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
- Y. Zhou, S. Xie, Y. Li, Z. Zheng, L. Dong, Sieve-like interface built by ZnO porous sheets towards stable zinc anodes. J. Colloid Interface Sci. 630, 676–684 (2023). https://doi.org/10.1016/j.jcis.2022.10.141
- B. Niu, Z. Li, S. Cai, D. Luo, Y. Qiao et al., Robust Zn anode enabled by a hydrophilic adhesive coating for long-life zinc-ion hybrid supercapacitors. Chem. Eng. J. 442, 136217 (2022). https://doi.org/10.1016/j.cej.2022.136217
- C. Zhou, L. Shan, Q. Nan, J. Zhang, Z. Fan et al., Construction of robust organic–inorganic interface layer for dendrite-free and durable zinc metal anode. Adv. Funct. Mater. 34(19), 2312696 (2024). https://doi.org/10.1002/adfm.202312696
- D. Wang, D. Lv, H. Peng, N. Wang, H. Liu et al., Site-selective adsorption on ZnF2/Ag coated Zn for advanced aqueous zinc-metal batteries at low temperature. Nano Lett. 22(4), 1750–1758 (2022). https://doi.org/10.1021/acs.nanolett.1c04975
- J. Li, S. Zhou, X. Meng, Y. Chen, C. Fu et al., Unique ion rectifier intermediate enabled by ultrathin vermiculite sheets for high-performance Zn metal anodes. Sci. Bull. 68(12), 1283–1294 (2023). https://doi.org/10.1016/j.scib.2023.05.015
- Y. Li, X. Peng, X. Li, H. Duan, S. Xie et al., Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 35(18), 2300019 (2023). https://doi.org/10.1002/adma.202300019
- Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
- T. Liu, J. Hong, J. Wang, Y. Xu, Y. Wang, Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Mater. 45, 1074–1083 (2022). https://doi.org/10.1016/j.ensm.2021.11.002
- J. Cao, D. Zhang, R. Chanajaree, D. Luo, X. Yang et al., A low-cost separator enables a highly stable zinc anode by accelerating the de-solvation effect. Chem. Eng. J. 480, 147980 (2024). https://doi.org/10.1016/j.cej.2023.147980
- M. Peng, X. Tang, K. Xiao, T. Hu, K. Yuan et al., Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries. Angew. Chem. Int. Ed. 62(27), e202302701 (2023). https://doi.org/10.1002/anie.202302701
- C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13(1), 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
- W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
- S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
- D. Han, T. Sun, R. Zhang, W. Zhang, T. Ma et al., Eutectic electrolytes with doubly-bound water for high-stability zinc anodes. Adv. Funct. Mater. 32(52), 2209065 (2022). https://doi.org/10.1002/adfm.202209065
- M. Qiu, P. Sun, Y. Wang, L. Ma, C. Zhi et al., Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angew. Chem. 134(44), e202210979 (2022). https://doi.org/10.1002/ange.202210979
- B. Wang, R. Zheng, W. Yang, X. Han, C. Hou et al., Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv. Funct. Mater. 32(23), 2112693 (2022). https://doi.org/10.1002/adfm.202112693
- K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144(25), 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
- H. Yu, D. Chen, Q. Li, C. Yan, Z. Jiang et al., In situ construction of anode–molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv. Energy Mater. 13(22), 2300550 (2023). https://doi.org/10.1002/aenm.202300550
- Z. Jiao, X. Cai, X. Wang, Y. Li, Z. Bie et al., Trace amount of nitrilotriacetate induced electrolyte evolution and textured surface for stable Zn anode. Adv. Energy Mater. 13(48), 2302676 (2023). https://doi.org/10.1002/aenm.202302676
- G. Zhang, Y. Chen, L. Fu, L. Zheng, K. Fan et al., Regulating the solvation sheath of zinc ions by supramolecular coordination chemistry toward ultrastable zinc anodes. SmartMat 5(3), e1216 (2024). https://doi.org/10.1002/smm2.1216
- P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
