Inhibiting Voltage Decay in Li-Rich Layered Oxide Cathode: From O3-Type to O2-Type Structural Design
Corresponding Author: Yunhui Huang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 260
Abstract
Li-rich layered oxide (LRLO) cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density, which combines cationic and anionic redox activities. However, continuous voltage decay during cycling remains the primary obstacle for practical applications, which has yet to be fundamentally addressed. It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions, which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions. Recently, constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay. In this review, the relationship between voltage decay and structural evolution is systematically elucidated. Strategies to suppress voltage decay are systematically summarized. Additionally, the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed. Unfortunately, the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles. Herein, the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored, while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.
Highlights:
1 This review systematically compares the different effects of O2-type and O3-type structures on voltage decay for Li-rich layered oxide (LRLO) cathode.
2 The development of O2-type materials and the corresponding mechanisms for addressing voltage decay are comprehensively reviewed.
3 The perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Eum, B. Kim, S.J. Kim, H. Park, J. Wu et al., Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020). https://doi.org/10.1038/s41563-019-0572-4
- M. Zhang, D.A. Kitchaev, Z. Lebens-Higgins, J. Vinckeviciute, M. Zuba et al., Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 7, 522–540 (2022). https://doi.org/10.1038/s41578-022-00416-1
- W.-J. Kong, C.-Z. Zhao, S. Sun, L. Shen, X.-Y. Huang et al., From liquid to solid-state batteries: Li-rich Mn-based layered oxides as emerging cathodes with high energy density. Adv. Mater. 36, 2310738 (2024). https://doi.org/10.1002/adma.202310738
- S.-L. Cui, M.-Y. Gao, G.-R. Li, X.-P. Gao, Insights into Li-rich Mn-based cathode materials with high capacity: from dimension to lattice to atom. Adv. Energy Mater. 12, 2003885 (2022). https://doi.org/10.1002/aenm.202003885
- H. Zhang, H. Liu, L.F.J. Piper, M.S. Whittingham, G. Zhou, Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation. Chem. Rev. 122, 5641–5681 (2022). https://doi.org/10.1021/acs.chemrev.1c00327
- T. Liu, J. Liu, L. Li, L. Yu, J. Diao et al., Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022). https://doi.org/10.1038/s41586-022-04689-y
- W. Yin, A. Grimaud, G. Rousse, A.M. Abakumov, A. Senyshyn et al., Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat. Commun. 11, 1252 (2020). https://doi.org/10.1038/s41467-020-14927-4
- P. Yan, J. Zheng, Z.-K. Tang, A. Devaraj, G. Chen et al., Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019). https://doi.org/10.1038/s41565-019-0428-8
- A. Boulineau, L. Simonin, J.-F. Colin, C. Bourbon, S. Patoux, First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 13, 3857–3863 (2013). https://doi.org/10.1021/nl4019275
- D. Mohanty, J. Li, D.P. Abraham, A. Huq, E.A. Payzant et al., Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem. Mater. 26, 6272–6280 (2014). https://doi.org/10.1021/cm5031415
