Demystifying the Salt-Induced Li Loss: A Universal Procedure for the Electrolyte Design of Lithium-Metal Batteries
Corresponding Author: Long Qie
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 234
Abstract
Lithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.g., lithium hexafluorophosphate (LiPF6), lithium difluoro(oxalato)borate (LiDFOB), and lithium bis(fluorosulfonyl)amide (LiFSI)) as examples, we decouple the irreversible Li loss (SEI Li+ and “dead” Li) during cycling. It is found that the accumulation of both SEI Li+ and “dead” Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF6 salt. While for the electrolytes with LiDFOB and LiFSI salts, the accumulation of “dead” Li predominates the Li loss. We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could, respectively, function as the “dead” Li and SEI Li+ inhibitors. Inspired by the above understandings, we propose a universal procedure for the electrolyte design of Li metal batteries (LMBs): (i) decouple and find the main reason for the irreversible Li loss; (ii) add the corresponding electrolyte additive. With such a Li-loss-targeted strategy, the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane, triethyl phosphate, and tetrahydrofuran solvents. Our strategy may broaden the scope of electrolyte design toward practical LMBs.
Highlights:
1 The loss mechanisms of irreversible Li in electrolytes with various salts (e.g., lithium hexafluorophosphate (LiPF6), lithium difluoro(oxalato)borate (LiDFOB), and lithium bis(fluorosulfonyl)amide (LiFSI)) are systemically revealed.
2 A universal procedure for the electrolyte design of Li metal batteries is proposed: (i) decouple and find the main reason for the irreversible Li loss; (ii) add the corresponding electrolyte additive.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Nanda, A. Gupta, A. Manthiram, Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 11(2), 2000804 (2020). https://doi.org/10.1002/aenm.202000804
- Y. Zhan, P. Shi, C. Jin, Y. Xiao, M. Zhou et al., Regulating the two-stage accumulation mechanism of inactive lithium for practical composite lithium metal anodes. Adv. Funct. Mater. 32(43), 2206834 (2022). https://doi.org/10.1002/adfm.202206834
- R. Xu, J. Ding, X. Ma, C. Yan, Y. Yao et al., Designing and demystifying the lithium metal interface toward highly reversible batteries. Adv. Mater. 33(52), e2105962 (2021). https://doi.org/10.1002/adma.202105962
- Y. Liu, X. Xu, O.O. Kapitanova, P.V. Evdokimov, Z. Song et al., Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12(9), 2103589 (2022). https://doi.org/10.1002/aenm.202103589
- X. Xu, X. Jiao, O.O. Kapitanova, J. Wang, V.S. Volkov et al., Diffusion limited current density: a watershed in electrodeposition of lithium metal anode. Adv. Energy Mater. 12(19), 2200244 (2022). https://doi.org/10.1002/aenm.202200244
- C. Niu, H. Pan, W. Xu, J. Xiao, J. Zhang et al., Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14(6), 594–601 (2019). https://doi.org/10.1038/s41565-019-0427-9
- Y. Ren, L. Zeng, H. Jiang, W. Ruan, Q. Chen et al., Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries. Nat. Commun. 10(1), 3249 (2019). https://doi.org/10.1038/s41467-019-11168-y
- S. Xu, K. Chen, N.P. Dasgupta, J.B. Siegel, A.G. Stefanopoulou, Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss. J. Electrochem. Soc. 166(14), A3456–A3463 (2019). https://doi.org/10.1149/2.0991914jes
- J. Chen, Z. Cheng, Y. Liao, L. Yuan, Z. Li et al., Selection of redox mediators for reactivating dead li in lithium metal batteries. Adv. Energy Mater. 12(40), 2201800 (2022). https://doi.org/10.1002/aenm.202201800
- J. Chen, B. He, Z. Cheng, Z. Rao, D. He et al., Reactivating dead Li by shuttle effect for high-performance anode-free Li metal batteries. J. Electrochem. Soc. 168(12), 120535 (2021). https://doi.org/10.1149/1945-7111/ac42a5
- N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan et al., Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 6(5), 1839–1848 (2021). https://doi.org/10.1021/acsenergylett.1c00365
- Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12(1), 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