- J. Wei, P. Zhang, T. Shen, Y. Liu, T. Dai et al., Supramolecule-based excluded-volume electrolytes and conjugated sulfonamide cathodes for high-voltage and long-cycling aqueous zinc-ion batteries. ACS Energy Lett. 8(1), 762–771 (2023). https://doi.org/10.1021/acsenergylett.2c02646
- Z. Tian, J. Yin, T. Guo, Z. Zhao, Y. Zhu et al., A sustainable NH4+ ion battery by electrolyte engineering. Angew. Chem. Int. Ed. 61(51), e202213757 (2022). https://doi.org/10.1002/anie.202213757
- Y. Wang, T. Wang, D. Dong, J. Xie, Y. Guan et al., Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter 5(1), 162–179 (2022). https://doi.org/10.1016/j.matt.2021.10.021
- W. Guo, L. Xu, Y. Su, Z. Tian, C. Qiao et al., Tailoring localized electrolyte via a dual-functional protein membrane toward stable Zn anodes. ACS Nano 18(15), 10642–10652 (2024). https://doi.org/10.1021/acsnano.4c02740
- W.-B. Tu, S. Liang, L.-N. Song, X.-X. Wang, G.-J. Ji et al., Nanoengineered functional cellulose ionic conductor toward high-performance all-solid-state zinc-ion battery. Adv. Funct. Mater. 34(25), 2316137 (2024). https://doi.org/10.1002/adfm.202316137
- C.W. Extrand, A thermodynamic model for wetting free energies from contact angles. Langmuir 19(3), 646–649 (2003). https://doi.org/10.1021/la0259609
- A. Zhou, H. Wang, F. Zhang, X. Hu, Z. Song et al., Amphipathic phenylalanine-induced nucleophilic-hydrophobic interface toward highly reversible Zn anode. Nano-Micro Lett. 16(1), 164 (2024). https://doi.org/10.1007/s40820-024-01380-x
- J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.-Z. Qiao, Triple-function electrolyte regulation toward advanced aqueous Zn-ion batteries. Adv. Mater. 34(44), e2206963 (2022). https://doi.org/10.1002/adma.202206963
- R. Sun, D. Han, C. Cui, Z. Han, X. Guo et al., A self-deoxidizing electrolyte additive enables highly stable aqueous zinc batteries. Angew. Chem. Int. Ed. 62(28), e202303557 (2023). https://doi.org/10.1002/anie.202303557
- X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
- Y. Li, L. Liu, H. Zhang, H. Wang, Z. Sun et al., Bi-functional green additive anchoring interface enables stable zinc metal anodes for aqueous zinc-ions batteries. Adv. Funct. Mater. 35(1), 2410855 (2025). https://doi.org/10.1002/adfm.202410855
- M. Kim, S.-J. Shin, J. Lee, Y. Park, Y. Kim et al., Cationic additive with a rigid solvation shell for high-performance zinc ion batteries. Angew. Chem. Int. Ed. 61(47), e202211589 (2022). https://doi.org/10.1002/anie.202211589
- H. Liu, Z. Xin, B. Cao, Z. Xu, B. Xu et al., Polyhydroxylated organic molecular additives for durable aqueous zinc battery. Adv. Funct. Mater. 34(4), 2309840 (2024). https://doi.org/10.1002/adfm.202309840
- F. Ling, L. Wang, F. Liu, M. Ma, S. Zhang et al., Multi-scale structure engineering of ZnSnO3 for ultra-long-life aqueous zinc-metal batteries. Adv. Mater. 35(23), e2208764 (2023). https://doi.org/10.1002/adma.202208764
- M. Liu, W. Yuan, G. Ma, K. Qiu, X. Nie et al., In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes. Angew. Chem. Int. Ed. 62(27), e202304444 (2023). https://doi.org/10.1002/anie.202304444
- Y. Zeng, P.X. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34(18), 2200342 (2022). https://doi.org/10.1002/adma.202200342
- Q. Zhu, G. Sun, S. Qiao, D. Wang, Z. Cui et al., Selective shielding of the (002) plane enabling vertically oriented zinc plating for dendrite-free zinc anode. Adv. Mater. 36(11), 2308577 (2024). https://doi.org/10.1002/adma.202308577
- A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/D2EE02931F
References
L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater. 13, 96–102 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