- K. Kleiner, B. Strehle, A.R. Baker, S.J. Day, C.C. Tang et al., Origin of high capacity and poor cycling stability of Li-rich layered oxides: a long-duration in situ synchrotron powder diffraction study. Chem. Mater. 30, 3656–3667 (2018). https://doi.org/10.1021/acs.chemmater.8b00163
- Y.-H. Luo, Q.-L. Pan, H.-X. Wei, Y.-D. Huang, L.-B. Tang et al., Fundamentals of ion-exchange synthesis and its implications in layered oxide cathodes: recent advances and perspective. Adv. Energy Mater. 13, 2300125 (2023). https://doi.org/10.1002/aenm.202300125
- D. Luo, H. Zhu, Y. Xia, Z. Yin, Y. Qin et al., A Li-rich layered oxide cathode with negligible voltage decay. Nat. Energy 8, 1078–1087 (2023). https://doi.org/10.1038/s41560-023-01289-6
- D. Eum, H.-Y. Jang, B. Kim, J. Chung, D. Kim et al., Effects of cation superstructure ordering on oxygen redox stability in O2-type lithium-rich layered oxides. Energy Environ. Sci. 16, 673–686 (2023). https://doi.org/10.1039/D2EE03527H
- G. Assat, J.-M. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018). https://doi.org/10.1038/s41560-018-0097-0
- M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin et al., Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013). https://doi.org/10.1038/nmat3699
- M. Sathiya, J.-B. Leriche, E. Salager, D. Gourier, J.-M. Tarascon et al., Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 6, 6276 (2015). https://doi.org/10.1038/ncomms7276
- E. McCalla, A.M. Abakumov, M. Saubanère, D. Foix, E.J. Berg et al., Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015). https://doi.org/10.1126/science.aac8260
- K. Luo, M.R. Roberts, R. Hao, N. Guerrini, D.M. Pickup et al., Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016). https://doi.org/10.1038/nchem.2471
- D.-H. Seo, J. Lee, A. Urban, R. Malik, S. Kang et al., The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016). https://doi.org/10.1038/nchem.2524
- W.E. Gent, K. Lim, Y. Liang, Q. Li, T. Barnes et al., Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017). https://doi.org/10.1038/s41467-017-02041-x
- J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z
- J. Zaanen, G.A. Sawatzky, J.W. Allen, Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985). https://doi.org/10.1103/physrevlett.55.418
- Y. Xie, M. Saubanère, M.-L. Doublet, Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017). https://doi.org/10.1039/C6EE02328B
- B. Strehle, K. Kleiner, R. Jung, F. Chesneau, M. Mendez et al., The role of oxygen release from Li- and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 164, A400–A406 (2017). https://doi.org/10.1149/2.1001702jes
- D.A. Kitchaev, J. Vinckeviciute, A. Van der Ven, Delocalized metal-oxygen π-redox is the origin of anomalous nonhysteretic capacity in Li-ion and Na-ion cathode materials. J. Am. Chem. Soc. 143, 1908–1916 (2021). https://doi.org/10.1021/jacs.0c10704
- M. Sathiya, A.M. Abakumov, D. Foix, G. Rousse, K. Ramesha et al., Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015). https://doi.org/10.1038/nmat4137
- L. Zeng, H. Liang, B. Qiu, Z. Shi, S. Cheng et al., Voltage decay of Li-rich layered oxides: mechanism, modification strategies, and perspectives. Adv. Funct. Mater. 33, 2370151 (2023). https://doi.org/10.1002/adfm.202370151
- S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 60, 2208–2220 (2021). https://doi.org/10.1002/anie.202000262
- M.M. Rahman, F. Lin, Oxygen redox chemistry in rechargeable Li-ion and Na-ion batteries. Matter 4, 490–527 (2021). https://doi.org/10.1016/j.matt.2020.12.004
