A Molecular Foaming and Activation Strategy to Porous N-Doped Carbon Foams for Supercapacitors and CO2 Capture
Corresponding Author: Zhangxiong Wu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 58
Abstract
Hierarchically porous carbon materials are promising for energy storage, separation and catalysis. It is desirable but fairly challenging to simultaneously create ultrahigh surface areas, large pore volumes and high N contents in these materials. Herein, we demonstrate a facile acid–base enabled in situ molecular foaming and activation strategy for the synthesis of hierarchically macro-/meso-/microporous N-doped carbon foams (HPNCFs). The key design for the synthesis is the selection of histidine (His) and potassium bicarbonate (PBC) to allow the formation of 3D foam structures by in situ foaming, the PBC/His acid–base reaction to enable a molecular mixing and subsequent a uniform chemical activation, and the stable imidazole moiety in His to sustain high N contents after carbonization. The formation mechanism of the HPNCFs is studied in detail. The prepared HPNCFs possess 3D macroporous frameworks with thin well-graphitized carbon walls, ultrahigh surface areas (up to 3200 m2 g−1), large pore volumes (up to 2.0 cm3 g−1), high micropore volumes (up to 0.67 cm3 g−1), narrowly distributed micropores and mesopores and high N contents (up to 14.6 wt%) with pyrrolic N as the predominant N site. The HPNCFs are promising for supercapacitors with high specific capacitances (185–240 F g−1), good rate capability and excellent stability. They are also excellent for CO2 capture with a high adsorption capacity (~ 4.13 mmol g−1), a large isosteric heat of adsorption (26.5 kJ mol−1) and an excellent CO2/N2 selectivity (~ 24).
Highlights:
1 An in situ molecular foaming and activation strategy is designed and investigated for the synthesis of hierarchically porous N-doped carbon foams (HPNCFs).
2 The prepared HPNCFs possess 3D macropores, uniform micropores and mesopores, ultrahigh surface areas and high N contents and show high performances in supercapacitors and CO2 capture.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14, 763–774 (2015). https://doi.org/10.1038/nmat4317
- L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/B813846J
- A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005). https://doi.org/10.1142/9789814317665_0022
- D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.-M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47, 373–376 (2008). https://doi.org/10.1002/anie.200702721
- Z. Wu, D. Zhao, Ordered mesoporous materials as adsorbents. Chem. Commun. 47, 3332–3338 (2011). https://doi.org/10.1039/c0cc04909c
- S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee et al., Design principle of Fe–N–C electrocatalysts: how to optimize multimodal porous structures? J. Am. Chem. Soc. 141, 2035–2045 (2019). https://doi.org/10.1021/jacs.8b11129
- H. Tian, J. Liang, J. Liu, Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv. Mater. 31, e1903886 (2019). https://doi.org/10.1002/adma.201903886
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1142/9789814287005_0033
- S. Kondrat, C.R. Pérez, V. Presser, Y. Gogotsi, A.A. Kornyshev, Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ. Sci. 5, 6474 (2012). https://doi.org/10.1039/c2ee03092f
- M. Sevilla, G.A. Ferrero, N. Diez, A.B. Fuertes, One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon 131, 193–200 (2018). https://doi.org/10.1016/j.carbon.2018.02.021
- A.E. Creamer, B. Gao, Carbon-based adsorbents for postcombustion CO2 capture: a critical review. Environ. Sci. Technol. 50, 7276–7289 (2016). https://doi.org/10.1021/acs.est.6b00627
- J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O’Hare, Z. Zhong, Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7, 3478–3518 (2014). https://doi.org/10.1039/C4EE01647E
- M. Sevilla, A.S.M. Al-Jumialy, A.B. Fuertes, R. Mokaya, Optimization of the pore structure of biomass-based carbons in relation to their use for CO2 capture under low- and high-pressure regimes. ACS Appl. Mater. Interfaces 10, 1623–1633 (2018). https://doi.org/10.1021/acsami.7b10433