C. Shin, L. Yao, S.-Y. Jeong, T.N. Ng, Zinc-copper dual-ion electrolytes to suppress dendritic growth and increase anode utilization in zinc ion capacitors. Sci. Adv. 10(1), eadf9951 (2024). https://doi.org/10.1126/sciadv.adf9951
Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
S. Liu, R. Zhang, C. Wang, J. Mao, D. Chao et al., Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 136(17), e202400045 (2024). https://doi.org/10.1002/ange.202400045
L. Ding, L. Wang, J. Gao, T. Yan, H. Li et al., Facile Zn2+ desolvation enabled by local coordination engineering for long-cycling aqueous zinc-ion batteries. Adv. Funct. Mater. 33(32), 2301648 (2023). https://doi.org/10.1002/adfm.202301648
Y. Jiang, Z. Wan, X. He, J. Yang, Fine-tuning electrolyte concentration and metal–organic framework surface toward actuating fast Zn2+ dehydration for aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 62(44), e202307274 (2023). https://doi.org/10.1002/anie.202307274
H. Zhang, X. Gan, Z. Song, J. Zhou, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed. 62(13), e202217833 (2023). https://doi.org/10.1002/anie.202217833
P. Xiao, H. Li, J. Fu, C. Zeng, Y. Zhao et al., An anticorrosive zinc metal anode with ultra-long cycle life over one year. Energy Environ. Sci. 15(4), 1638–1646 (2022). https://doi.org/10.1039/D1EE03882F
Z. Cai, Y. Ou, B. Zhang, J. Wang, L. Fu et al., A replacement reaction enabled interdigitated metal/solid electrolyte architecture for battery cycling at 20 mA cm−2 and 20 mAh cm−2. J. Am. Chem. Soc. 143(8), 3143–3152 (2021). https://doi.org/10.1021/jacs.0c11753
J. Lu, T. Wang, J. Yang, X. Shen, H. Pang et al., Multifunctional self-assembled bio-interfacial layers for high-performance zinc metal anodes. Angew. Chem. Int. Ed. 63(42), e202409838 (2024). https://doi.org/10.1002/anie.202409838
Q. Yang, Q. Li, Z. Liu, D. Wang, Y. Guo et al., Dendrites in Zn-based batteries. Adv. Mater. 32(48), 2001854 (2020). https://doi.org/10.1002/adma.202001854
Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15(11), 4748–4760 (2022). https://doi.org/10.1039/D2EE02687B
Y. Dai, C. Zhang, W. Zhang, L. Cui, C. Ye et al., Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators. Angew. Chem. Int. Ed. 62(18), e202301192 (2023). https://doi.org/10.1002/anie.202301192
Q. Hu, J. Hou, Y. Liu, L. Li, Q. Ran et al., Modulating zinc metal reversibility by confined antifluctuator film for durable and dendrite-free zinc ion batteries. Adv. Mater. 35(36), 2303336 (2023). https://doi.org/10.1002/adma.202303336
H. Tian, G. Feng, Q. Wang, Z. Li, W. Zhang et al., Three-dimensional Zn-based alloys for dendrite-free aqueous Zn battery in dual-cation electrolytes. Nat. Commun. 13(1), 7922 (2022). https://doi.org/10.1038/s41467-022-35618-2
G. Zhang, X. Zhang, H. Liu, J. Li, Y. Chen et al., 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv. Energy Mater. 11(19), 2003927 (2021). https://doi.org/10.1002/aenm.202003927
Z. Wang, J. Huang, Z. Guo, X. Dong, Y. Liu et al., A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. Joule 3(5), 1289–1300 (2019). https://doi.org/10.1016/j.joule.2019.02.012
Y. Zhou, S. Xie, Y. Li, Z. Zheng, L. Dong, Sieve-like interface built by ZnO porous sheets towards stable zinc anodes. J. Colloid Interface Sci. 630, 676–684 (2023). https://doi.org/10.1016/j.jcis.2022.10.141
B. Niu, Z. Li, S. Cai, D. Luo, Y. Qiao et al., Robust Zn anode enabled by a hydrophilic adhesive coating for long-life zinc-ion hybrid supercapacitors. Chem. Eng. J. 442, 136217 (2022). https://doi.org/10.1016/j.cej.2022.136217
C. Zhou, L. Shan, Q. Nan, J. Zhang, Z. Fan et al., Construction of robust organic–inorganic interface layer for dendrite-free and durable zinc metal anode. Adv. Funct. Mater. 34(19), 2312696 (2024). https://doi.org/10.1002/adfm.202312696