- A. Singer, M. Zhang, S. Hy, D. Cela, C. Fang et al., Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018). https://doi.org/10.1038/s41560-018-0184-2
- E. Hu, X. Yu, R. Lin, X. Bi, J. Lu et al., Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018). https://doi.org/10.1038/s41560-018-0207-z
- P.M. Csernica, S.S. Kalirai, W.E. Gent, K. Lim, Y.-S. Yu et al., Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat. Energy 6, 642–652 (2021). https://doi.org/10.1038/s41560-021-00832-7
- M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao et al., Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2013). https://doi.org/10.1021/nn305065u
- N. Tran, L. Croguennec, M. Ménétrier, F. Weill, P. Biensan et al., Mechanisms associated with the “plateau” observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0425Co0.15)0.88O2 system. Chem. Mater. 20, 4815–4825 (2008). https://doi.org/10.1021/cm070435m
- M.T. Greiner, M.G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu et al., Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 11, 76–81 (2012). https://doi.org/10.1038/nmat3159
- H. Bai, K. Yuan, C. Zhang, W. Zhang, X. Tang et al., Advantageous surface engineering to boost single-crystal quaternary cathodes for high-energy-density lithium-ion batteries. Energy Storage Mater. 61, 102879 (2023). https://doi.org/10.1016/j.ensm.2023.102879
- F. Zheng, C. Yang, X. Xiong, J. Xiong, R. Hu et al., Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem. Int. Ed. Engl. 54, 13058–13062 (2015). https://doi.org/10.1002/anie.201506408
- Y. Zhao, J. Liu, S. Wang, R. Ji, Q. Xia et al., Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: implications for enhanced electrochemical performance. Adv. Funct. Mater. 26, 4760–4767 (2016). https://doi.org/10.1002/adfm.201600576
- J. Yang, P. Li, F. Zhong, X. Feng, W. Chen et al., Suppressing voltage fading of Li-rich oxide cathode via building a well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Li-ion batteries. Adv. Energy Mater. 10, 1904264 (2020). https://doi.org/10.1002/aenm.201904264
- S. Zhang, H. Gu, H. Pan, S. Yang, W. Du et al., A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Adv. Energy Mater. 7, 1601066 (2017). https://doi.org/10.1002/aenm.201601066
- G. Zhang, B. Qiu, Y. Xia, X. Wang, Q. Gu et al., Double-helix-superstructure aqueous binder to boost excellent electrochemical performance in Li-rich layered oxide cathode. J. Power. Sources 420, 29–37 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.086
- C. Yin, X. Wen, L. Wan, Z. Shi, Z. Wei et al., Surface reinforcement doping to suppress oxygen release of Li-rich layered oxides. J. Power. Sources 503, 230048 (2021). https://doi.org/10.1016/j.jpowsour.2021.230048
- S. Liu, Z. Liu, X. Shen, W. Li, Y. Gao et al., Surface doping to enhance structural integrity and performance of Li-rich layered oxide. Adv. Energy Mater. 8, 1802105 (2018). https://doi.org/10.1002/aenm.201802105
- D. Luo, J. Cui, B. Zhang, J. Fan, P. Liu et al., Ti-based surface integrated layer and bulk doping for stable voltage and long life of Li-rich layered cathodes. Adv. Funct. Mater. 31, 2009310 (2021). https://doi.org/10.1002/adfm.202009310
- D. Luo, H. Xie, F. Tan, X. Ding, J. Cui et al., Scalable nitrate treatment for constructing integrated surface structures to mitigate capacity fading and voltage decay of Li-rich layered oxides. Angew. Chem. Int. Ed. 61, e202203698 (2022). https://doi.org/10.1002/anie.202203698