- C. Zhu, C. Sun, R. Li, S. Weng, L. Fan et al., Anion–diluent pairing for stable high-energy Li metal batteries. ACS Energy Lett. 7(4), 1338–1347 (2022). https://doi.org/10.1021/acsenergylett.2c00232
- Y. Huang, R. Li, S. Weng, H. Zhang, C. Zhu et al., Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ. Sci. 15(10), 4349–4361 (2022). https://doi.org/10.1039/d2ee01756c
- Y. Yang, D.M. Davies, Y. Yin, O. Borodin, J.Z. Lee et al., High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 3(8), 1986–2000 (2019). https://doi.org/10.1016/j.joule.2019.06.008
- Z. Wang, Y. Wang, B. Li, J.C. Bouwer, K. Davey et al., Non-flammable ester electrolyte with boosted stability against Li for high-performance Li metal batteries. Angew. Chem. Int. Ed. 61(41), e202206682 (2022). https://doi.org/10.1002/anie.202206682
- Y. Yao, X. Chen, C. Yan, X. Zhang, W. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60(8), 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
- J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614(7949), 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
- X. Ren, P. Gao, L. Zou, S. Jiao, X. Cao et al., Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proc. Natl. Acad. Sci. U.S.A. 117(46), 28603–28613 (2020). https://doi.org/10.1073/pnas.2010852117
- X. Cao, P. Gao, X. Ren, L. Zou, M.H. Engelhard et al., Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proc. Natl. Acad. Sci. U.S.A. (2021). https://doi.org/10.1073/pnas.2020357118
- C.-C. Su, M. He, M. Cai, J. Shi, R. Amine et al., Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries. Nano Energy 92, 106720 (2022). https://doi.org/10.1016/j.nanoen.2021.106720
- S. Zhang, R. Li, N. Hu, T. Deng, S. Weng et al., Tackling realistic Li+ flux for high-energy lithium metal batteries. Nat. Commun. 13, 5431 (2022). https://doi.org/10.1038/s41467-022-33151-w
- G. Park, K. Lee, D.-J. Yoo, J.W. Choi, Strategy for stable interface in lithium metal batteries: free solvent derived vs anion derived. ACS Energy Lett. 7(12), 4274–4281 (2022). https://doi.org/10.1021/acsenergylett.2c02399
- G. Yang, Y. Li, S. Liu, S. Zhang, Z. Wang et al., LiFSI to improve lithium deposition in carbonate electrolyte. Energy Storage Mater. 23, 350–357 (2019). https://doi.org/10.1016/j.ensm.2019.04.041
- Y. Xiao, B. Han, Y. Zeng, S. Chi, X. Zeng et al., New lithium salt forms interphases suppressing both Li dendrite and polysulfide shuttling. Adv. Energy Mater. 10(14), 1903937 (2020). https://doi.org/10.1002/aenm.201903937
- S. Jurng, Z.L. Brown, J. Kim, B.L. Lucht, Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 11(9), 2600–2608 (2018). https://doi.org/10.1039/c8ee00364e
- L. Qiao, U. Oteo, M. Martinez-Ibanez, A. Santiago, R. Cid et al., Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat. Mater. 21(4), 455–462 (2022). https://doi.org/10.1038/s41563-021-01190-1
- B.D. Adams, J. Zheng, X. Ren, W. Xu, J. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8(7), 1702097 (2017). https://doi.org/10.1002/aenm.201702097
- X. Zheng, L. Huang, W. Luo, H. Wang, Y. Dai et al., Tailoring electrolyte solvation chemistry toward an inorganic-rich solid-electrolyte interphase at a Li metal anode. ACS Energy Lett. 6(6), 2054–2063 (2021). https://doi.org/10.1021/acsenergylett.1c00647
- X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3(7), 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006
- X. Ren, L. Zou, S. Jiao, D. Mei, M.H. Engelhard et al., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 4(4), 896–902 (2019). https://doi.org/10.1021/acsenergylett.9b00381
- Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang et al., Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143(44), 18703–18713 (2021). https://doi.org/10.1021/jacs.1c09006
- Z. Wu, R. Li, S. Zhang, L. Lv, T. Deng et al., Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 9(3), 650–664 (2023). https://doi.org/10.1016/j.chempr.2022.10.027
- J. Ding, R. Xu, X. Ma, Y. Xiao, Y. Yao et al., Quantification of the dynamic interface evolution in high-efficiency working Li-metal batteries. Angew. Chem. Int. Ed. 61(13), e202115602 (2022). https://doi.org/10.1002/anie.202115602
