Bi2Se3/C Nanocomposite as a New Sodium-Ion Battery Anode Material
Corresponding Author: Shuo Chen
Nano-Micro Letters,
Vol. 10 No. 3 (2018), Article Number: 50
Abstract
Bi2Se3 was studied as a novel sodium-ion battery anode material because of its high theoretical capacity and high intrinsic conductivity. Integrated with carbon, Bi2Se3/C composite shows excellent cyclic performance and rate capability. For instance, the Bi2Se3/C anode delivers an initial capacity of 527 mAh g−1 at 0.1 A g−1 and maintains 89% of this capacity over 100 cycles. The phase change and sodium storage mechanism are also carefully investigated.
Highlights:
1 Bi2Se3 was investigated as a novel sodium-ion battery anode material.
2 Sodiation/desodiation mechanism of Bi2Se3 has been carefully investigated.
3 Bi2Se3/C electrode demonstrates high cycling stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
- H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
- S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2016). https://doi.org/10.1038/nmat4834
- Z. Yang, Y. Jiang, L. Deng, T. Wang, S. Chen, Y. Huang, A high-voltage honeycomb-layered Na4NiTeO6 as cathode material for Na-ion batteries. J. Power Sources 360, 319–323 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.014
- C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16(1), 45–56 (2016). https://doi.org/10.1038/nmat4777
- N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). https://doi.org/10.1021/cr500192f
- M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, S.X. Dou, Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29(48), 1700622 (2017). https://doi.org/10.1002/adma.201700622
- L.D. Ellis, B.N. Wilkes, T.D. Hatchard, M.N. Obrovac, In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells. J. Electrochem. Soc. 161(3), A416–A421 (2014). https://doi.org/10.1149/2.080403jes
- C. Wang, L. Wang, F. Li, F. Cheng, J. Chen, Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv. Mater. 29(35), 1702212 (2017). https://doi.org/10.1002/adma.201702212
- M.M. Doeff, Y. Ma, S.J. Visco, L.C.D. Jonghe, Electrochemical insertion of sodium into carbon. J. Electrochem. Soc. 140(12), 169–170 (1993). https://doi.org/10.1149/1.2221153
- S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21(20), 3859–3867 (2011). https://doi.org/10.1002/adfm.201100854
- Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen, X. Huang, Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6(18), 1600659 (2016). https://doi.org/10.1002/aenm.201600659
- M. Dahbi, N. Yabuuchi, K. Kubota, K. Tokiwa, S. Komaba, Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 16(29), 15007–15028 (2014). https://doi.org/10.1039/c4cp00826j
- D. Su, S. Dou, G. Wang, Bismuth: a new anode for the Na-ion battery. Nano Energy 12, 88–95 (2015). https://doi.org/10.1016/j.nanoen.2014.12.012
- Z. Hu, Q. Liu, S.-L. Chou, S.-X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29(48), 1700606 (2017). https://doi.org/10.1002/adma.201700606
- Z. Liu, T. Lu, T. Song, X.-Y. Yu, X.W. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10(7), 1576–1580 (2017). https://doi.org/10.1039/c7ee01100h
- Y. Kim, Y. Kim, Y. Park, Y.N. Jo, Y.J. Kim, N.S. Choi, K.T. Lee, SnSe alloy as a promising anode material for Na-ion batteries. Chem. Commun. 51(1), 50–53 (2015). https://doi.org/10.1039/c4cc06106c