- D. Luo, X. Ding, X. Hao, H. Xie, J. Cui et al., Ni/Mn and Al dual concentration-gradients to mitigate voltage decay and capacity fading of Li-rich layered cathodes. ACS Energy Lett. 6, 2755–2764 (2021). https://doi.org/10.1021/acsenergylett.1c01215
- H. Guo, Z. Wei, K. Jia, B. Qiu, C. Yin et al., Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater. 16, 220–227 (2019). https://doi.org/10.1016/j.ensm.2018.05.022
- F. Ning, B. Li, J. Song, Y. Zuo, H. Shang et al., Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability. Nat. Commun. 11, 4973 (2020). https://doi.org/10.1038/s41467-020-18423-7
- B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia et al., Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016). https://doi.org/10.1038/ncomms12108
- J. Zhang, Q. Zhang, D. Wong, N. Zhang, G. Ren et al., Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nat. Commun. 12, 3071 (2021). https://doi.org/10.1038/s41467-021-23365-9
- X. Cao, H. Li, Y. Qiao, M. Jia, X. Li et al., Stabilizing anionic redox chemistry in a Mn-based layered oxide cathode constructed by Li-deficient pristine state. Adv. Mater. 33, e2004280 (2021). https://doi.org/10.1002/adma.202004280
- C. Delmas, J.-J. Braconnier, P. Hagenmuller, A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction. Mater. Res. Bull. 17, 117–123 (1982). https://doi.org/10.1016/0025-5408(82)90192-1
- A. Mendiboure, C. Delmas, P. Hagenmuller, New layered structure obtained by electrochemical deintercalation of the metastable LiCoO2 (O2) variety. Mater. Res. Bull. 19, 1383–1392 (1984). https://doi.org/10.1016/0025-5408(84)90204-6
- D. Carlier, On the metastable O2-type LiCoO2. Solid State Ion. 144, 263–276 (2001). https://doi.org/10.1016/s0167-2738(01)00982-1
- D. Carlier, A. Van der Ven, C. Delmas, G. Ceder, First-principles investigation of phase stability in the O2-LiCoO2 system. Chem. Mater. 15, 2651–2660 (2003). https://doi.org/10.1021/cm030002t
- F. Tournadre, L. Croguennec, P. Willmann, C. Delmas, On the mechanism of the P2-Na0.70CoO2 → O2-LiCoO2 exchange reaction: Part II: an in situ X-ray diffraction study. J. Solid State Chem. 177, 2803–2809 (2004). https://doi.org/10.1016/j.jssc.2004.04.028
- S. Komaba, L. Croguennec, F. Tournadre, P. Willmann, C. Delmas, Thermal behavior of the layered oxide Li2/3Co2/3Mn1/3O2 obtained by ion exchange from the P2-type Na2/3Co2/3Mn1/3O2 phase. J. Phys. Chem. C 117, 3264–3271 (2013). https://doi.org/10.1021/jp310417q
- L. Xue, C. Wang, H. Liu, H. Li, T. Chen et al., Stabilizing layered structure in aqueous electrolyte via O2-type oxygen stacking. Adv. Sci. 9, 2202194 (2022). https://doi.org/10.1002/advs.202202194
- A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996). https://doi.org/10.1038/381499a0
- Y. Shao-Horn, S.A. Hackney, A.R. Armstrong, P.G. Bruce, R. Gitzendanner et al., Structural characterization of layered LiMnO2 electrodes by electron diffraction and lattice imaging. J. Electrochem. Soc. 146, 2404–2412 (1999). https://doi.org/10.1149/1.1391949
- A.R. Armstrong, A.D. Robertson, R. Gitzendanner, P.G. Bruce, The layered intercalation compounds Li(Mn1−yCoy)O2: positive electrode materials for lithium–ion batteries. J. Solid State Chem. 145, 549–556 (1999). https://doi.org/10.1006/jssc.1999.8216
- P.G. Bruce, A.R. Armstrong, R.L. Gitzendanner, New intercalation compounds for lithium batteries: layered LiMnO2. J. Mater. Chem. 9, 193–198 (1999). https://doi.org/10.1039/A803938K