- L. Zhang, X. Yang, F. Zhang, G. Long, T. Zhang et al., Controlling the effective surface area and pore size distribution of sp 2 carbon materials and their impact on the capacitance performance of these materials. J. Am. Chem. Soc. 135, 5921–5929 (2013). https://doi.org/10.1021/ja402552h
- D. Bhattacharjya, M.-S. Kim, T.-S. Bae, J.-S. Yu, High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J. Power Sources 244, 799–805 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.112
- T.Q. Lin, I.W. Chen, F.X. Liu, C.Y. Yang, H. Bi, F.F. Xu, F.Q. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
- L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang et al., Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30, 1706054 (2018). https://doi.org/10.1002/adma.201706054
- X.Y. Yang, L.H. Chen, Y. Li, J.C. Rooke, C. Sanchez, B.L. Su, Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46, 481–558 (2017). https://doi.org/10.1039/C6CS00829A
- Y.X. Xu, Z.Y. Lin, X. Zhong, X.Q. Huang, N.O. Weiss, Y. Huang, X.F. Duan, Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). https://doi.org/10.1038/ncomms5554
- Y.X. Xu, C.Y. Chen, Z.P. Zhao, Z.Y. Lin, C. Lee et al., Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 15, 4605–4610 (2015). https://doi.org/10.1021/acs.nanolett.5b01212
- T. Guan, J. Zhao, G. Zhang, J. Wang, D. Zhang, K. Li, Template-free synthesis of honeycomblike porous carbon rich in specific 2–5 nm mesopores from a pitch-based polymer for a high-performance supercapacitor. ACS Sustain. Chem. Eng. 7, 2116–2126 (2019). https://doi.org/10.1021/acssuschemeng.8b04736
- L. Miao, X. Qian, D. Zhu, T. Chen, G. Ping et al., From interpenetrating polymer networks to hierarchical porous carbons for advanced supercapacitor electrodes. Chin. Chem. Lett. 30, 1445–1449 (2019). https://doi.org/10.1016/j.cclet.2019.03.010
- G. Qu, S. Jia, H. Wang, F. Cao, L. Li et al., Asymmetric supercapacitor based on porous N-doped carbon derived from pomelo peel and NiO arrays. ACS Appl. Mater. Interfaces 8, 20822–20830 (2016). https://doi.org/10.1021/acsami.6b06630
- M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja, M. Sathish, Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors. ACS Appl. Mater. Interfaces 8, 35191–35202 (2016). https://doi.org/10.1021/acsami.6b10704
- C.Y. Zhang, X.H. Zhu, M. Cao, M.L. Li, N. Li, L.Q. Lai, J.L. Zhu, D.C. Wei, Hierarchical porous carbon materials derived from sheep manure for high-capacity supercapacitors. ChemSusChem 9, 932–937 (2016). https://doi.org/10.1002/cssc.201501624
- C.J. Chen, Y. Zhang, Y.J. Li, J.Q. Dai, J.W. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/C6EE03716J
- X. Dong, H. Jin, R. Wang, J. Zhang, X. Feng et al., High volumetric capacitance, ultralong life supercapacitors enabled by waxberry-derived hierarchical porous carbon materials. Adv. Energy Mater. 8, 1702695 (2018). https://doi.org/10.1002/aenm.201702695
- Q. Zhang, K. Han, S. Li, M. Li, J. Li, K. Ren, Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10, 2427–2437 (2018). https://doi.org/10.1039/C7NR07158B
- L. Gao, L. Xiong, D. Xu, J. Cai, L. Huang, J. Zhou, L. Zhang, Distinctive construction of chitin-derived hierarchically porous carbon microspheres/polyaniline for high-rate supercapacitors. ACS Appl. Mater. Interfaces 10, 28918–28927 (2018). https://doi.org/10.1021/acsami.8b05891
- T. Kesavan, M. Sasidharan, Palm spathe derived N-doped carbon nanosheets as a high performance electrode for Li-ion batteries and supercapacitors. ACS Sustain. Chem. Eng. 7, 12160–12169 (2019). https://doi.org/10.1021/acssuschemeng.9b01261
- L. Peng, Y. Liang, J. Huang, L. Xing, H. Hu, Y. Xiao, H. Dong, Y. Liu, M. Zheng, Mixed-biomass wastes derived hierarchically porous carbons for high-performance electrochemical energy storage. ACS Sustain. Chem. Eng. 7, 10393–10402 (2019). https://doi.org/10.1021/acssuschemeng.9b00477
