Post-Synthetic and In Situ Vacancy Repairing of Iron Hexacyanoferrate Toward Highly Stable Cathodes for Sodium-Ion Batteries
Corresponding Author: Yunhui Huang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 9
Abstract
Iron hexacyanoferrate (FeHCF) is a promising cathode material for sodium-ion batteries. However, FeHCF always suffers from a poor cycling stability, which is closely related to the abundant vacancy defects in its framework. Herein, post-synthetic and in-situ vacancy repairing strategies are proposed for the synthesis of high-quality FeHCF in a highly concentrated Na4Fe(CN)6 solution. Both the post-synthetic and in-situ vacancy repaired FeHCF products (FeHCF-P and FeHCF-I) show the significant decrease in the number of vacancy defects and the reinforced structure, which can suppress the side reactions and activate the capacity from low-spin Fe in FeHCF. In particular, FeHCF-P delivers a reversible discharge capacity of 131 mAh g−1 at 1 C and remains 109 mAh g−1 after 500 cycles, with a capacity retention of 83%. FeHCF-I can deliver a high discharge capacity of 158.5 mAh g−1 at 1 C. Even at 10 C, the FeHCF-I electrode still maintains a discharge specific capacity of 103 mAh g−1 and retains 75% after 800 cycles. This work provides a new vacancy repairing strategy for the solution synthesis of high-quality FeHCF.
Highlights:
1 Post-synthetic and in-situ vacancy repairing strategies effectively decrease the defects in FeHCF.
2 Vacancy reduction improves the structure and cycling stability of FeHCF.
3 Vacancy reduction boosts the capacity contribution from low-spin Fe in FeHCF.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
- B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 16(4), 168–177 (2012). https://doi.org/10.1016/j.cossms.2012.04.002
- I. Hasa, S. Mariyappan, D. Saurel, P. Adelhelm, A.Y. Koposov et al., Challenges of today for Na-based batteries of the future: from materials to cell metrics. J. Power Sour. 482, 228872 (2021). https://doi.org/10.1016/j.jpowsour.2020.228872
- V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J.C. Gonzalez et al., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
- H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
- H. Lee, Y.I. Kim, J.K. Park, J.W. Choi, Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem. Commun. 48(67), 8416–8418 (2012). https://doi.org/10.1039/c2cc33771a
- H.W. Lee, R. Wang, M. Pasta, S.W. Lee, N. Liu et al., Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 5, 5280 (2014). https://doi.org/10.1038/ncomms6280
- K. Hurlbutt, S. Wheeler, I. Capone, M. Pasta, Prussian blue analogs as battery materials. Joule 2(10), 1950–1960 (2018). https://doi.org/10.1016/j.joule.2018.07.017
- Z. Shen, S. Guo, C. Liu, Y. Sun, Z. Chen et al., Na-rich Prussian white cathodes for long-life sodium-ion batteries. ACS Sustain. Chem. Eng. 6(12), 16121–16129 (2018). https://doi.org/10.1021/acssuschemeng.8b02758
- M. Chen, S.L. Chou, S.X. Dou, Understanding challenges of cathode materials for sodium-ion batteries using synchrotron-based X-ray absorption spectroscopy. Batteries Supercaps 2(10), 842–851 (2019). https://doi.org/10.1002/batt.201900054
- J. Li, Y. Zan, Z. Zhang, M. Dou, F. Wang, Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium. J. Hazard. Mater. 385, 121568 (2020). https://doi.org/10.1016/j.jhazmat.2019.121568
- A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie et al., Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 11(2), 2000943 (2020). https://doi.org/10.1002/aenm.202000943
- M. Qin, W. Ren, R. Jiang, Q. Li, X. Yao et al., Highly crystallized Prussian blue with enhanced kinetics for highly efficient sodium storage. ACS Appl. Mater. Interfaces 13(3), 3999–4007 (2021). https://doi.org/10.1021/acsami.0c20067
- W. Gong, M. Wan, R. Zeng, Z. Rao, S. Su et al., Ultrafine Prussian blue as a high-rate and long-life sodium-ion battery cathode. Energy Tech. 7(7), 1900108 (2019). https://doi.org/10.1002/ente.201900108