- A.D. Robertson, A.R. Armstrong, A.J. Fowkes, P.G. Bruce, Lix(Mn1−yCoy)O2 intercalation compounds as electrodes for lithium batteries: influence of ion exchange on structure and performance. J. Mater. Chem. 11, 113–118 (2001). https://doi.org/10.1039/B002948N
- J.M. Paulsen, C.L. Thomas, J.R. Dahn, Layered Li-Mn-oxide with the O2 structure: a cathode material for Li-ion cells which does not convert to spinel. J. Electrochem. Soc. 146, 3560–3565 (1999). https://doi.org/10.1149/1.1392514
- J.M. Paulsen, J.R. Dahn, Studies of the layered manganese bronzes, Na2/3[Mn1−xMx]O2 with M = Co, Ni, Li, and Li2/3[Mn1−xMx]O2 prepared by ion-exchange. Solid State Ion. 126, 3–24 (1999). https://doi.org/10.1016/S0167-2738(99)00147-2
- J.M. Paulsen, D. Larcher, J.R. Dahn, O2 structure Li2/3[Ni1/3Mn2/3]O2: a new layered cathode material for rechargeable lithium batteries III. ion exchange. J. Electrochem. Soc. 147, 2862 (2000). https://doi.org/10.1149/1.1393617
- J.M. Paulsen, J.R. Dahn, O2-type Li2/3[Ni1/3Mn2/3]O2: a new layered cathode material for rechargeable lithium batteries II. structure, composition, and properties. J. Electrochem. Soc. 147, 2478 (2000). https://doi.org/10.1149/1.1393556
- Z. Lu, J.R. Dahn, Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3–xMn2/3]O2. Chem. Mater. 13, 1252–1257 (2001). https://doi.org/10.1021/cm000721x
- Z. Lu, J.R. Dahn, The effect of co substitution for Ni on the structure and electrochemical behavior of T2 and O2 structure Li2/3[CoxNi1/3–xMn2/3]O2. J. Electrochem. Soc. 148, A237 (2001). https://doi.org/10.1149/1.1350016
- C. Delmas, C. Fouassier, P. Hagenmuller, Structural classification and properties of the layered oxides. Phys. B+C 99, 81–85 (1980). https://doi.org/10.1016/0378-4363(80)90214-4
- J. Feng, Y.-S. Jiang, F.-D. Yu, W. Ke, L.-F. Que et al., Understanding Li roles in chemical reversibility of O2-type Li-rich layered cathode materials. J. Energy Chem. 66, 666–675 (2022). https://doi.org/10.1016/j.jechem.2021.08.064
- V. Saïbi, L. Castro, I. Sugiyama, S. Belin, C. Delmas et al., Stacking faults in an O2-type cobalt-free lithium-rich layered oxide: mechanisms of the ion exchange reaction and lithium electrochemical (de)intercalation. Chem. Mater. 35, 8540–8550 (2023). https://doi.org/10.1021/acs.chemmater.3c01426
- W. Hua, S. Wang, K. Wang, A. Missyul, Q. Fu et al., Li+/Na+ ion exchange in layered Na2/3(Ni0.25Mn0.75)O2: a simple and fast way to synthesize O3/O2-type layered oxides. Chem. Mater. 33, 5606–5617 (2021). https://doi.org/10.1021/acs.chemmater.1c00962
- C. Heubner, T. Lein, M. Schneider, A. Michaelis, Intercalation materials for secondary batteries based on alkali metal exchange: developments and perspectives. J. Mater. Chem. A 8, 16854–16883 (2020). https://doi.org/10.1039/D0TA03115A
- N. Li, S. Hwang, M. Sun, Y. Fu, V.S. Battaglia et al., Unraveling the voltage decay phenomenon in Li-rich layered oxide cathode of no oxygen activity. Adv. Energy Mater. 9, 1902258 (2019). https://doi.org/10.1002/aenm.201902258
- K. Ku, J. Hong, H. Kim, H. Park, W.M. Seong et al., Suppression of voltage decay through manganese deactivation and nickel redox buffering in high-energy layered lithium-rich electrodes. Adv. Energy Mater. 8, 1800606 (2018). https://doi.org/10.1002/aenm.201800606
- J. Reed, G. Ceder, Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104 (10), 4513–4534 (2004). https://doi.org/10.1021/cr020733x
- C. Cui, X. Fan, X. Zhou, J. Chen, Q. Wang et al., Structure and interface design enable stable Li-rich cathode. J. Am. Chem. Soc. 142, 8918–8927 (2020). https://doi.org/10.1021/jacs.0c02302