- X. Peng, L. Zhang, Z. Chen, L. Zhong, D. Zhao et al., Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 31, 1900341 (2019). https://doi.org/10.1002/adma.201900341
- Y. Liu, M. Zhang, L. Wang, Y. Hou, C. Guo, H. Xin, S. Xu, A biomass carbon material with microtubule bundling and natural O-doping derived from goldenberry calyx and its electrochemical performance in supercapacitor. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.05.045
- C. Xuan, Z. Peng, J. Wang, W. Lei, K. Xia, Z. Wu, W. Xiao, D. Wang, Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors. Chin. Chem. Lett. 28, 2227–2230 (2017). https://doi.org/10.1016/j.cclet.2017.09.009
- P. Han, S.-H. Chung, A. Manthiram, Pyrrolic-type nitrogen-doped hierarchical macro/mesoporous carbon as a bifunctional host for high-performance thick cathodes for lithium–sulfur batteries. Small 15, 1900690 (2019). https://doi.org/10.1002/smll.201900690
- T. Wang, Y. Sun, L. Zhang, K. Li, Y. Yi et al., Space-confined polymerization: controlled fabrication of nitrogen-doped polymer and carbon microspheres with refined hierarchical architectures. Adv. Mater. 31, e1807876 (2019). https://doi.org/10.1002/adma.201807876
- D. Qiu, J. Guan, M. Li, C. Kang, J. Wei, Y. Li, Z. Xie, F. Wang, R. Yang, Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 29, 1903496 (2019). https://doi.org/10.1002/adfm.201903496
- S. Sun, F. Han, X. Wu, Z. Fan, One-step synthesis of biomass derived O, N-codoped hierarchical porous carbon with high surface area for supercapacitors. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.11.023
- N.D. Petkovich, A. Stein, Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem. Soc. Rev. 42, 3721–3739 (2013). https://doi.org/10.1039/C2CS35308C
- Q. Li, R. Jiang, Y. Dou, Z. Wu, T. Huang et al., Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49, 1248–1257 (2011). https://doi.org/10.1016/j.carbon.2010.11.043
- T.-C. Chou, C.-H. Huang, R.-A. Doong, C.-C. Hu, Architectural design of hierarchically ordered porous carbons for high-rate electrochemical capacitors. J. Mater. Chem. A 1, 2886–2895 (2013). https://doi.org/10.1039/C2TA01190E
- G. Hasegawa, K. Kanamori, T. Kiyomura, H. Kurata, T. Abe, K. Nakanishi, Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors. Chem. Mater. 28, 3944–3950 (2016). https://doi.org/10.1021/acs.chemmater.6b01261
- B. You, F. Kang, P. Yin, Q. Zhang, Hydrogel-derived heteroatom-doped porous carbon network for supercapacitor and electrocatalytic oxygen reduction. Carbon 103, 9–15 (2016). https://doi.org/10.1016/j.carbon.2016.03.009
- F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong, Y. Li, Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097–3104 (2017). https://doi.org/10.1021/acs.nanolett.7b00533
- J. Li, L. Tian, F. Liang, J. Wang, L. Han et al., Molten salt synthesis of hierarchical porous N-doped carbon submicrospheres for multifunctional applications: high performance supercapacitor, dye removal and CO2 capture. Carbon 141, 739–747 (2019). https://doi.org/10.1016/j.carbon.2018.09.061
- S. Zhu, L. Li, C. He, N. Zhao, E. Liu, C. Shi, M. Zhang, Soluble salt self-assembly-assisted synthesis of three-dimensional hierarchical porous carbon networks for supercapacitors. J. Mater. Chem. A 3, 22266–22273 (2015). https://doi.org/10.1039/C5TA04646G
- F. Zhang, T. Liu, G. Hou, T. Kou, L. Yue, R. Guan, Y. Li, Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 9, 2875–2888 (2016). https://doi.org/10.1007/s12274-016-1173-z
- W. Li, F. Zhang, Y. Dou, Z. Wu, H. Liu et al., A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv. Energy Mater. 1, 382–386 (2011). https://doi.org/10.1002/aenm.201000096
- S. Zhao, T. Yan, H. Wang, J. Zhang, L. Shi, D. Zhang, Creating 3D hierarchical carbon architectures with micro-, meso-, and macropores via a simple self-blowing strategy for a flow-through deionization capacitor. ACS Appl. Mater. Interfaces 8, 18027–18035 (2016). https://doi.org/10.1021/acsami.6b03704
- J. Hao, Y. Liao, Y. Zhong, D. Shu, C. He et al., Three-dimensional graphene layers prepared by a gas-foaming method for supercapacitor applications. Carbon 94, 879–887 (2015). https://doi.org/10.1016/j.carbon.2015.07.069