D. Wang, D. Lv, H. Peng, N. Wang, H. Liu et al., Site-selective adsorption on ZnF2/Ag coated Zn for advanced aqueous zinc-metal batteries at low temperature. Nano Lett. 22(4), 1750–1758 (2022). https://doi.org/10.1021/acs.nanolett.1c04975
J. Li, S. Zhou, X. Meng, Y. Chen, C. Fu et al., Unique ion rectifier intermediate enabled by ultrathin vermiculite sheets for high-performance Zn metal anodes. Sci. Bull. 68(12), 1283–1294 (2023). https://doi.org/10.1016/j.scib.2023.05.015
Y. Li, X. Peng, X. Li, H. Duan, S. Xie et al., Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv. Mater. 35(18), 2300019 (2023). https://doi.org/10.1002/adma.202300019
Y. Liang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., Novel concept of separator design: efficient ions transport modulator enabled by dual-interface engineering toward ultra-stable Zn metal anodes. Adv. Funct. Mater. 32(25), 2112936 (2022). https://doi.org/10.1002/adfm.202112936
T. Liu, J. Hong, J. Wang, Y. Xu, Y. Wang, Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Mater. 45, 1074–1083 (2022). https://doi.org/10.1016/j.ensm.2021.11.002
J. Cao, D. Zhang, R. Chanajaree, D. Luo, X. Yang et al., A low-cost separator enables a highly stable zinc anode by accelerating the de-solvation effect. Chem. Eng. J. 480, 147980 (2024). https://doi.org/10.1016/j.cej.2023.147980
M. Peng, X. Tang, K. Xiao, T. Hu, K. Yuan et al., Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries. Angew. Chem. Int. Ed. 62(27), e202302701 (2023). https://doi.org/10.1002/anie.202302701
C. Sun, C. Wu, X. Gu, C. Wang, Q. Wang, Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 13(1), 89 (2021). https://doi.org/10.1007/s40820-021-00612-8
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li et al., Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule 4(7), 1557–1574 (2020). https://doi.org/10.1016/j.joule.2020.05.018
S. Guo, L. Qin, T. Zhang, M. Zhou, J. Zhou et al., Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 34, 545–562 (2021). https://doi.org/10.1016/j.ensm.2020.10.019
D. Han, T. Sun, R. Zhang, W. Zhang, T. Ma et al., Eutectic electrolytes with doubly-bound water for high-stability zinc anodes. Adv. Funct. Mater. 32(52), 2209065 (2022). https://doi.org/10.1002/adfm.202209065
M. Qiu, P. Sun, Y. Wang, L. Ma, C. Zhi et al., Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angew. Chem. 134(44), e202210979 (2022). https://doi.org/10.1002/ange.202210979
B. Wang, R. Zheng, W. Yang, X. Han, C. Hou et al., Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries. Adv. Funct. Mater. 32(23), 2112693 (2022). https://doi.org/10.1002/adfm.202112693
K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144(25), 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
H. Yu, D. Chen, Q. Li, C. Yan, Z. Jiang et al., In situ construction of anode–molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv. Energy Mater. 13(22), 2300550 (2023). https://doi.org/10.1002/aenm.202300550
Z. Jiao, X. Cai, X. Wang, Y. Li, Z. Bie et al., Trace amount of nitrilotriacetate induced electrolyte evolution and textured surface for stable Zn anode. Adv. Energy Mater. 13(48), 2302676 (2023). https://doi.org/10.1002/aenm.202302676
G. Zhang, Y. Chen, L. Fu, L. Zheng, K. Fan et al., Regulating the solvation sheath of zinc ions by supramolecular coordination chemistry toward ultrastable zinc anodes. SmartMat 5(3), e1216 (2024). https://doi.org/10.1002/smm2.1216
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 60(33), 18247–18255 (2021). https://doi.org/10.1002/anie.202105756