- N. Yabuuchi, R. Hara, M. Kajiyama, K. Kubota, T. Ishigaki et al., New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries. Adv. Energy Mater. 4, 1301453 (2014). https://doi.org/10.1002/aenm.201301453
- S. Cao, C. Wu, X. Xie, H. Li, Z. Zang et al., Suppressing the voltage decay based on a distinct stacking sequence of oxygen atoms for Li-rich cathode materials. ACS Appl. Mater. Interfaces 13, 17639–17648 (2021). https://doi.org/10.1021/acsami.1c02424
- H. Shang, Y. Zuo, F. Shen, J. Song, F. Ning et al., O2-type Li0.78[Li0.24Mn0.76]O2 nanowires for high-performance lithium-ion battery cathode. Nano Lett. 20, 5779–5785 (2020). https://doi.org/10.1021/acs.nanolett.0c01640
- Y. Zuo, B. Li, N. Jiang, W. Chu, H. Zhang et al., A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv. Mater. 30, e1707255 (2018). https://doi.org/10.1002/adma.201707255
- X. Cao, J. Sun, Z. Chang, P. Wang, X. Yue et al., Enabling long-term cycling stability within layered Li-rich cathode materials by O2/O3-type biphasic design strategy. Adv. Funct. Mater. 32, 2205199 (2022). https://doi.org/10.1002/adfm.202205199
- Y. Chen, Y. Liu, J. Zhang, H. Zhu, Y. Ren et al., Constructing O2/O3 homogeneous hybrid stabilizes Li-rich layered cathodes. Energy Storage Mater. 51, 756–763 (2022). https://doi.org/10.1016/j.ensm.2022.07.016
- K. Kawai, X.-M. Shi, N. Takenaka, J. Jang, B.M. de Boisse et al., Kinetic square scheme in oxygen-redox battery electrodes. Energy Environ. Sci. 15, 2591–2600 (2022). https://doi.org/10.1039/D1EE03503G
- X. Cao, H. Li, Y. Qiao, M. Jia, P. He et al., Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Mater. 38, 1–8 (2021). https://doi.org/10.1016/j.ensm.2021.02.047
- X. Cao, H. Li, Y. Qiao, M. Jia, P. He et al., Triggering and stabilizing oxygen redox chemistry in layered Li[Na1/3Ru2/3]O2 enabled by stable Li–O–Na configuration. ACS Energy Lett. 7, 2349–2356 (2022). https://doi.org/10.1021/acsenergylett.2c01072
- Z. Wang, Y. Wang, D. Meng, Q. Zheng, Y. Zhang et al., High-capacity O2-type layered oxide cathode materials for lithium-ion batteries: ion-exchange synthesis and electrochemistry. J. Electrochem. Soc. 169, 020508 (2022). https://doi.org/10.1149/1945-7111/ac4cd5
- P. Hou, Z. Sun, M. Dong, M. Gong, F. Li et al., Boosting the voltage/capacity stability of O2-type Li-rich layered cathodes by tailoring transition metal distribution for Li-ion batteries. Inorg. Chem. Front. 10, 5752–5761 (2023). https://doi.org/10.1039/D3QI01275A
- H. Liu, C. Li, W. Tong, B. Hu, Highly reversible local structural transformation enabled by native vacancies in O2-type Li-rich layered oxides with anion redox activity. J. Phys. Chem. Lett. 14, 2323–2330 (2023). https://doi.org/10.1021/acs.jpclett.2c03880
- B.M. de Boisse, J. Jang, M. Okubo, A. Yamada, Cobalt-free O2-type lithium-rich layered oxides. J. Electrochem. Soc. 165, A3630–A3633 (2018). https://doi.org/10.1149/2.1331814jes
- H. Umeno, M. Okubo, A. Yamada, Lithium-rich O2-type Li0.66[Li0.22Ru0.78]O2 positive electrode material. J. Electrochem. Soc. 169, 040536 (2022). https://doi.org/10.1149/1945-7111/ac6459
- X. Cao, Y. Qiao, M. Jia, P. He, H. Zhou, Ion-exchange: a promising strategy to design Li-rich and Li-excess layered cathode materials for Li-ion batteries. Adv. Energy Mater. 12, 2003972 (2022). https://doi.org/10.1002/aenm.202003972
References
D. Eum, B. Kim, S.J. Kim, H. Park, J. Wu et al., Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020). https://doi.org/10.1038/s41563-019-0572-4