- W. Ren, Z. Zhu, M. Qin, S. Chen, X. Yao et al., Prussian white hierarchical nanotubes with surface-controlled charge storage for sodium-ion batteries. Adv. Funct. Mater. 29(15), 1806405 (2019). https://doi.org/10.1002/adfm.201806405
- J. Peng, M. Ou, H. Yi, X. Sun, Y. Zhang et al., Defect-free-induced Na+ disordering in electrode materials. Energy Environ. Sci. 14(5), 3130–3140 (2021). https://doi.org/10.1039/d1ee00087j
- Y. You, X. Wu, Y. Yin, Y. Guo, High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7(5), 1643–1647 (2014). https://doi.org/10.1039/c3ee44004d
- L. Wang, J. Song, R. Qiao, L.A. Wray, M.A. Hossain et al., Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 137(7), 2548–2554 (2015). https://doi.org/10.1021/ja510347s
- Y. Liu, Y. Qiao, W. Zhang, Z. Li, X. Ji et al., Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy 12, 386–393 (2015). https://doi.org/10.1016/j.nanoen.2015.01.012
- C. Yan, A. Zhao, F. Zhong, X. Feng, W. Chen et al., A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. Electrochim. Acta 332, 135533 (2020). https://doi.org/10.1016/j.electacta.2019.135533
- W. Wang, Z. Hu, Z. Yan, J. Peng, M. Chen et al., Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery. Energy Stor. Mater. 30, 42–51 (2020). https://doi.org/10.1016/j.ensm.2020.04.027
- J. Song, L. Wang, Y. Lu, J. Liu, B. Guo et al., Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137(7), 2658–2664 (2015). https://doi.org/10.1021/ja512383b
- W. Tang, F. Peng, Y. Yang, F. Feng, X.Z. Liao et al., Electrochemical performance of NaFeFe(CN)6 prepared by solid reaction for sodium ion batteries. J. Electrochem. Soc. 165(16), A3910–A3917 (2019). https://doi.org/10.1149/2.0701816jes
- J. Cattermull, S. Wheeler, K. Hurlbutt, M. Pasta, A.L. Goodwin, Filling vacancies in a Prussian blue analogue using mechanochemical post-synthetic modification. Chem. Commun. 56(57), 7873–7876 (2020). https://doi.org/10.1039/d0cc02922j
- M. Wan, Y. Tang, L. Wang, X. Xiang, X. Li et al., Core-shell hexacyanoferrate for superior Na-ion batteries. J. Power Sour. 329, 290–296 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.059
- S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert et al., First principles methods using CASTEP. Z. Kristallogr. 220(5–6), 567–570 (2015). https://doi.org/10.1524/zkri.220.5.567.65075
- H. Dodziuk, Reply to the ‘Comment on ‘Modelling complexes of H2 molecules in fullerenes’ by H. Dodziuk [Chem. Phys. Lett. 410 (2005) 39]’ by L. Turker and S. Erkoc. Chem. Phys. Lett. 426(1–3): 224–225 (2006). https://doi.org/10.1016/j.cplett.2006.05.054
- Y. Ren, T.Y. Ng, K.M. Liew, State of hydrogen molecules confined in C60 fullerene and carbon nanocapsule structures. Carbon 44(3), 397–406 (2006). https://doi.org/10.1016/j.carbon.2005.09.009
- B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, Relaxation of crystals with the Quasi-Newton method. J. Comput. Phys. 131(1), 233–240 (1997). https://doi.org/10.1006/jcph.1996.5612
- Z. Xing, S. Liu, G. Zhang, Y. Zou, L. Wang et al., Na-rich metal hexacyanoferrate with water-mediated room-temperature fast Na+-ion conductance. Microporous Mesoporous Mater. 292, 109715 (2020). https://doi.org/10.1016/j.micromeso.2019.109715
- M. Luo, Y. Dou, H. Kang, Y. Ma, X. Ding et al., A novel interlocked Prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes. J. Solid State Electr. 19(6), 1621–1631 (2015). https://doi.org/10.1007/s10008-015-2785-z
- Y. Tang, W. Li, P. Feng, M. Zhou, K. Wang et al., High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv. Funct. Mater. 30(10), 1908754 (2020). https://doi.org/10.1002/adfm.201908754
- Y. Huang, M. Xie, J. Zhang, Z. Wang, Y. Jiang et al., A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy 39, 273–283 (2017). https://doi.org/10.1016/j.nanoen.2017.07.005
- Y. Jiang, S. Yu, B. Wang, Y. Li, W. Sun et al., Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 26(29), 5315–5321 (2016). https://doi.org/10.1002/adfm.201600747