- Z. Zhu, Z. Liu, R. Zhao, X. Qi, J. Ji et al., Heterogeneous nitride interface enabled by stepwise-reduction electrolyte design for dense Li deposition in carbonate electrolytes. Adv. Funct. Mater. 32(48), 2209384 (2022). https://doi.org/10.1002/adfm.202209384
- X. Zhang, X. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27(10), 1605989 (2017). https://doi.org/10.1002/adfm.201605989
- X. Zheng, S. Weng, W. Luo, B. Chen, X. Zhang et al., Deciphering the role of fluoroethylene carbonate towards highly reversible sodium metal anodes. Research 2022, 9754612 (2022). https://doi.org/10.34133/2022/9754612
- S. Liu, J. Xia, W. Zhang, H. Wan, J. Zhang et al., Salt-in-salt reinforced carbonate electrolyte for Li metal batteries. Angew. Chem. Int. Ed. 61(43), e202210522 (2022). https://doi.org/10.1002/anie.202210522
References
S. Nanda, A. Gupta, A. Manthiram, Anode-free full cells: a pathway to high-energy density lithium-metal batteries. Adv. Energy Mater. 11(2), 2000804 (2020). https://doi.org/10.1002/aenm.202000804
Y. Zhan, P. Shi, C. Jin, Y. Xiao, M. Zhou et al., Regulating the two-stage accumulation mechanism of inactive lithium for practical composite lithium metal anodes. Adv. Funct. Mater. 32(43), 2206834 (2022). https://doi.org/10.1002/adfm.202206834
R. Xu, J. Ding, X. Ma, C. Yan, Y. Yao et al., Designing and demystifying the lithium metal interface toward highly reversible batteries. Adv. Mater. 33(52), e2105962 (2021). https://doi.org/10.1002/adma.202105962
Y. Liu, X. Xu, O.O. Kapitanova, P.V. Evdokimov, Z. Song et al., Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12(9), 2103589 (2022). https://doi.org/10.1002/aenm.202103589
X. Xu, X. Jiao, O.O. Kapitanova, J. Wang, V.S. Volkov et al., Diffusion limited current density: a watershed in electrodeposition of lithium metal anode. Adv. Energy Mater. 12(19), 2200244 (2022). https://doi.org/10.1002/aenm.202200244
C. Niu, H. Pan, W. Xu, J. Xiao, J. Zhang et al., Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14(6), 594–601 (2019). https://doi.org/10.1038/s41565-019-0427-9
Y. Ren, L. Zeng, H. Jiang, W. Ruan, Q. Chen et al., Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries. Nat. Commun. 10(1), 3249 (2019). https://doi.org/10.1038/s41467-019-11168-y
S. Xu, K. Chen, N.P. Dasgupta, J.B. Siegel, A.G. Stefanopoulou, Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss. J. Electrochem. Soc. 166(14), A3456–A3463 (2019). https://doi.org/10.1149/2.0991914jes
J. Chen, Z. Cheng, Y. Liao, L. Yuan, Z. Li et al., Selection of redox mediators for reactivating dead li in lithium metal batteries. Adv. Energy Mater. 12(40), 2201800 (2022). https://doi.org/10.1002/aenm.202201800
J. Chen, B. He, Z. Cheng, Z. Rao, D. He et al., Reactivating dead Li by shuttle effect for high-performance anode-free Li metal batteries. J. Electrochem. Soc. 168(12), 120535 (2021). https://doi.org/10.1149/1945-7111/ac42a5
N. Piao, S. Liu, B. Zhang, X. Ji, X. Fan et al., Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes. ACS Energy Lett. 6(5), 1839–1848 (2021). https://doi.org/10.1021/acsenergylett.1c00365
Q. Liu, Y. Xu, J. Wang, B. Zhao, Z. Li et al., Sustained-release nanocapsules enable long-lasting stabilization of Li anode for practical Li-metal batteries. Nano-Micro Lett. 12(1), 176 (2020). https://doi.org/10.1007/s40820-020-00514-1
C. Zhu, C. Sun, R. Li, S. Weng, L. Fan et al., Anion–diluent pairing for stable high-energy Li metal batteries. ACS Energy Lett. 7(4), 1338–1347 (2022). https://doi.org/10.1021/acsenergylett.2c00232
Y. Huang, R. Li, S. Weng, H. Zhang, C. Zhu et al., Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ. Sci. 15(10), 4349–4361 (2022). https://doi.org/10.1039/d2ee01756c
Y. Yang, D.M. Davies, Y. Yin, O. Borodin, J.Z. Lee et al., High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 3(8), 1986–2000 (2019). https://doi.org/10.1016/j.joule.2019.06.008
Z. Wang, Y. Wang, B. Li, J.C. Bouwer, K. Davey et al., Non-flammable ester electrolyte with boosted stability against Li for high-performance Li metal batteries. Angew. Chem. Int. Ed. 61(41), e202206682 (2022). https://doi.org/10.1002/anie.202206682
Y. Yao, X. Chen, C. Yan, X. Zhang, W. Cai et al., Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60(8), 4090–4097 (2021). https://doi.org/10.1002/anie.202011482
