Insights Into the Interfacial Degradation of High-Voltage All-Solid-State Lithium Batteries
Corresponding Author: Feng Pan
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 191
Abstract
Poly(ethylene oxide) (PEO)-based solid polymer electrolyte (SPE) is considered as a promising solid-state electrolyte for all-solid-state lithium batteries (ASSLBs). Nevertheless, the poor interfacial stability with high-voltage cathode materials (e.g., LiCoO2) restricts its application in high energy density solid-state batteries. Herein, high-voltage stable Li3AlF6 protective layer is coated on the surface of LiCoO2 particle to improve the performance and investigate the failure mechanism of PEO-based ASSLBs. The phase transition unveils that chemical redox reaction occurs between the highly reactive LiCoO2 surface and PEO-based SPE, resulting in structure collapse of LiCoO2, hence the poor cycle performance of PEO-based ASSLBs with LiCoO2 at charging voltage of 4.2 V vs Li/Li+. By sharp contrast, no obvious structure change can be found at the surface of Li3AlF6-coated LiCoO2, and the original layered phase was well retained. When the charging voltage reaches up to 4.5 V vs Li/Li+, the intensive electrochemical decomposition of PEO-based SPE occurs, leading to the constant increase of cell impedance and directly causing the poor performance. This work not only provides important supplement to the failure mechanism of PEO-based batteries with LiCoO2, but also presents a universal strategy to retain structure stability of cathode–electrolyte interface in high-voltage ASSLBs.
Highlights:
1 The cycle performance of poly(ethylene oxide) (PEO)-based all-solid-state lithium batteries with LiCoO2 cathode was greatly improved via coating LiCoO2 with high-voltage stable Li3AlF6.
2 At the upper cutoff voltage of 4.2 V, the poor electrochemical performance is mainly originated from the structure collapse of LiCoO2 at the surface instead of the decomposition of PEO.
3 When the voltage reaches 4.5 V or even higher potentials, the intensive electrochemical decomposition of PEO-based solid polymer electrolyte accelerated interfacial degradation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.Y. Yang, Y.L. Song, H. Liu, Z.J. Wang, K. Yang et al., Stable interface between lithium and electrolyte facilitated by a nanocomposite protective layer. Small Methods 4(3), 1900751 (2020). https://doi.org/10.1002/smtd.201900751
- Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
- H. Song, S. Xue, S. Chen, Z Wang, Y. Song et al., Polymeric wetting matrix for a stable interface between solid-state electrolytes and li metal anode. Chin. J. Struct. Chem. 41(5), 2205048–2205054 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0067
- A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
- X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- J. Wu, L. Shen, Z. Zhang, G. Liu, Z. Wang et al., All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev. 4(1), 101–135 (2021). https://doi.org/10.1007/s41918-020-00081-4
- J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33(6), 2000751 (2021). https://doi.org/10.1002/adma.202000751
- Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 33(25), 2100353 (2021). https://doi.org/10.1002/adma.202100353
- F. Xu, S. Deng, Q. Guo, D. Zhou, X. Yao, Quasi-ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2 Li batteries with rigid-flexible coupling interphase. Small Methods 5(7), 2100262 (2021). https://doi.org/10.1002/smtd.202100262
- Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5(3), 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
- Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3(38), 19218–19253 (2015). https://doi.org/10.1039/c5ta03471j
- J. Mindemark, M.J. Lacey, T. Bowden, D. Brandell, Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114–143 (2018). https://doi.org/10.1016/j.progpolymsci.2017.12.004
- Y. Song, L. Yang, J. Li, M. Zhang, Y. Wang et al., Synergistic dissociation-and-trapping effect to promote Li-ion conduction in polymer electrolytes via oxygen vacancies. Small 17(42), e2102039 (2021). https://doi.org/10.1002/smll.202102039
- G. Zhang, J. Shu, L. Xu, X. Cai, W. Zou et al., Pancake-like MOF solid-state electrolytes with fast ion migration for high-performance sodium battery. Nano-Micro Lett. 13, 105 (2021). https://doi.org/10.1007/s40820-021-00628-0
- M. Yi, J. Li, X. Fan, M. Bai, Z. Zhang et al., Single crystal Ni-rich layered cathodes enabling superior performance in all-solid-state batteries with PEO-based solid electrolytes. J. Mater. Chem. A 9(31), 16787–16797 (2021). https://doi.org/10.1039/d1ta04476a
- J. Qiu, L. Yang, G. Sun, X. Yu, H. Li et al., A stabilized PEO-based solid electrolyte via a facile interfacial engineering method for a high voltage solid-state lithium metal battery. Chem. Commun. 56(42), 5633–5636 (2020). https://doi.org/10.1039/d0cc01829e
- C. Wang, T. Wang, L. Wang, Z. Hu, Z. Cui et al., Differentiated lithium salt design for multilayered peo electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 6(22), 1901036 (2019). https://doi.org/10.1002/advs.201901036
- Z. Li, A. Li, H. Zhang, R. Lin, T. Jin et al., Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy 72, 104655 (2020). https://doi.org/10.1016/j.nanoen.2020.104655
- G. Homann, L. Stolz, J. Nair, I.C. Laskovic, M. Winter et al., Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure. Sci. Rep. 10(1), 4390 (2020). https://doi.org/10.1038/s41598-020-61373-9
- J. Lu, J. Zhou, R. Chen, F. Fang, K. Nie et al., 4.2 V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance. Energy Storage Mater. 32, 191–198 (2020). https://doi.org/10.1016/j.ensm.2020.07.026
- K. Nie, X. Wang, J. Qiu, Y. Wang, Q. Yang et al., Increasing poly(ethylene oxide) stability to 45 V by surface coating of the cathode. ACS Energy Lett. 5(3), 826–832 (2020). https://doi.org/10.1021/acsenergylett.9b02739
- Y. Liu, Y. Zhao, W. Lu, L. Sun, L. Lin et al., PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 88, 106205 (2021). https://doi.org/10.1016/j.nanoen.2021.106205
- J. Liang, Y. Sun, Y. Zhao, Q. Sun, J. Luo et al., Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries. J. Mater. Chem. A 8(5), 2769–2776 (2020). https://doi.org/10.1039/c9ta08607b
- S. Seki, Y. Kobayashi, H. Miyashiro, Y. Mita, T. Iwahori, Fabrication of high-voltage, high-capacity all-solid-state lithium polymer secondary batteries by application of the polymer electrolyte/inorganic electrolyte composite concept. Chem. Mater. 17(8), 2041–2045 (2005). https://doi.org/10.1021/cm047846c
- H. Miyashiro, Y. Kobayashi, S. Seki, Y. Mita, A. Usami et al., Fabrication of all-solid-state lithium polymer secondary batteries using Al2O3-coated LiCoO2. Chem. Mater. 17(23), 5603–5605 (2005). https://doi.org/10.1021/cm0517115
- H. Duan, M. Fan, W.P. Chen, J.Y. Li, P.F. Wang et al., Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater. 31(12), e1807789 (2019). https://doi.org/10.1002/adma.201807789