- D.S. Kim, H. Yoo, M.S. Park, H. Kim, Boosting the sodium storage capability of Prussian blue nanocubes by overlaying PEDOT PSS layer. J. Alloys Compd. 791, 385–390 (2019). https://doi.org/10.1016/j.jallcom.2019.03.317
- X. Ma, Y. Wei, Y. Wu, J. Wang, W. Jia et al., High crystalline Na2Ni[Fe(CN)6] particles for a high-stability and low-temperature sodium-ion batteries cathode. Electrochim. Acta 297, 392–397 (2019). https://doi.org/10.1016/j.electacta.2018.11.063
- Y. Liu, D. He, Y. Cheng, L. Li, Z. Lu et al., A heterostructure coupling of bioinspired, adhesive polydopamine, and porous Prussian blue nanocubics as cathode for high-performance sodium-ion battery. Small 16(11), 1906946 (2020). https://doi.org/10.1002/smll.201906946
References
M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a
B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 16(4), 168–177 (2012). https://doi.org/10.1016/j.cossms.2012.04.002
I. Hasa, S. Mariyappan, D. Saurel, P. Adelhelm, A.Y. Koposov et al., Challenges of today for Na-based batteries of the future: from materials to cell metrics. J. Power Sour. 482, 228872 (2021). https://doi.org/10.1016/j.jpowsour.2020.228872
V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J.C. Gonzalez et al., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
H. Kim, J. Hong, K.Y. Park, H. Kim, S.W. Kim et al., Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
H. Lee, Y.I. Kim, J.K. Park, J.W. Choi, Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem. Commun. 48(67), 8416–8418 (2012). https://doi.org/10.1039/c2cc33771a
H.W. Lee, R. Wang, M. Pasta, S.W. Lee, N. Liu et al., Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries. Nat. Commun. 5, 5280 (2014). https://doi.org/10.1038/ncomms6280
K. Hurlbutt, S. Wheeler, I. Capone, M. Pasta, Prussian blue analogs as battery materials. Joule 2(10), 1950–1960 (2018). https://doi.org/10.1016/j.joule.2018.07.017
Z. Shen, S. Guo, C. Liu, Y. Sun, Z. Chen et al., Na-rich Prussian white cathodes for long-life sodium-ion batteries. ACS Sustain. Chem. Eng. 6(12), 16121–16129 (2018). https://doi.org/10.1021/acssuschemeng.8b02758
M. Chen, S.L. Chou, S.X. Dou, Understanding challenges of cathode materials for sodium-ion batteries using synchrotron-based X-ray absorption spectroscopy. Batteries Supercaps 2(10), 842–851 (2019). https://doi.org/10.1002/batt.201900054
J. Li, Y. Zan, Z. Zhang, M. Dou, F. Wang, Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium. J. Hazard. Mater. 385, 121568 (2020). https://doi.org/10.1016/j.jhazmat.2019.121568
A. Zhou, W. Cheng, W. Wang, Q. Zhao, J. Xie et al., Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 11(2), 2000943 (2020). https://doi.org/10.1002/aenm.202000943
M. Qin, W. Ren, R. Jiang, Q. Li, X. Yao et al., Highly crystallized Prussian blue with enhanced kinetics for highly efficient sodium storage. ACS Appl. Mater. Interfaces 13(3), 3999–4007 (2021). https://doi.org/10.1021/acsami.0c20067
W. Gong, M. Wan, R. Zeng, Z. Rao, S. Su et al., Ultrafine Prussian blue as a high-rate and long-life sodium-ion battery cathode. Energy Tech. 7(7), 1900108 (2019). https://doi.org/10.1002/ente.201900108
W. Ren, Z. Zhu, M. Qin, S. Chen, X. Yao et al., Prussian white hierarchical nanotubes with surface-controlled charge storage for sodium-ion batteries. Adv. Funct. Mater. 29(15), 1806405 (2019). https://doi.org/10.1002/adfm.201806405
J. Peng, M. Ou, H. Yi, X. Sun, Y. Zhang et al., Defect-free-induced Na+ disordering in electrode materials. Energy Environ. Sci. 14(5), 3130–3140 (2021). https://doi.org/10.1039/d1ee00087j
Y. You, X. Wu, Y. Yin, Y. Guo, High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 7(5), 1643–1647 (2014). https://doi.org/10.1039/c3ee44004d
L. Wang, J. Song, R. Qiao, L.A. Wray, M.A. Hossain et al., Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J. Am. Chem. Soc. 137(7), 2548–2554 (2015). https://doi.org/10.1021/ja510347s
Y. Liu, Y. Qiao, W. Zhang, Z. Li, X. Ji et al., Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy 12, 386–393 (2015). https://doi.org/10.1016/j.nanoen.2015.01.012