J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614(7949), 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
X. Ren, P. Gao, L. Zou, S. Jiao, X. Cao et al., Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. Proc. Natl. Acad. Sci. U.S.A. 117(46), 28603–28613 (2020). https://doi.org/10.1073/pnas.2010852117
X. Cao, P. Gao, X. Ren, L. Zou, M.H. Engelhard et al., Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proc. Natl. Acad. Sci. U.S.A. (2021). https://doi.org/10.1073/pnas.2020357118
C.-C. Su, M. He, M. Cai, J. Shi, R. Amine et al., Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries. Nano Energy 92, 106720 (2022). https://doi.org/10.1016/j.nanoen.2021.106720
S. Zhang, R. Li, N. Hu, T. Deng, S. Weng et al., Tackling realistic Li+ flux for high-energy lithium metal batteries. Nat. Commun. 13, 5431 (2022). https://doi.org/10.1038/s41467-022-33151-w
G. Park, K. Lee, D.-J. Yoo, J.W. Choi, Strategy for stable interface in lithium metal batteries: free solvent derived vs anion derived. ACS Energy Lett. 7(12), 4274–4281 (2022). https://doi.org/10.1021/acsenergylett.2c02399
G. Yang, Y. Li, S. Liu, S. Zhang, Z. Wang et al., LiFSI to improve lithium deposition in carbonate electrolyte. Energy Storage Mater. 23, 350–357 (2019). https://doi.org/10.1016/j.ensm.2019.04.041
Y. Xiao, B. Han, Y. Zeng, S. Chi, X. Zeng et al., New lithium salt forms interphases suppressing both Li dendrite and polysulfide shuttling. Adv. Energy Mater. 10(14), 1903937 (2020). https://doi.org/10.1002/aenm.201903937
S. Jurng, Z.L. Brown, J. Kim, B.L. Lucht, Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy Environ. Sci. 11(9), 2600–2608 (2018). https://doi.org/10.1039/c8ee00364e
L. Qiao, U. Oteo, M. Martinez-Ibanez, A. Santiago, R. Cid et al., Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat. Mater. 21(4), 455–462 (2022). https://doi.org/10.1038/s41563-021-01190-1
B.D. Adams, J. Zheng, X. Ren, W. Xu, J. Zhang, Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8(7), 1702097 (2017). https://doi.org/10.1002/aenm.201702097
X. Zheng, L. Huang, W. Luo, H. Wang, Y. Dai et al., Tailoring electrolyte solvation chemistry toward an inorganic-rich solid-electrolyte interphase at a Li metal anode. ACS Energy Lett. 6(6), 2054–2063 (2021). https://doi.org/10.1021/acsenergylett.1c00647
X. Ren, L. Zou, X. Cao, M.H. Engelhard, W. Liu et al., Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3(7), 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006
X. Ren, L. Zou, S. Jiao, D. Mei, M.H. Engelhard et al., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Lett. 4(4), 896–902 (2019). https://doi.org/10.1021/acsenergylett.9b00381
Y. Chen, Z. Yu, P. Rudnicki, H. Gong, Z. Huang et al., Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143(44), 18703–18713 (2021). https://doi.org/10.1021/jacs.1c09006
Z. Wu, R. Li, S. Zhang, L. Lv, T. Deng et al., Deciphering and modulating energetics of solvation structure enables aggressive high-voltage chemistry of Li metal batteries. Chem 9(3), 650–664 (2023). https://doi.org/10.1016/j.chempr.2022.10.027
J. Ding, R. Xu, X. Ma, Y. Xiao, Y. Yao et al., Quantification of the dynamic interface evolution in high-efficiency working Li-metal batteries. Angew. Chem. Int. Ed. 61(13), e202115602 (2022). https://doi.org/10.1002/anie.202115602
Z. Zhu, Z. Liu, R. Zhao, X. Qi, J. Ji et al., Heterogeneous nitride interface enabled by stepwise-reduction electrolyte design for dense Li deposition in carbonate electrolytes. Adv. Funct. Mater. 32(48), 2209384 (2022). https://doi.org/10.1002/adfm.202209384
X. Zhang, X. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27(10), 1605989 (2017). https://doi.org/10.1002/adfm.201605989
X. Zheng, S. Weng, W. Luo, B. Chen, X. Zhang et al., Deciphering the role of fluoroethylene carbonate towards highly reversible sodium metal anodes. Research 2022, 9754612 (2022). https://doi.org/10.34133/2022/9754612
S. Liu, J. Xia, W. Zhang, H. Wan, J. Zhang et al., Salt-in-salt reinforced carbonate electrolyte for Li metal batteries. Angew. Chem. Int. Ed. 61(43), e202210522 (2022). https://doi.org/10.1002/anie.202210522