- J. Hao, D. Shu, S. Guo, A. Gao, C. He et al., Preparation of three-dimensional nitrogen-doped graphene layers by gas foaming method and its electrochemical capactive behavior. Electrochim. Acta 193, 293–301 (2016). https://doi.org/10.1016/j.electacta.2016.02.048
- J. Deng, T. Xiong, F. Xu, M. Li, C. Han, Y. Gong, H. Wang, Y. Wang, Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 17, 4053–4060 (2015). https://doi.org/10.1039/C5GC00523J
- L. Guan, L. Pan, T. Peng, T. Qian, Y. Huang et al., Green and scalable synthesis of porous carbon nanosheet-assembled hierarchical architectures for robust capacitive energy harvesting. Carbon 152, 537–544 (2019). https://doi.org/10.1016/j.carbon.2019.06.05
- N. Diez, G.A. Ferrero, M. Sevilla, A.B. Fuertes, A sustainable approach to hierarchically porous carbons from tannic acid and their utilization in supercapacitive energy storage systems. J. Mater. Chem. A 7, 14280–14290 (2019). https://doi.org/10.1039/C9TA01712G
- R. Shi, C. Han, H. Li, L. Xu, T. Zhang et al., NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. J. Mater. Chem. A 6, 17057–17066 (2018). https://doi.org/10.1039/C8TA05853A
- J.G. Wang, H.Z. Liu, H.H. Sun, W. Hua, H.W. Wang, X.R. Liu, B.Q. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018). https://doi.org/10.1016/j.carbon.2017.10.084
- B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9, 102–106 (2016). https://doi.org/10.1039/C5EE03149D
- J. Zhao, H. Lai, Z. Lyu, Y. Jiang, K. Xie et al., Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 27, 3541–3545 (2015). https://doi.org/10.1002/adma.201500945
- K. Zou, P. Cai, C. Liu, J. Li, X. Gao et al., A kinetically well-matched full-carbon sodium-ion capacitor. J. Mater. Chem. A 7, 13540–13549 (2019). https://doi.org/10.1039/C9TA03797G
- J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, D. Zhao, A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 23, 2322–2328 (2013). https://doi.org/10.1002/adfm.201202764
- X. Wang, J.S. Lee, Q. Zhu, J. Liu, Y. Wang, S. Dai, Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem. Mater. 22, 2178–2180 (2010). https://doi.org/10.1021/cm100139d
- Z. Wu, P.A. Webley, D. Zhao, Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture. J. Mater. Chem. 22, 11379–11389 (2012). https://doi.org/10.1039/C2JM16183D
- Z. Song, L. Li, D. Zhu, L. Miao, H. Duan et al., Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. J. Mater. Chem. A 7, 816–826 (2019). https://doi.org/10.1039/C8TA10406A
- L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang et al., Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J. Am. Chem. Soc. 137, 219–225 (2015). https://doi.org/10.1021/ja508693y
- Y. Yao, Z. Chen, A. Zhang, J. Zhu, X. Wei et al., Surface-coating synthesis of nitrogen-doped inverse opal carbon materials with ultrathin micro/mesoporous graphene-like walls for oxygen reduction and supercapacitors. J. Mater. Chem. A 5, 25237–25248 (2017). https://doi.org/10.1039/C7TA08354H
- X. Gao, Z. Chen, Y. Yao, M. Zhou, Y. Liu et al., Direct heating amino acids with silica: a universal solvent-free assembly approach to highly nitrogen-doped mesoporous carbon materials. Adv. Funct. Mater. 26, 6649–6661 (2016). https://doi.org/10.1002/adfm.201601640
- M.R. Benzigar, S.N. Talapaneni, S. Joseph, K. Ramadass, G. Singh et al., Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem. Soc. Rev. 47, 2680–2721 (2018). https://doi.org/10.1039/C7CS00787F
- Z. Song, D. Zhu, L. Li, T. Chen, H. Duan et al., Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. J. Mater. Chem. A 7, 1177–1186 (2019). https://doi.org/10.1039/C8TA10158B
- C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007). https://doi.org/10.1016/j.carbon.2007.08.024
- A. Celzard, F. Collas, J.F. Mareche, G. Furdin, I. Rey, Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance. J. Power Sources 108, 153–162 (2002). https://doi.org/10.1016/S0378-7753(02)00030-7