C. Yan, A. Zhao, F. Zhong, X. Feng, W. Chen et al., A low-defect and Na-enriched Prussian blue lattice with ultralong cycle life for sodium-ion battery cathode. Electrochim. Acta 332, 135533 (2020). https://doi.org/10.1016/j.electacta.2019.135533
W. Wang, Z. Hu, Z. Yan, J. Peng, M. Chen et al., Understanding rhombohedral iron hexacyanoferrate with three different sodium positions for high power and long stability sodium-ion battery. Energy Stor. Mater. 30, 42–51 (2020). https://doi.org/10.1016/j.ensm.2020.04.027
J. Song, L. Wang, Y. Lu, J. Liu, B. Guo et al., Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J. Am. Chem. Soc. 137(7), 2658–2664 (2015). https://doi.org/10.1021/ja512383b
W. Tang, F. Peng, Y. Yang, F. Feng, X.Z. Liao et al., Electrochemical performance of NaFeFe(CN)6 prepared by solid reaction for sodium ion batteries. J. Electrochem. Soc. 165(16), A3910–A3917 (2019). https://doi.org/10.1149/2.0701816jes
J. Cattermull, S. Wheeler, K. Hurlbutt, M. Pasta, A.L. Goodwin, Filling vacancies in a Prussian blue analogue using mechanochemical post-synthetic modification. Chem. Commun. 56(57), 7873–7876 (2020). https://doi.org/10.1039/d0cc02922j
M. Wan, Y. Tang, L. Wang, X. Xiang, X. Li et al., Core-shell hexacyanoferrate for superior Na-ion batteries. J. Power Sour. 329, 290–296 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.059
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert et al., First principles methods using CASTEP. Z. Kristallogr. 220(5–6), 567–570 (2015). https://doi.org/10.1524/zkri.220.5.567.65075
H. Dodziuk, Reply to the ‘Comment on ‘Modelling complexes of H2 molecules in fullerenes’ by H. Dodziuk [Chem. Phys. Lett. 410 (2005) 39]’ by L. Turker and S. Erkoc. Chem. Phys. Lett. 426(1–3): 224–225 (2006). https://doi.org/10.1016/j.cplett.2006.05.054
Y. Ren, T.Y. Ng, K.M. Liew, State of hydrogen molecules confined in C60 fullerene and carbon nanocapsule structures. Carbon 44(3), 397–406 (2006). https://doi.org/10.1016/j.carbon.2005.09.009
B.G. Pfrommer, M. Cote, S.G. Louie, M.L. Cohen, Relaxation of crystals with the Quasi-Newton method. J. Comput. Phys. 131(1), 233–240 (1997). https://doi.org/10.1006/jcph.1996.5612
Z. Xing, S. Liu, G. Zhang, Y. Zou, L. Wang et al., Na-rich metal hexacyanoferrate with water-mediated room-temperature fast Na+-ion conductance. Microporous Mesoporous Mater. 292, 109715 (2020). https://doi.org/10.1016/j.micromeso.2019.109715
M. Luo, Y. Dou, H. Kang, Y. Ma, X. Ding et al., A novel interlocked Prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes. J. Solid State Electr. 19(6), 1621–1631 (2015). https://doi.org/10.1007/s10008-015-2785-z
Y. Tang, W. Li, P. Feng, M. Zhou, K. Wang et al., High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv. Funct. Mater. 30(10), 1908754 (2020). https://doi.org/10.1002/adfm.201908754
Y. Huang, M. Xie, J. Zhang, Z. Wang, Y. Jiang et al., A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy 39, 273–283 (2017). https://doi.org/10.1016/j.nanoen.2017.07.005
Y. Jiang, S. Yu, B. Wang, Y. Li, W. Sun et al., Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode. Adv. Funct. Mater. 26(29), 5315–5321 (2016). https://doi.org/10.1002/adfm.201600747
D.S. Kim, H. Yoo, M.S. Park, H. Kim, Boosting the sodium storage capability of Prussian blue nanocubes by overlaying PEDOT PSS layer. J. Alloys Compd. 791, 385–390 (2019). https://doi.org/10.1016/j.jallcom.2019.03.317
X. Ma, Y. Wei, Y. Wu, J. Wang, W. Jia et al., High crystalline Na2Ni[Fe(CN)6] particles for a high-stability and low-temperature sodium-ion batteries cathode. Electrochim. Acta 297, 392–397 (2019). https://doi.org/10.1016/j.electacta.2018.11.063
Y. Liu, D. He, Y. Cheng, L. Li, Z. Lu et al., A heterostructure coupling of bioinspired, adhesive polydopamine, and porous Prussian blue nanocubics as cathode for high-performance sodium-ion battery. Small 16(11), 1906946 (2020). https://doi.org/10.1002/smll.201906946