- W. Zhou, Z. Wang, Y. Pu, Y. Li, S. Xin et al., Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv. Mater. 31(4), e1805574 (2019). https://doi.org/10.1002/adma.201805574
- J. Liang, S. Hwang, S. Li, J. Luo, Y. Sun et al., Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy 78, 105107 (2020). https://doi.org/10.1016/j.nanoen.2020.105107
- X. Yang, M. Jiang, X. Gao, D. Bao, Q. Sun et al., Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? Energy Environ. Sci. 13(5), 1318–1325 (2020). https://doi.org/10.1039/d0ee00342e
- J. Qiu, X. Liu, R. Chen, Q. Li, Y. Wang et al., Enabling stable cycling of 42 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv. Funct. Mater. 30(22), 1909392 (2020). https://doi.org/10.1002/adfm.201909392
- B. Zhang, J. Zhong, Y. Zhang, L. Yang, J. Yang et al., Discovering a new class of fluoride solid-electrolyte materials via screening the structural property of Li-ion sublattice. Nano Energy 79, 105407 (2021). https://doi.org/10.1016/j.nanoen.2020.105407
- J. Hu, K. Chen, C. Li, Nanostructured Li-rich fluoride coated by ionic liquid as high ion-conductivity solid electrolyte additive to suppress dendrite growth at Li metal anode. ACS Appl. Mater. Interfaces 10(40), 34322–34331 (2018). https://doi.org/10.1021/acsami.8b12579
- J. Hu, Z. Yao, K. Chen, C. Li, High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Mater. 28, 37–46 (2020). https://doi.org/10.1016/j.ensm.2020.02.018
- D. Park, H. Park, Y. Lee, S. Kim, H. Jung et al., Theoretical design of lithium chloride superionic conductors for all-solid-state high-voltage lithium-ion batteries. ACS Appl. Mater. Interfaces 12(31), 34806–34814 (2020). https://doi.org/10.1021/acsami.0c07003
- Q. Yang, J. Huang, Y. Li, Y. Wang, J. Qiu et al., Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries. J. Power Sources 388, 65–70 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.076
- T. Tian, T.W. Zhang, Y.C. Yin, Y.H. Tan, Y.H. Song et al., Blow-spinning enabled precise doping and coating for improving high-voltage lithium cobalt oxide cathode performance. Nano Lett. 5(3), 826–832 (2020). https://doi.org/10.1021/acs.nanolett.9b04486
- L. Wang, J. Ma, C. Wang, X. Yu, R. Liu et al., A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv. Sci. 6(12), 1900355 (2019). https://doi.org/10.1002/advs.201900355
- Y. Wang, Q. Zhang, Z.C. Xue, L. Yang, J. Wang et al., An in situ formed surface coating layer enabling LiCoO2with stable 4.6 V high-voltage cycle performances. Adv. Energy Mater. 10(28), 2001413 (2020). https://doi.org/10.1002/aenm.202001413
- A. Tyagi, J. Kohler, Preparation and rietveld refinement of the structure of β-Li3AlF6. Mater. Res. Bull. 32(12), 1683–1689 (1997). https://doi.org/10.1016/S0025-5408(97)00163-3
- J. Qian, L. Liu, J. Yang, S. Li, X. Wang et al., Electrochemical surface passivation of LiCoO2 ps at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun. 9, 4918 (2018). https://doi.org/10.1038/s41467-018-07296-6
- R. Miyazaki, H. Maekawa, Li+-ion conduction of li3alf6 mechanically milled with LiCl. ECS Electrochem. Lett. 1(6), A87–A89 (2012). https://doi.org/10.1149/2.012206eel
- C. Yuan, J. Li, P. Han, Y. Lai, Z. Zhang et al., Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework. J. Power Sources 240(15), 653–658 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.030
- F. Zeng, Y. Sun, B. Hui, Y. Xia, Y. Zou et al., Three-dimensional porous alginate fiber membrane reinforced PEO-based solid polymer electrolyte for safe and high-performance lithium ion batteries. ACS Appl. Mater. Interfaces 12(39), 43805–43812 (2020). https://doi.org/10.1021/acsami.0c13039