J. Wei, P. Zhang, T. Shen, Y. Liu, T. Dai et al., Supramolecule-based excluded-volume electrolytes and conjugated sulfonamide cathodes for high-voltage and long-cycling aqueous zinc-ion batteries. ACS Energy Lett. 8(1), 762–771 (2023). https://doi.org/10.1021/acsenergylett.2c02646
Z. Tian, J. Yin, T. Guo, Z. Zhao, Y. Zhu et al., A sustainable NH4+ ion battery by electrolyte engineering. Angew. Chem. Int. Ed. 61(51), e202213757 (2022). https://doi.org/10.1002/anie.202213757
Y. Wang, T. Wang, D. Dong, J. Xie, Y. Guan et al., Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes. Matter 5(1), 162–179 (2022). https://doi.org/10.1016/j.matt.2021.10.021
W. Guo, L. Xu, Y. Su, Z. Tian, C. Qiao et al., Tailoring localized electrolyte via a dual-functional protein membrane toward stable Zn anodes. ACS Nano 18(15), 10642–10652 (2024). https://doi.org/10.1021/acsnano.4c02740
W.-B. Tu, S. Liang, L.-N. Song, X.-X. Wang, G.-J. Ji et al., Nanoengineered functional cellulose ionic conductor toward high-performance all-solid-state zinc-ion battery. Adv. Funct. Mater. 34(25), 2316137 (2024). https://doi.org/10.1002/adfm.202316137
C.W. Extrand, A thermodynamic model for wetting free energies from contact angles. Langmuir 19(3), 646–649 (2003). https://doi.org/10.1021/la0259609
A. Zhou, H. Wang, F. Zhang, X. Hu, Z. Song et al., Amphipathic phenylalanine-induced nucleophilic-hydrophobic interface toward highly reversible Zn anode. Nano-Micro Lett. 16(1), 164 (2024). https://doi.org/10.1007/s40820-024-01380-x
J. Hao, L. Yuan, Y. Zhu, M. Jaroniec, S.-Z. Qiao, Triple-function electrolyte regulation toward advanced aqueous Zn-ion batteries. Adv. Mater. 34(44), e2206963 (2022). https://doi.org/10.1002/adma.202206963
R. Sun, D. Han, C. Cui, Z. Han, X. Guo et al., A self-deoxidizing electrolyte additive enables highly stable aqueous zinc batteries. Angew. Chem. Int. Ed. 62(28), e202303557 (2023). https://doi.org/10.1002/anie.202303557
X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao et al., Selection of negative charged acidic polar additives to regulate electric double layer for stable zinc ion battery. Nano-Micro Lett. 16(1), 270 (2024). https://doi.org/10.1007/s40820-024-01475-5
Y. Li, L. Liu, H. Zhang, H. Wang, Z. Sun et al., Bi-functional green additive anchoring interface enables stable zinc metal anodes for aqueous zinc-ions batteries. Adv. Funct. Mater. 35(1), 2410855 (2025). https://doi.org/10.1002/adfm.202410855
M. Kim, S.-J. Shin, J. Lee, Y. Park, Y. Kim et al., Cationic additive with a rigid solvation shell for high-performance zinc ion batteries. Angew. Chem. Int. Ed. 61(47), e202211589 (2022). https://doi.org/10.1002/anie.202211589
H. Liu, Z. Xin, B. Cao, Z. Xu, B. Xu et al., Polyhydroxylated organic molecular additives for durable aqueous zinc battery. Adv. Funct. Mater. 34(4), 2309840 (2024). https://doi.org/10.1002/adfm.202309840
F. Ling, L. Wang, F. Liu, M. Ma, S. Zhang et al., Multi-scale structure engineering of ZnSnO3 for ultra-long-life aqueous zinc-metal batteries. Adv. Mater. 35(23), e2208764 (2023). https://doi.org/10.1002/adma.202208764
M. Liu, W. Yuan, G. Ma, K. Qiu, X. Nie et al., In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes. Angew. Chem. Int. Ed. 62(27), e202304444 (2023). https://doi.org/10.1002/anie.202304444
Y. Zeng, P.X. Sun, Z. Pei, Q. Jin, X. Zhang et al., Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes. Adv. Mater. 34(18), 2200342 (2022). https://doi.org/10.1002/adma.202200342
Q. Zhu, G. Sun, S. Qiao, D. Wang, Z. Cui et al., Selective shielding of the (002) plane enabling vertically oriented zinc plating for dendrite-free zinc anode. Adv. Mater. 36(11), 2308577 (2024). https://doi.org/10.1002/adma.202308577
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/D2EE02931F