- X. Duan, J. Xu, Z. Wei, J. Ma, S. Guo, H. Liu, S. Dou, Atomically thin transition-metal dichalcogenides for electrocatalysis and energy storage. Small Methods 1(11), 1700156 (2017). https://doi.org/10.1002/smtd.201700156
- W. Sun, X. Rui, D. Zhang, Y. Jiang, Z. Sun, H. Liu, S. Dou, Bismuth sulfide: a high-capacity anode for sodium-ion batteries. J. Power Sources 309, 135–140 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.092
- W. Yang, H. Wang, T. Liu, L. Gao, A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries. Mater. Lett. 167, 102–105 (2016). https://doi.org/10.1016/j.matlet.2015.12.108
- W. Liu, K.C. Lukas, K. McEnaney, S. Lee, Q. Zhang, C.P. Opeil, G. Chen, Z. Ren, Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy Environ. Sci. 6(2), 552–560 (2013). https://doi.org/10.1039/c2ee23549h
- Y. Lu, P. Zhou, K. Lei, Q. Zhao, Z. Tao, J. Chen, Selenium phosphide (Se4P4) as a new and promising anode material for sodium-ion batteries. Adv. Energy Mater. 7(7), 1601973 (2017). https://doi.org/10.1002/aenm.201601973
- H. Xu, G. Chen, R. Jin, J. Pei, Y. Wang, D. Chen, Hierarchical Bi2Se3 microrods: microwave-assisted synthesis, growth mechanism and their related properties. CrystEngComm 15(8), 1618–1625 (2013). https://doi.org/10.1039/c2ce26678d
- Z. Ali, C. Cao, J. Li, Y. Wang, T. Cao, M. Tanveer, M. Tahir, F. Idrees, F.K. Butt, Effect of synthesis technique on electrochemical performance of bismuth selenide. J. Power Sources 229, 216–222 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.120
- F. Mao, J. Guo, S. Zhang, F. Yang, Q. Sun, J. Ma, Z. Li, Solvothermal synthesis and electrochemical properties of S-doped Bi2Se3 hierarchical microstructure assembled by stacked nanosheets. RSC Adv. 6(44), 38228–38232 (2016). https://doi.org/10.1039/c6ra01301e
- R. Jin, J. Liu, Y. Xu, G. Li, G. Chen, L. Yang, Hierarchical Bi2Se3–xS x microarchitectures assembled from ultrathin polycrystalline nanosheets: solvothermal synthesis and good electrochemical performance. J. Mater. Chem. A 1(36), 10942 (2013). https://doi.org/10.1039/c3ta12030a
- G. Han, Z.-G. Chen, D. Ye, L. Yang, L. Wang, J. Drennan, J. Zou, In-doped Bi2Se3 hierarchical nanostructures as anode materials for Li-ion batteries. J. Mater. Chem. A 2(19), 7109–7116 (2014). https://doi.org/10.1039/c4ta00045e
- Y. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv. Funct. Mater. 25(2), 214–220 (2015). https://doi.org/10.1002/adfm.201402943
- Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok et al., Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 26(24), 4139–4144 (2014). https://doi.org/10.1002/adma.201305638
- J. Duan, W. Zhang, C. Wu, Q. Fan, W. Zhang, X. Hu, Y. Huang, Self-wrapped Sb/C nanocomposite as anode material for high-performance sodium-ion batteries. Nano Energy 16, 479–487 (2015). https://doi.org/10.1016/j.nanoen.2015.07.021
- Y.N. Ko, Y.C. Kang, Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 50(82), 12322–12324 (2014). https://doi.org/10.1039/c4cc05275g
- Z. Yang, J. Sun, Y. Ni, Z. Zhao, J. Bao, S. Chen, Facile synthesis and in situ transmission electron microscopy investigation of a highly stable Sb2Te3/C nanocomposite for sodium-ion batteries. Energy Storage Mater. 9, 214–220 (2017). https://doi.org/10.1016/j.ensm.2017.07.010
- S. Ni, J. Ma, J. Zhang, X. Yang, L. Zhang, Electrochemical performance of cobalt vanadium oxide/natural graphite as anode for lithium ion batteries. J. Power Sources 282, 65–69 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.187