- O. Sheng, J. Zheng, Z. Ju, C. Jin, Y. Wang et al., In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by Cryo-TEM. Adv. Mater. 32(34), e2000223 (2020). https://doi.org/10.1002/adma.202000223
- K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong et al., A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32(17), e2000399 (2020). https://doi.org/10.1002/adma.202000399
- A.N. Mansour, D.G. Kwabi, R.A. Quinlan, Y.C. Lu, Y. Shao-Horn, Probing the electrode-electrolyte interface in cycled LiNi0.5Mn1.5O4by XPS using Mg and synchrotron X-rays. J. Electrochem. Soc. 163(14), A2911–A2918 (2016). https://doi.org/10.1149/2.0331614jes
- R. Tatara, P. Karayaylali, Y. Yu, Y. Zhang, L. Giordano et al., The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery. J. Electrochem. Soc. 166(3), A5090–A5098 (2018). https://doi.org/10.1149/2.0121903jes
- D. Farhat, F. Ghamouss, J. Maibach, K. Edstrom, D. Lemordant, Adiponitrile-lithium bis(trimethylsulfonyl)imide solutions as alkyl carbonate-free electrolytes for Li4Ti5O12(LTO)/LiNi1/3Co1/3Mn1/3O2 (NMC) Li-ion batteries. ChemPhysChem 18(10), 1333–1344 (2017). https://doi.org/10.1002/cphc.201700058
- Y. Liu, R. Hu, D. Zhang, J. Liu, F. Liu et al., Constructing Li-rich artificial SEI layer in alloy-polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries. Adv. Mater. 33(11), e2004711 (2021). https://doi.org/10.1002/adma.202004711
- J. Liang, D. Chen, K. Adair, Q. Sun, N.G. Holmes et al., Insight into prolonged cycling life of 4 V all-solid-state polymer batteries by a high-voltage stable binder. Adv. Energy Mater. 11(1), 2002455 (2020). https://doi.org/10.1002/aenm.202002455
- Yiliguma, W. Xu, Z. Wang, L. Shang, H. Zhang et al., Unconventional morphologies of CoO nanocrystals via controlled oxidation of cobalt oleate precursors. Chem. Commun. 54(31), 3867–3870 (2018). https://doi.org/10.1039/c8cc01060a
- L. Grote, C.A. Zito, K. Frank, A.C. Dippel, P. Reisbeck et al., X-ray studies bridge the molecular and macro length scales during the emergence of CoO assemblies. Nat. Commun. 12, 4429 (2021). https://doi.org/10.1038/s41467-021-24557-z
- J. Li, C. Lin, M. Weng, Y. Qiu, P. Chen et al., Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. 16(5), 599–605 (2021). https://doi.org/10.1038/s41565-021-00855-x
- L. Seidl, R. Grissa, L. Zhang, S. Trabesinger, C. Battaglia, Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries. Adv. Mater. Interfaces 9(8), 2100704 (2022). https://doi.org/10.1002/admi.202100704
References
L.Y. Yang, Y.L. Song, H. Liu, Z.J. Wang, K. Yang et al., Stable interface between lithium and electrolyte facilitated by a nanocomposite protective layer. Small Methods 4(3), 1900751 (2020). https://doi.org/10.1002/smtd.201900751
Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022). https://doi.org/10.1007/s40820-022-00844-2
H. Song, S. Xue, S. Chen, Z Wang, Y. Song et al., Polymeric wetting matrix for a stable interface between solid-state electrolytes and li metal anode. Chin. J. Struct. Chem. 41(5), 2205048–2205054 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0067
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2(4), 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103
X.B. Cheng, R. Zhang, C.Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117(15), 10403–10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