- J.W. To, J. He, J. Mei, R. Haghpanah, Z. Chen et al., Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 138, 1001–1009 (2016). https://doi.org/10.1021/jacs.5b11955
- J.H. Lee, H.J. Lee, S.Y. Lim, B.G. Kim, J.W. Choi, Combined CO2-philicity and ordered mesoporosity for highly selective CO2 capture at high temperatures. J. Am. Chem. Soc. 137, 7210–7216 (2015). https://doi.org/10.1021/jacs.5b03579
- M. Oschatz, M.A. Antonietti, Search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ. Sci. 11, 57–70 (2018). https://doi.org/10.1039/C7EE02110K
- J. Hwang, R. Walczak, M. Oschatz, N.V. Tarakina, B. Schmidt, Micro-blooming: hierarchically porous nitrogen-doped carbon flowers derived from metal-organic mesocrystals. Small 15, e1901986 (2019). https://doi.org/10.1002/smll.201901986
References
J. Liu, N.P. Wickramaratne, S.Z. Qiao, M. Jaroniec, Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 14, 763–774 (2015). https://doi.org/10.1038/nmat4317
L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009). https://doi.org/10.1039/B813846J
A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005). https://doi.org/10.1142/9789814317665_0022
D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.-M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47, 373–376 (2008). https://doi.org/10.1002/anie.200702721
Z. Wu, D. Zhao, Ordered mesoporous materials as adsorbents. Chem. Commun. 47, 3332–3338 (2011). https://doi.org/10.1039/c0cc04909c
S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee et al., Design principle of Fe–N–C electrocatalysts: how to optimize multimodal porous structures? J. Am. Chem. Soc. 141, 2035–2045 (2019). https://doi.org/10.1021/jacs.8b11129
H. Tian, J. Liang, J. Liu, Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv. Mater. 31, e1903886 (2019). https://doi.org/10.1002/adma.201903886
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1142/9789814287005_0033
S. Kondrat, C.R. Pérez, V. Presser, Y. Gogotsi, A.A. Kornyshev, Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ. Sci. 5, 6474 (2012). https://doi.org/10.1039/c2ee03092f
M. Sevilla, G.A. Ferrero, N. Diez, A.B. Fuertes, One-step synthesis of ultra-high surface area nanoporous carbons and their application for electrochemical energy storage. Carbon 131, 193–200 (2018). https://doi.org/10.1016/j.carbon.2018.02.021
A.E. Creamer, B. Gao, Carbon-based adsorbents for postcombustion CO2 capture: a critical review. Environ. Sci. Technol. 50, 7276–7289 (2016). https://doi.org/10.1021/acs.est.6b00627
J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O’Hare, Z. Zhong, Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ. Sci. 7, 3478–3518 (2014). https://doi.org/10.1039/C4EE01647E
M. Sevilla, A.S.M. Al-Jumialy, A.B. Fuertes, R. Mokaya, Optimization of the pore structure of biomass-based carbons in relation to their use for CO2 capture under low- and high-pressure regimes. ACS Appl. Mater. Interfaces 10, 1623–1633 (2018). https://doi.org/10.1021/acsami.7b10433
L. Zhang, X. Yang, F. Zhang, G. Long, T. Zhang et al., Controlling the effective surface area and pore size distribution of sp 2 carbon materials and their impact on the capacitance performance of these materials. J. Am. Chem. Soc. 135, 5921–5929 (2013). https://doi.org/10.1021/ja402552h
D. Bhattacharjya, M.-S. Kim, T.-S. Bae, J.-S. Yu, High performance supercapacitor prepared from hollow mesoporous carbon capsules with hierarchical nanoarchitecture. J. Power Sources 244, 799–805 (2013). https://doi.org/10.1016/j.jpowsour.2013.01.112
T.Q. Lin, I.W. Chen, F.X. Liu, C.Y. Yang, H. Bi, F.F. Xu, F.Q. Huang, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015). https://doi.org/10.1126/science.aab3798
L. Yao, Q. Wu, P. Zhang, J. Zhang, D. Wang et al., Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 30, 1706054 (2018). https://doi.org/10.1002/adma.201706054
X.Y. Yang, L.H. Chen, Y. Li, J.C. Rooke, C. Sanchez, B.L. Su, Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46, 481–558 (2017). https://doi.org/10.1039/C6CS00829A