- J. Ma, S. Ni, J. Zhang, X. Yang, L. Zhang, The charge/discharge mechanism and electrochemical performance of CuV2O6 as a new anode material for Li-ion batteries. Phys. Chem. Chem. Phys. 17(33), 21442–21447 (2015). https://doi.org/10.1039/c5cp03435c
- Q. Wang, W. Zhang, C. Guo, Y. Liu, C. Wang, Z. Guo, In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries. Adv. Funct. Mater. 27(41), 1703390 (2017). https://doi.org/10.1002/adfm.201703390
- Q. Wang, C. Guo, Y. Zhu, J. He, H. Wang, Reduced graphene oxide-wrapped FeS2 composite as anode for high-performance sodium-ion batteries. Nano-Micro Lett. 10, 30 (2018). https://doi.org/10.1007/s40820-017-0183-z
- J. Liang, X. Gao, J. Guo, C. Chen, K. Fan, J. Ma, Electrospun MoO2@NC nanofibers with excellent Li+/Na+ storage for dual applications. Sci. China Mater. 61(1), 30–38 (2017). https://doi.org/10.1007/s40843-017-9119-2
- J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-Micro Lett. 10(2), 21 (2018). https://doi.org/10.1007/s40820-017-0172-2
- Y. Zhou, W. Sun, X. Rui, Y. Zhou, W.J. Ng, Q. Yan, E. Fong, Biochemistry-derived porous carbon-encapsulated metal oxide nanocrystals for enhanced sodium storage. Nano Energy 21, 71–79 (2016). https://doi.org/10.1016/j.nanoen.2015.12.003
- X. Zhang, Y. Zhou, B. Luo, H. Zhu, W. Chu, K. Huang, Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium Ion batteries. Nano-Micro Lett. 10(1), 13 (2017). https://doi.org/10.1007/s40820-017-0164-2
- M. Mao, C. Cui, M. Wu, M. Zhang, T. Gao et al., Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 45, 346–352 (2018). https://doi.org/10.1016/j.nanoen.2018.01.001
- F. Yang, F. Yu, Z. Zhang, K. Zhang, Y. Lai, J. Li, Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem.-Eur. J. 22(7), 2333–2338 (2016). https://doi.org/10.1002/chem.201503272
- J. Sottmann, M. Herrmann, P. Vajeeston, Y. Hu, A. Ruud, C. Drathen, H. Emerich, H. Fjellvåg, D.S. Wragg, How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem. Mater. 28(8), 2750–2756 (2016). https://doi.org/10.1021/acs.chemmater.6b00491
- D. Kong, J.J. Cha, K. Lai, H. Peng, J.G.A.S. Meister et al., Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 5(6), 4698–4703 (2011). https://doi.org/10.1021/nn200556h
- S.R. Leadley, J.F. Watts, The use of XPS to examine the interaction of poly(acrylic acid) with oxidised metal substrates. J. Electron Spectrosc. 85(1–2), 107–121 (1997). https://doi.org/10.1016/S0368-2048(97)00028-5
- F.A. Soto, P. Yan, M.H. Engelhard, A. Marzouk, C. Wang et al., Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon. Adv. Mater. 29(18), 1606860 (2017). https://doi.org/10.1002/adma.201606860
- S. Ni, J. Zhang, J. Ma, X. Yang, L. Zhang, X. Li, H. Zeng, Approaching the theoretical capacity of Li3VO4 via electrochemical reconstruction. Adv. Mater. Interfaces 3(1), 1500340 (2016). https://doi.org/10.1002/admi.201500340
- S. Ni, J. Ma, J. Zhang, X. Yang, L. Zhang, Excellent electrochemical performance of NiV3O8/natural graphite anodes via novel in situ electrochemical reconstruction. Chem. Commun. 51(27), 5880–5882 (2015). https://doi.org/10.1039/c5cc00486a
- J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
- C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015). https://doi.org/10.1038/ncomms7929
- X. Deng, Z. Wei, C. Cui, Q. Liu, C. Wang, J. Ma, Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J. Mater. Chem. A 6(9), 4013–4022 (2018). https://doi.org/10.1039/c7ta11301c
References