J. Wu, L. Shen, Z. Zhang, G. Liu, Z. Wang et al., All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes. Electrochem. Energy Rev. 4(1), 101–135 (2021). https://doi.org/10.1007/s41918-020-00081-4
J. Wu, S. Liu, F. Han, X. Yao, C. Wang, Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33(6), 2000751 (2021). https://doi.org/10.1002/adma.202000751
Z. Wang, L. Shen, S. Deng, P. Cui, X. Yao, 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 33(25), 2100353 (2021). https://doi.org/10.1002/adma.202100353
F. Xu, S. Deng, Q. Guo, D. Zhou, X. Yao, Quasi-ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2 Li batteries with rigid-flexible coupling interphase. Small Methods 5(7), 2100262 (2021). https://doi.org/10.1002/smtd.202100262
Q. Zhao, S. Stalin, C.Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5(3), 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5
Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3(38), 19218–19253 (2015). https://doi.org/10.1039/c5ta03471j
J. Mindemark, M.J. Lacey, T. Bowden, D. Brandell, Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114–143 (2018). https://doi.org/10.1016/j.progpolymsci.2017.12.004
Y. Song, L. Yang, J. Li, M. Zhang, Y. Wang et al., Synergistic dissociation-and-trapping effect to promote Li-ion conduction in polymer electrolytes via oxygen vacancies. Small 17(42), e2102039 (2021). https://doi.org/10.1002/smll.202102039
G. Zhang, J. Shu, L. Xu, X. Cai, W. Zou et al., Pancake-like MOF solid-state electrolytes with fast ion migration for high-performance sodium battery. Nano-Micro Lett. 13, 105 (2021). https://doi.org/10.1007/s40820-021-00628-0
M. Yi, J. Li, X. Fan, M. Bai, Z. Zhang et al., Single crystal Ni-rich layered cathodes enabling superior performance in all-solid-state batteries with PEO-based solid electrolytes. J. Mater. Chem. A 9(31), 16787–16797 (2021). https://doi.org/10.1039/d1ta04476a
J. Qiu, L. Yang, G. Sun, X. Yu, H. Li et al., A stabilized PEO-based solid electrolyte via a facile interfacial engineering method for a high voltage solid-state lithium metal battery. Chem. Commun. 56(42), 5633–5636 (2020). https://doi.org/10.1039/d0cc01829e
C. Wang, T. Wang, L. Wang, Z. Hu, Z. Cui et al., Differentiated lithium salt design for multilayered peo electrolyte enables a high-voltage solid-state lithium metal battery. Adv. Sci. 6(22), 1901036 (2019). https://doi.org/10.1002/advs.201901036
Z. Li, A. Li, H. Zhang, R. Lin, T. Jin et al., Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy 72, 104655 (2020). https://doi.org/10.1016/j.nanoen.2020.104655
G. Homann, L. Stolz, J. Nair, I.C. Laskovic, M. Winter et al., Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure. Sci. Rep. 10(1), 4390 (2020). https://doi.org/10.1038/s41598-020-61373-9
J. Lu, J. Zhou, R. Chen, F. Fang, K. Nie et al., 4.2 V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance. Energy Storage Mater. 32, 191–198 (2020). https://doi.org/10.1016/j.ensm.2020.07.026
K. Nie, X. Wang, J. Qiu, Y. Wang, Q. Yang et al., Increasing poly(ethylene oxide) stability to 45 V by surface coating of the cathode. ACS Energy Lett. 5(3), 826–832 (2020). https://doi.org/10.1021/acsenergylett.9b02739
Y. Liu, Y. Zhao, W. Lu, L. Sun, L. Lin et al., PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 88, 106205 (2021). https://doi.org/10.1016/j.nanoen.2021.106205
J. Liang, Y. Sun, Y. Zhao, Q. Sun, J. Luo et al., Engineering the conductive carbon/PEO interface to stabilize solid polymer electrolytes for all-solid-state high voltage LiCoO2 batteries. J. Mater. Chem. A 8(5), 2769–2776 (2020). https://doi.org/10.1039/c9ta08607b