M. Zhang, D.A. Kitchaev, Z. Lebens-Higgins, J. Vinckeviciute, M. Zuba et al., Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 7, 522–540 (2022). https://doi.org/10.1038/s41578-022-00416-1
W.-J. Kong, C.-Z. Zhao, S. Sun, L. Shen, X.-Y. Huang et al., From liquid to solid-state batteries: Li-rich Mn-based layered oxides as emerging cathodes with high energy density. Adv. Mater. 36, 2310738 (2024). https://doi.org/10.1002/adma.202310738
S.-L. Cui, M.-Y. Gao, G.-R. Li, X.-P. Gao, Insights into Li-rich Mn-based cathode materials with high capacity: from dimension to lattice to atom. Adv. Energy Mater. 12, 2003885 (2022). https://doi.org/10.1002/aenm.202003885
H. Zhang, H. Liu, L.F.J. Piper, M.S. Whittingham, G. Zhou, Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation. Chem. Rev. 122, 5641–5681 (2022). https://doi.org/10.1021/acs.chemrev.1c00327
T. Liu, J. Liu, L. Li, L. Yu, J. Diao et al., Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022). https://doi.org/10.1038/s41586-022-04689-y
W. Yin, A. Grimaud, G. Rousse, A.M. Abakumov, A. Senyshyn et al., Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of Li1.2Ni0.13Mn0.54Co0.13O2. Nat. Commun. 11, 1252 (2020). https://doi.org/10.1038/s41467-020-14927-4
P. Yan, J. Zheng, Z.-K. Tang, A. Devaraj, G. Chen et al., Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019). https://doi.org/10.1038/s41565-019-0428-8
A. Boulineau, L. Simonin, J.-F. Colin, C. Bourbon, S. Patoux, First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 13, 3857–3863 (2013). https://doi.org/10.1021/nl4019275
D. Mohanty, J. Li, D.P. Abraham, A. Huq, E.A. Payzant et al., Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem. Mater. 26, 6272–6280 (2014). https://doi.org/10.1021/cm5031415
K. Kleiner, B. Strehle, A.R. Baker, S.J. Day, C.C. Tang et al., Origin of high capacity and poor cycling stability of Li-rich layered oxides: a long-duration in situ synchrotron powder diffraction study. Chem. Mater. 30, 3656–3667 (2018). https://doi.org/10.1021/acs.chemmater.8b00163
Y.-H. Luo, Q.-L. Pan, H.-X. Wei, Y.-D. Huang, L.-B. Tang et al., Fundamentals of ion-exchange synthesis and its implications in layered oxide cathodes: recent advances and perspective. Adv. Energy Mater. 13, 2300125 (2023). https://doi.org/10.1002/aenm.202300125
D. Luo, H. Zhu, Y. Xia, Z. Yin, Y. Qin et al., A Li-rich layered oxide cathode with negligible voltage decay. Nat. Energy 8, 1078–1087 (2023). https://doi.org/10.1038/s41560-023-01289-6
D. Eum, H.-Y. Jang, B. Kim, J. Chung, D. Kim et al., Effects of cation superstructure ordering on oxygen redox stability in O2-type lithium-rich layered oxides. Energy Environ. Sci. 16, 673–686 (2023). https://doi.org/10.1039/D2EE03527H
G. Assat, J.-M. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018). https://doi.org/10.1038/s41560-018-0097-0
M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin et al., Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013). https://doi.org/10.1038/nmat3699
M. Sathiya, J.-B. Leriche, E. Salager, D. Gourier, J.-M. Tarascon et al., Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 6, 6276 (2015). https://doi.org/10.1038/ncomms7276
E. McCalla, A.M. Abakumov, M. Saubanère, D. Foix, E.J. Berg et al., Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015). https://doi.org/10.1126/science.aac8260
K. Luo, M.R. Roberts, R. Hao, N. Guerrini, D.M. Pickup et al., Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016). https://doi.org/10.1038/nchem.2471