V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-González, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
H. Kim, H. Kim, Z. Ding, M.H. Lee, K. Lim, G. Yoon, K. Kang, Recent progress in electrode materials for sodium-ion batteries. Adv. Energy Mater. 6(19), 1600943 (2016). https://doi.org/10.1002/aenm.201600943
S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2016). https://doi.org/10.1038/nmat4834
Z. Yang, Y. Jiang, L. Deng, T. Wang, S. Chen, Y. Huang, A high-voltage honeycomb-layered Na4NiTeO6 as cathode material for Na-ion batteries. J. Power Sources 360, 319–323 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.014
C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development. Nat. Mater. 16(1), 45–56 (2016). https://doi.org/10.1038/nmat4777
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries. Chem. Rev. 114(23), 11636–11682 (2014). https://doi.org/10.1021/cr500192f
M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, S.X. Dou, Alloy-based anode materials toward advanced sodium-ion batteries. Adv. Mater. 29(48), 1700622 (2017). https://doi.org/10.1002/adma.201700622
L.D. Ellis, B.N. Wilkes, T.D. Hatchard, M.N. Obrovac, In situ XRD study of silicon, lead and bismuth negative electrodes in nonaqueous sodium cells. J. Electrochem. Soc. 161(3), A416–A421 (2014). https://doi.org/10.1149/2.080403jes
C. Wang, L. Wang, F. Li, F. Cheng, J. Chen, Bulk bismuth as a high-capacity and ultralong cycle-life anode for sodium-ion batteries by coupling with glyme-based electrolytes. Adv. Mater. 29(35), 1702212 (2017). https://doi.org/10.1002/adma.201702212
M.M. Doeff, Y. Ma, S.J. Visco, L.C.D. Jonghe, Electrochemical insertion of sodium into carbon. J. Electrochem. Soc. 140(12), 169–170 (1993). https://doi.org/10.1149/1.2221153
S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21(20), 3859–3867 (2011). https://doi.org/10.1002/adfm.201100854
Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen, X. Huang, Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 6(18), 1600659 (2016). https://doi.org/10.1002/aenm.201600659
M. Dahbi, N. Yabuuchi, K. Kubota, K. Tokiwa, S. Komaba, Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 16(29), 15007–15028 (2014). https://doi.org/10.1039/c4cp00826j
D. Su, S. Dou, G. Wang, Bismuth: a new anode for the Na-ion battery. Nano Energy 12, 88–95 (2015). https://doi.org/10.1016/j.nanoen.2014.12.012
Z. Hu, Q. Liu, S.-L. Chou, S.-X. Dou, Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 29(48), 1700606 (2017). https://doi.org/10.1002/adma.201700606
Z. Liu, T. Lu, T. Song, X.-Y. Yu, X.W. Lou, U. Paik, Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10(7), 1576–1580 (2017). https://doi.org/10.1039/c7ee01100h
Y. Kim, Y. Kim, Y. Park, Y.N. Jo, Y.J. Kim, N.S. Choi, K.T. Lee, SnSe alloy as a promising anode material for Na-ion batteries. Chem. Commun. 51(1), 50–53 (2015). https://doi.org/10.1039/c4cc06106c
X. Duan, J. Xu, Z. Wei, J. Ma, S. Guo, H. Liu, S. Dou, Atomically thin transition-metal dichalcogenides for electrocatalysis and energy storage. Small Methods 1(11), 1700156 (2017). https://doi.org/10.1002/smtd.201700156
W. Sun, X. Rui, D. Zhang, Y. Jiang, Z. Sun, H. Liu, S. Dou, Bismuth sulfide: a high-capacity anode for sodium-ion batteries. J. Power Sources 309, 135–140 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.092