S. Seki, Y. Kobayashi, H. Miyashiro, Y. Mita, T. Iwahori, Fabrication of high-voltage, high-capacity all-solid-state lithium polymer secondary batteries by application of the polymer electrolyte/inorganic electrolyte composite concept. Chem. Mater. 17(8), 2041–2045 (2005). https://doi.org/10.1021/cm047846c
H. Miyashiro, Y. Kobayashi, S. Seki, Y. Mita, A. Usami et al., Fabrication of all-solid-state lithium polymer secondary batteries using Al2O3-coated LiCoO2. Chem. Mater. 17(23), 5603–5605 (2005). https://doi.org/10.1021/cm0517115
H. Duan, M. Fan, W.P. Chen, J.Y. Li, P.F. Wang et al., Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries. Adv. Mater. 31(12), e1807789 (2019). https://doi.org/10.1002/adma.201807789
W. Zhou, Z. Wang, Y. Pu, Y. Li, S. Xin et al., Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries. Adv. Mater. 31(4), e1805574 (2019). https://doi.org/10.1002/adma.201805574
J. Liang, S. Hwang, S. Li, J. Luo, Y. Sun et al., Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries. Nano Energy 78, 105107 (2020). https://doi.org/10.1016/j.nanoen.2020.105107
X. Yang, M. Jiang, X. Gao, D. Bao, Q. Sun et al., Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal –OH group? Energy Environ. Sci. 13(5), 1318–1325 (2020). https://doi.org/10.1039/d0ee00342e
J. Qiu, X. Liu, R. Chen, Q. Li, Y. Wang et al., Enabling stable cycling of 42 V high-voltage all-solid-state batteries with PEO-based solid electrolyte. Adv. Funct. Mater. 30(22), 1909392 (2020). https://doi.org/10.1002/adfm.201909392
B. Zhang, J. Zhong, Y. Zhang, L. Yang, J. Yang et al., Discovering a new class of fluoride solid-electrolyte materials via screening the structural property of Li-ion sublattice. Nano Energy 79, 105407 (2021). https://doi.org/10.1016/j.nanoen.2020.105407
J. Hu, K. Chen, C. Li, Nanostructured Li-rich fluoride coated by ionic liquid as high ion-conductivity solid electrolyte additive to suppress dendrite growth at Li metal anode. ACS Appl. Mater. Interfaces 10(40), 34322–34331 (2018). https://doi.org/10.1021/acsami.8b12579
J. Hu, Z. Yao, K. Chen, C. Li, High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Mater. 28, 37–46 (2020). https://doi.org/10.1016/j.ensm.2020.02.018
D. Park, H. Park, Y. Lee, S. Kim, H. Jung et al., Theoretical design of lithium chloride superionic conductors for all-solid-state high-voltage lithium-ion batteries. ACS Appl. Mater. Interfaces 12(31), 34806–34814 (2020). https://doi.org/10.1021/acsami.0c07003
Q. Yang, J. Huang, Y. Li, Y. Wang, J. Qiu et al., Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries. J. Power Sources 388, 65–70 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.076
T. Tian, T.W. Zhang, Y.C. Yin, Y.H. Tan, Y.H. Song et al., Blow-spinning enabled precise doping and coating for improving high-voltage lithium cobalt oxide cathode performance. Nano Lett. 5(3), 826–832 (2020). https://doi.org/10.1021/acs.nanolett.9b04486
L. Wang, J. Ma, C. Wang, X. Yu, R. Liu et al., A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability. Adv. Sci. 6(12), 1900355 (2019). https://doi.org/10.1002/advs.201900355
Y. Wang, Q. Zhang, Z.C. Xue, L. Yang, J. Wang et al., An in situ formed surface coating layer enabling LiCoO2with stable 4.6 V high-voltage cycle performances. Adv. Energy Mater. 10(28), 2001413 (2020). https://doi.org/10.1002/aenm.202001413
A. Tyagi, J. Kohler, Preparation and rietveld refinement of the structure of β-Li3AlF6. Mater. Res. Bull. 32(12), 1683–1689 (1997). https://doi.org/10.1016/S0025-5408(97)00163-3