Y.X. Xu, Z.Y. Lin, X. Zhong, X.Q. Huang, N.O. Weiss, Y. Huang, X.F. Duan, Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554 (2014). https://doi.org/10.1038/ncomms5554
Y.X. Xu, C.Y. Chen, Z.P. Zhao, Z.Y. Lin, C. Lee et al., Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors. Nano Lett. 15, 4605–4610 (2015). https://doi.org/10.1021/acs.nanolett.5b01212
T. Guan, J. Zhao, G. Zhang, J. Wang, D. Zhang, K. Li, Template-free synthesis of honeycomblike porous carbon rich in specific 2–5 nm mesopores from a pitch-based polymer for a high-performance supercapacitor. ACS Sustain. Chem. Eng. 7, 2116–2126 (2019). https://doi.org/10.1021/acssuschemeng.8b04736
L. Miao, X. Qian, D. Zhu, T. Chen, G. Ping et al., From interpenetrating polymer networks to hierarchical porous carbons for advanced supercapacitor electrodes. Chin. Chem. Lett. 30, 1445–1449 (2019). https://doi.org/10.1016/j.cclet.2019.03.010
G. Qu, S. Jia, H. Wang, F. Cao, L. Li et al., Asymmetric supercapacitor based on porous N-doped carbon derived from pomelo peel and NiO arrays. ACS Appl. Mater. Interfaces 8, 20822–20830 (2016). https://doi.org/10.1021/acsami.6b06630
M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja, M. Sathish, Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors. ACS Appl. Mater. Interfaces 8, 35191–35202 (2016). https://doi.org/10.1021/acsami.6b10704
C.Y. Zhang, X.H. Zhu, M. Cao, M.L. Li, N. Li, L.Q. Lai, J.L. Zhu, D.C. Wei, Hierarchical porous carbon materials derived from sheep manure for high-capacity supercapacitors. ChemSusChem 9, 932–937 (2016). https://doi.org/10.1002/cssc.201501624
C.J. Chen, Y. Zhang, Y.J. Li, J.Q. Dai, J.W. Song et al., All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538–545 (2017). https://doi.org/10.1039/C6EE03716J
X. Dong, H. Jin, R. Wang, J. Zhang, X. Feng et al., High volumetric capacitance, ultralong life supercapacitors enabled by waxberry-derived hierarchical porous carbon materials. Adv. Energy Mater. 8, 1702695 (2018). https://doi.org/10.1002/aenm.201702695
Q. Zhang, K. Han, S. Li, M. Li, J. Li, K. Ren, Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. Nanoscale 10, 2427–2437 (2018). https://doi.org/10.1039/C7NR07158B
L. Gao, L. Xiong, D. Xu, J. Cai, L. Huang, J. Zhou, L. Zhang, Distinctive construction of chitin-derived hierarchically porous carbon microspheres/polyaniline for high-rate supercapacitors. ACS Appl. Mater. Interfaces 10, 28918–28927 (2018). https://doi.org/10.1021/acsami.8b05891
T. Kesavan, M. Sasidharan, Palm spathe derived N-doped carbon nanosheets as a high performance electrode for Li-ion batteries and supercapacitors. ACS Sustain. Chem. Eng. 7, 12160–12169 (2019). https://doi.org/10.1021/acssuschemeng.9b01261
L. Peng, Y. Liang, J. Huang, L. Xing, H. Hu, Y. Xiao, H. Dong, Y. Liu, M. Zheng, Mixed-biomass wastes derived hierarchically porous carbons for high-performance electrochemical energy storage. ACS Sustain. Chem. Eng. 7, 10393–10402 (2019). https://doi.org/10.1021/acssuschemeng.9b00477
X. Peng, L. Zhang, Z. Chen, L. Zhong, D. Zhao et al., Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 31, 1900341 (2019). https://doi.org/10.1002/adma.201900341
Y. Liu, M. Zhang, L. Wang, Y. Hou, C. Guo, H. Xin, S. Xu, A biomass carbon material with microtubule bundling and natural O-doping derived from goldenberry calyx and its electrochemical performance in supercapacitor. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.05.045
C. Xuan, Z. Peng, J. Wang, W. Lei, K. Xia, Z. Wu, W. Xiao, D. Wang, Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors. Chin. Chem. Lett. 28, 2227–2230 (2017). https://doi.org/10.1016/j.cclet.2017.09.009
P. Han, S.-H. Chung, A. Manthiram, Pyrrolic-type nitrogen-doped hierarchical macro/mesoporous carbon as a bifunctional host for high-performance thick cathodes for lithium–sulfur batteries. Small 15, 1900690 (2019). https://doi.org/10.1002/smll.201900690
T. Wang, Y. Sun, L. Zhang, K. Li, Y. Yi et al., Space-confined polymerization: controlled fabrication of nitrogen-doped polymer and carbon microspheres with refined hierarchical architectures. Adv. Mater. 31, e1807876 (2019). https://doi.org/10.1002/adma.201807876