W. Yang, H. Wang, T. Liu, L. Gao, A Bi2S3@CNT nanocomposite as anode material for sodium ion batteries. Mater. Lett. 167, 102–105 (2016). https://doi.org/10.1016/j.matlet.2015.12.108
W. Liu, K.C. Lukas, K. McEnaney, S. Lee, Q. Zhang, C.P. Opeil, G. Chen, Z. Ren, Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy Environ. Sci. 6(2), 552–560 (2013). https://doi.org/10.1039/c2ee23549h
Y. Lu, P. Zhou, K. Lei, Q. Zhao, Z. Tao, J. Chen, Selenium phosphide (Se4P4) as a new and promising anode material for sodium-ion batteries. Adv. Energy Mater. 7(7), 1601973 (2017). https://doi.org/10.1002/aenm.201601973
H. Xu, G. Chen, R. Jin, J. Pei, Y. Wang, D. Chen, Hierarchical Bi2Se3 microrods: microwave-assisted synthesis, growth mechanism and their related properties. CrystEngComm 15(8), 1618–1625 (2013). https://doi.org/10.1039/c2ce26678d
Z. Ali, C. Cao, J. Li, Y. Wang, T. Cao, M. Tanveer, M. Tahir, F. Idrees, F.K. Butt, Effect of synthesis technique on electrochemical performance of bismuth selenide. J. Power Sources 229, 216–222 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.120
F. Mao, J. Guo, S. Zhang, F. Yang, Q. Sun, J. Ma, Z. Li, Solvothermal synthesis and electrochemical properties of S-doped Bi2Se3 hierarchical microstructure assembled by stacked nanosheets. RSC Adv. 6(44), 38228–38232 (2016). https://doi.org/10.1039/c6ra01301e
R. Jin, J. Liu, Y. Xu, G. Li, G. Chen, L. Yang, Hierarchical Bi2Se3–xS x microarchitectures assembled from ultrathin polycrystalline nanosheets: solvothermal synthesis and good electrochemical performance. J. Mater. Chem. A 1(36), 10942 (2013). https://doi.org/10.1039/c3ta12030a
G. Han, Z.-G. Chen, D. Ye, L. Yang, L. Wang, J. Drennan, J. Zou, In-doped Bi2Se3 hierarchical nanostructures as anode materials for Li-ion batteries. J. Mater. Chem. A 2(19), 7109–7116 (2014). https://doi.org/10.1039/c4ta00045e
Y. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv. Funct. Mater. 25(2), 214–220 (2015). https://doi.org/10.1002/adfm.201402943
Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok et al., Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 26(24), 4139–4144 (2014). https://doi.org/10.1002/adma.201305638
J. Duan, W. Zhang, C. Wu, Q. Fan, W. Zhang, X. Hu, Y. Huang, Self-wrapped Sb/C nanocomposite as anode material for high-performance sodium-ion batteries. Nano Energy 16, 479–487 (2015). https://doi.org/10.1016/j.nanoen.2015.07.021
Y.N. Ko, Y.C. Kang, Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials. Chem. Commun. 50(82), 12322–12324 (2014). https://doi.org/10.1039/c4cc05275g
Z. Yang, J. Sun, Y. Ni, Z. Zhao, J. Bao, S. Chen, Facile synthesis and in situ transmission electron microscopy investigation of a highly stable Sb2Te3/C nanocomposite for sodium-ion batteries. Energy Storage Mater. 9, 214–220 (2017). https://doi.org/10.1016/j.ensm.2017.07.010
S. Ni, J. Ma, J. Zhang, X. Yang, L. Zhang, Electrochemical performance of cobalt vanadium oxide/natural graphite as anode for lithium ion batteries. J. Power Sources 282, 65–69 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.187
J. Ma, S. Ni, J. Zhang, X. Yang, L. Zhang, The charge/discharge mechanism and electrochemical performance of CuV2O6 as a new anode material for Li-ion batteries. Phys. Chem. Chem. Phys. 17(33), 21442–21447 (2015). https://doi.org/10.1039/c5cp03435c
Q. Wang, W. Zhang, C. Guo, Y. Liu, C. Wang, Z. Guo, In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries. Adv. Funct. Mater. 27(41), 1703390 (2017). https://doi.org/10.1002/adfm.201703390