J. Qian, L. Liu, J. Yang, S. Li, X. Wang et al., Electrochemical surface passivation of LiCoO2 ps at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun. 9, 4918 (2018). https://doi.org/10.1038/s41467-018-07296-6
R. Miyazaki, H. Maekawa, Li+-ion conduction of li3alf6 mechanically milled with LiCl. ECS Electrochem. Lett. 1(6), A87–A89 (2012). https://doi.org/10.1149/2.012206eel
C. Yuan, J. Li, P. Han, Y. Lai, Z. Zhang et al., Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework. J. Power Sources 240(15), 653–658 (2013). https://doi.org/10.1016/j.jpowsour.2013.05.030
F. Zeng, Y. Sun, B. Hui, Y. Xia, Y. Zou et al., Three-dimensional porous alginate fiber membrane reinforced PEO-based solid polymer electrolyte for safe and high-performance lithium ion batteries. ACS Appl. Mater. Interfaces 12(39), 43805–43812 (2020). https://doi.org/10.1021/acsami.0c13039
O. Sheng, J. Zheng, Z. Ju, C. Jin, Y. Wang et al., In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by Cryo-TEM. Adv. Mater. 32(34), e2000223 (2020). https://doi.org/10.1002/adma.202000223
K. Pan, L. Zhang, W. Qian, X. Wu, K. Dong et al., A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries. Adv. Mater. 32(17), e2000399 (2020). https://doi.org/10.1002/adma.202000399
A.N. Mansour, D.G. Kwabi, R.A. Quinlan, Y.C. Lu, Y. Shao-Horn, Probing the electrode-electrolyte interface in cycled LiNi0.5Mn1.5O4by XPS using Mg and synchrotron X-rays. J. Electrochem. Soc. 163(14), A2911–A2918 (2016). https://doi.org/10.1149/2.0331614jes
R. Tatara, P. Karayaylali, Y. Yu, Y. Zhang, L. Giordano et al., The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery. J. Electrochem. Soc. 166(3), A5090–A5098 (2018). https://doi.org/10.1149/2.0121903jes
D. Farhat, F. Ghamouss, J. Maibach, K. Edstrom, D. Lemordant, Adiponitrile-lithium bis(trimethylsulfonyl)imide solutions as alkyl carbonate-free electrolytes for Li4Ti5O12(LTO)/LiNi1/3Co1/3Mn1/3O2 (NMC) Li-ion batteries. ChemPhysChem 18(10), 1333–1344 (2017). https://doi.org/10.1002/cphc.201700058
Y. Liu, R. Hu, D. Zhang, J. Liu, F. Liu et al., Constructing Li-rich artificial SEI layer in alloy-polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries. Adv. Mater. 33(11), e2004711 (2021). https://doi.org/10.1002/adma.202004711
J. Liang, D. Chen, K. Adair, Q. Sun, N.G. Holmes et al., Insight into prolonged cycling life of 4 V all-solid-state polymer batteries by a high-voltage stable binder. Adv. Energy Mater. 11(1), 2002455 (2020). https://doi.org/10.1002/aenm.202002455
Yiliguma, W. Xu, Z. Wang, L. Shang, H. Zhang et al., Unconventional morphologies of CoO nanocrystals via controlled oxidation of cobalt oleate precursors. Chem. Commun. 54(31), 3867–3870 (2018). https://doi.org/10.1039/c8cc01060a
L. Grote, C.A. Zito, K. Frank, A.C. Dippel, P. Reisbeck et al., X-ray studies bridge the molecular and macro length scales during the emergence of CoO assemblies. Nat. Commun. 12, 4429 (2021). https://doi.org/10.1038/s41467-021-24557-z
J. Li, C. Lin, M. Weng, Y. Qiu, P. Chen et al., Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. 16(5), 599–605 (2021). https://doi.org/10.1038/s41565-021-00855-x
L. Seidl, R. Grissa, L. Zhang, S. Trabesinger, C. Battaglia, Unraveling the voltage-dependent oxidation mechanisms of poly(ethylene oxide)-based solid electrolytes for solid-state batteries. Adv. Mater. Interfaces 9(8), 2100704 (2022). https://doi.org/10.1002/admi.202100704