D. Qiu, J. Guan, M. Li, C. Kang, J. Wei, Y. Li, Z. Xie, F. Wang, R. Yang, Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 29, 1903496 (2019). https://doi.org/10.1002/adfm.201903496
S. Sun, F. Han, X. Wu, Z. Fan, One-step synthesis of biomass derived O, N-codoped hierarchical porous carbon with high surface area for supercapacitors. Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2019.11.023
N.D. Petkovich, A. Stein, Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem. Soc. Rev. 42, 3721–3739 (2013). https://doi.org/10.1039/C2CS35308C
Q. Li, R. Jiang, Y. Dou, Z. Wu, T. Huang et al., Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor. Carbon 49, 1248–1257 (2011). https://doi.org/10.1016/j.carbon.2010.11.043
T.-C. Chou, C.-H. Huang, R.-A. Doong, C.-C. Hu, Architectural design of hierarchically ordered porous carbons for high-rate electrochemical capacitors. J. Mater. Chem. A 1, 2886–2895 (2013). https://doi.org/10.1039/C2TA01190E
G. Hasegawa, K. Kanamori, T. Kiyomura, H. Kurata, T. Abe, K. Nakanishi, Hierarchically porous carbon monoliths comprising ordered mesoporous nanorod assemblies for high-voltage aqueous supercapacitors. Chem. Mater. 28, 3944–3950 (2016). https://doi.org/10.1021/acs.chemmater.6b01261
B. You, F. Kang, P. Yin, Q. Zhang, Hydrogel-derived heteroatom-doped porous carbon network for supercapacitor and electrocatalytic oxygen reduction. Carbon 103, 9–15 (2016). https://doi.org/10.1016/j.carbon.2016.03.009
F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong, Y. Li, Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17, 3097–3104 (2017). https://doi.org/10.1021/acs.nanolett.7b00533
J. Li, L. Tian, F. Liang, J. Wang, L. Han et al., Molten salt synthesis of hierarchical porous N-doped carbon submicrospheres for multifunctional applications: high performance supercapacitor, dye removal and CO2 capture. Carbon 141, 739–747 (2019). https://doi.org/10.1016/j.carbon.2018.09.061
S. Zhu, L. Li, C. He, N. Zhao, E. Liu, C. Shi, M. Zhang, Soluble salt self-assembly-assisted synthesis of three-dimensional hierarchical porous carbon networks for supercapacitors. J. Mater. Chem. A 3, 22266–22273 (2015). https://doi.org/10.1039/C5TA04646G
F. Zhang, T. Liu, G. Hou, T. Kou, L. Yue, R. Guan, Y. Li, Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 9, 2875–2888 (2016). https://doi.org/10.1007/s12274-016-1173-z
W. Li, F. Zhang, Y. Dou, Z. Wu, H. Liu et al., A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv. Energy Mater. 1, 382–386 (2011). https://doi.org/10.1002/aenm.201000096
S. Zhao, T. Yan, H. Wang, J. Zhang, L. Shi, D. Zhang, Creating 3D hierarchical carbon architectures with micro-, meso-, and macropores via a simple self-blowing strategy for a flow-through deionization capacitor. ACS Appl. Mater. Interfaces 8, 18027–18035 (2016). https://doi.org/10.1021/acsami.6b03704
J. Hao, Y. Liao, Y. Zhong, D. Shu, C. He et al., Three-dimensional graphene layers prepared by a gas-foaming method for supercapacitor applications. Carbon 94, 879–887 (2015). https://doi.org/10.1016/j.carbon.2015.07.069
J. Hao, D. Shu, S. Guo, A. Gao, C. He et al., Preparation of three-dimensional nitrogen-doped graphene layers by gas foaming method and its electrochemical capactive behavior. Electrochim. Acta 193, 293–301 (2016). https://doi.org/10.1016/j.electacta.2016.02.048
J. Deng, T. Xiong, F. Xu, M. Li, C. Han, Y. Gong, H. Wang, Y. Wang, Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 17, 4053–4060 (2015). https://doi.org/10.1039/C5GC00523J
L. Guan, L. Pan, T. Peng, T. Qian, Y. Huang et al., Green and scalable synthesis of porous carbon nanosheet-assembled hierarchical architectures for robust capacitive energy harvesting. Carbon 152, 537–544 (2019). https://doi.org/10.1016/j.carbon.2019.06.05
N. Diez, G.A. Ferrero, M. Sevilla, A.B. Fuertes, A sustainable approach to hierarchically porous carbons from tannic acid and their utilization in supercapacitive energy storage systems. J. Mater. Chem. A 7, 14280–14290 (2019). https://doi.org/10.1039/C9TA01712G