Q. Wang, C. Guo, Y. Zhu, J. He, H. Wang, Reduced graphene oxide-wrapped FeS2 composite as anode for high-performance sodium-ion batteries. Nano-Micro Lett. 10, 30 (2018). https://doi.org/10.1007/s40820-017-0183-z
J. Liang, X. Gao, J. Guo, C. Chen, K. Fan, J. Ma, Electrospun MoO2@NC nanofibers with excellent Li+/Na+ storage for dual applications. Sci. China Mater. 61(1), 30–38 (2017). https://doi.org/10.1007/s40843-017-9119-2
J. Liang, C. Yuan, H. Li, K. Fan, Z. Wei, H. Sun, J. Ma, Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries. Nano-Micro Lett. 10(2), 21 (2018). https://doi.org/10.1007/s40820-017-0172-2
Y. Zhou, W. Sun, X. Rui, Y. Zhou, W.J. Ng, Q. Yan, E. Fong, Biochemistry-derived porous carbon-encapsulated metal oxide nanocrystals for enhanced sodium storage. Nano Energy 21, 71–79 (2016). https://doi.org/10.1016/j.nanoen.2015.12.003
X. Zhang, Y. Zhou, B. Luo, H. Zhu, W. Chu, K. Huang, Microwave-assisted synthesis of NiCo2O4 double-shelled hollow spheres for high-performance sodium Ion batteries. Nano-Micro Lett. 10(1), 13 (2017). https://doi.org/10.1007/s40820-017-0164-2
M. Mao, C. Cui, M. Wu, M. Zhang, T. Gao et al., Flexible ReS2 nanosheets/N-doped carbon nanofibers-based paper as a universal anode for alkali (Li, Na, K) ion battery. Nano Energy 45, 346–352 (2018). https://doi.org/10.1016/j.nanoen.2018.01.001
F. Yang, F. Yu, Z. Zhang, K. Zhang, Y. Lai, J. Li, Bismuth nanoparticles embedded in carbon spheres as anode materials for sodium/lithium-ion batteries. Chem.-Eur. J. 22(7), 2333–2338 (2016). https://doi.org/10.1002/chem.201503272
J. Sottmann, M. Herrmann, P. Vajeeston, Y. Hu, A. Ruud, C. Drathen, H. Emerich, H. Fjellvåg, D.S. Wragg, How crystallite size controls the reaction path in nonaqueous metal ion batteries: the example of sodium bismuth alloying. Chem. Mater. 28(8), 2750–2756 (2016). https://doi.org/10.1021/acs.chemmater.6b00491
D. Kong, J.J. Cha, K. Lai, H. Peng, J.G.A.S. Meister et al., Rapid surface oxidation as a source of surface degradation factor for Bi2Se3. ACS Nano 5(6), 4698–4703 (2011). https://doi.org/10.1021/nn200556h
S.R. Leadley, J.F. Watts, The use of XPS to examine the interaction of poly(acrylic acid) with oxidised metal substrates. J. Electron Spectrosc. 85(1–2), 107–121 (1997). https://doi.org/10.1016/S0368-2048(97)00028-5
F.A. Soto, P. Yan, M.H. Engelhard, A. Marzouk, C. Wang et al., Tuning the solid electrolyte interphase for selective Li- and Na-ion storage in hard carbon. Adv. Mater. 29(18), 1606860 (2017). https://doi.org/10.1002/adma.201606860
S. Ni, J. Zhang, J. Ma, X. Yang, L. Zhang, X. Li, H. Zeng, Approaching the theoretical capacity of Li3VO4 via electrochemical reconstruction. Adv. Mater. Interfaces 3(1), 1500340 (2016). https://doi.org/10.1002/admi.201500340
S. Ni, J. Ma, J. Zhang, X. Yang, L. Zhang, Excellent electrochemical performance of NiV3O8/natural graphite anodes via novel in situ electrochemical reconstruction. Chem. Commun. 51(27), 5880–5882 (2015). https://doi.org/10.1039/c5cc00486a
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111(40), 14925–14931 (2007). https://doi.org/10.1021/jp074464w
C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat. Commun. 6, 6929 (2015). https://doi.org/10.1038/ncomms7929
X. Deng, Z. Wei, C. Cui, Q. Liu, C. Wang, J. Ma, Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J. Mater. Chem. A 6(9), 4013–4022 (2018). https://doi.org/10.1039/c7ta11301c