R. Shi, C. Han, H. Li, L. Xu, T. Zhang et al., NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. J. Mater. Chem. A 6, 17057–17066 (2018). https://doi.org/10.1039/C8TA05853A
J.G. Wang, H.Z. Liu, H.H. Sun, W. Hua, H.W. Wang, X.R. Liu, B.Q. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018). https://doi.org/10.1016/j.carbon.2017.10.084
B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 9, 102–106 (2016). https://doi.org/10.1039/C5EE03149D
J. Zhao, H. Lai, Z. Lyu, Y. Jiang, K. Xie et al., Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 27, 3541–3545 (2015). https://doi.org/10.1002/adma.201500945
K. Zou, P. Cai, C. Liu, J. Li, X. Gao et al., A kinetically well-matched full-carbon sodium-ion capacitor. J. Mater. Chem. A 7, 13540–13549 (2019). https://doi.org/10.1039/C9TA03797G
J. Wei, D. Zhou, Z. Sun, Y. Deng, Y. Xia, D. Zhao, A controllable synthesis of rich nitrogen-doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv. Funct. Mater. 23, 2322–2328 (2013). https://doi.org/10.1002/adfm.201202764
X. Wang, J.S. Lee, Q. Zhu, J. Liu, Y. Wang, S. Dai, Ammonia-treated ordered mesoporous carbons as catalytic materials for oxygen reduction reaction. Chem. Mater. 22, 2178–2180 (2010). https://doi.org/10.1021/cm100139d
Z. Wu, P.A. Webley, D. Zhao, Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture. J. Mater. Chem. 22, 11379–11389 (2012). https://doi.org/10.1039/C2JM16183D
Z. Song, L. Li, D. Zhu, L. Miao, H. Duan et al., Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. J. Mater. Chem. A 7, 816–826 (2019). https://doi.org/10.1039/C8TA10406A
L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang et al., Structural evolution of 2D microporous covalent triazine-based framework toward the study of high-performance supercapacitors. J. Am. Chem. Soc. 137, 219–225 (2015). https://doi.org/10.1021/ja508693y
Y. Yao, Z. Chen, A. Zhang, J. Zhu, X. Wei et al., Surface-coating synthesis of nitrogen-doped inverse opal carbon materials with ultrathin micro/mesoporous graphene-like walls for oxygen reduction and supercapacitors. J. Mater. Chem. A 5, 25237–25248 (2017). https://doi.org/10.1039/C7TA08354H
X. Gao, Z. Chen, Y. Yao, M. Zhou, Y. Liu et al., Direct heating amino acids with silica: a universal solvent-free assembly approach to highly nitrogen-doped mesoporous carbon materials. Adv. Funct. Mater. 26, 6649–6661 (2016). https://doi.org/10.1002/adfm.201601640
M.R. Benzigar, S.N. Talapaneni, S. Joseph, K. Ramadass, G. Singh et al., Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem. Soc. Rev. 47, 2680–2721 (2018). https://doi.org/10.1039/C7CS00787F
Z. Song, D. Zhu, L. Li, T. Chen, H. Duan et al., Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. J. Mater. Chem. A 7, 1177–1186 (2019). https://doi.org/10.1039/C8TA10158B
C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007). https://doi.org/10.1016/j.carbon.2007.08.024
A. Celzard, F. Collas, J.F. Mareche, G. Furdin, I. Rey, Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance. J. Power Sources 108, 153–162 (2002). https://doi.org/10.1016/S0378-7753(02)00030-7
J.W. To, J. He, J. Mei, R. Haghpanah, Z. Chen et al., Hierarchical N-doped carbon as CO2 adsorbent with high CO2 selectivity from rationally designed polypyrrole precursor. J. Am. Chem. Soc. 138, 1001–1009 (2016). https://doi.org/10.1021/jacs.5b11955
J.H. Lee, H.J. Lee, S.Y. Lim, B.G. Kim, J.W. Choi, Combined CO2-philicity and ordered mesoporosity for highly selective CO2 capture at high temperatures. J. Am. Chem. Soc. 137, 7210–7216 (2015). https://doi.org/10.1021/jacs.5b03579
M. Oschatz, M.A. Antonietti, Search for selectivity to enable CO2 capture with porous adsorbents. Energy Environ. Sci. 11, 57–70 (2018). https://doi.org/10.1039/C7EE02110K
J. Hwang, R. Walczak, M. Oschatz, N.V. Tarakina, B. Schmidt, Micro-blooming: hierarchically porous nitrogen-doped carbon flowers derived from metal-organic mesocrystals. Small 15, e1901986 (2019). https://doi.org/10.1002/smll.201901986