D.-H. Seo, J. Lee, A. Urban, R. Malik, S. Kang et al., The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016). https://doi.org/10.1038/nchem.2524
W.E. Gent, K. Lim, Y. Liang, Q. Li, T. Barnes et al., Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017). https://doi.org/10.1038/s41467-017-02041-x
J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z
J. Zaanen, G.A. Sawatzky, J.W. Allen, Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55, 418–421 (1985). https://doi.org/10.1103/physrevlett.55.418
Y. Xie, M. Saubanère, M.-L. Doublet, Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017). https://doi.org/10.1039/C6EE02328B
B. Strehle, K. Kleiner, R. Jung, F. Chesneau, M. Mendez et al., The role of oxygen release from Li- and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J. Electrochem. Soc. 164, A400–A406 (2017). https://doi.org/10.1149/2.1001702jes
D.A. Kitchaev, J. Vinckeviciute, A. Van der Ven, Delocalized metal-oxygen π-redox is the origin of anomalous nonhysteretic capacity in Li-ion and Na-ion cathode materials. J. Am. Chem. Soc. 143, 1908–1916 (2021). https://doi.org/10.1021/jacs.0c10704
M. Sathiya, A.M. Abakumov, D. Foix, G. Rousse, K. Ramesha et al., Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015). https://doi.org/10.1038/nmat4137
L. Zeng, H. Liang, B. Qiu, Z. Shi, S. Cheng et al., Voltage decay of Li-rich layered oxides: mechanism, modification strategies, and perspectives. Adv. Funct. Mater. 33, 2370151 (2023). https://doi.org/10.1002/adfm.202370151
S. Zhao, K. Yan, J. Zhang, B. Sun, G. Wang, Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 60, 2208–2220 (2021). https://doi.org/10.1002/anie.202000262
M.M. Rahman, F. Lin, Oxygen redox chemistry in rechargeable Li-ion and Na-ion batteries. Matter 4, 490–527 (2021). https://doi.org/10.1016/j.matt.2020.12.004
A. Singer, M. Zhang, S. Hy, D. Cela, C. Fang et al., Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018). https://doi.org/10.1038/s41560-018-0184-2
E. Hu, X. Yu, R. Lin, X. Bi, J. Lu et al., Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018). https://doi.org/10.1038/s41560-018-0207-z
P.M. Csernica, S.S. Kalirai, W.E. Gent, K. Lim, Y.-S. Yu et al., Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat. Energy 6, 642–652 (2021). https://doi.org/10.1038/s41560-021-00832-7
M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao et al., Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2013). https://doi.org/10.1021/nn305065u
N. Tran, L. Croguennec, M. Ménétrier, F. Weill, P. Biensan et al., Mechanisms associated with the “plateau” observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0425Co0.15)0.88O2 system. Chem. Mater. 20, 4815–4825 (2008). https://doi.org/10.1021/cm070435m
M.T. Greiner, M.G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu et al., Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 11, 76–81 (2012). https://doi.org/10.1038/nmat3159
H. Bai, K. Yuan, C. Zhang, W. Zhang, X. Tang et al., Advantageous surface engineering to boost single-crystal quaternary cathodes for high-energy-density lithium-ion batteries. Energy Storage Mater. 61, 102879 (2023). https://doi.org/10.1016/j.ensm.2023.102879
F. Zheng, C. Yang, X. Xiong, J. Xiong, R. Hu et al., Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew. Chem. Int. Ed. Engl. 54, 13058–13062 (2015). https://doi.org/10.1002/anie.201506408
Y. Zhao, J. Liu, S. Wang, R. Ji, Q. Xia et al., Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: implications for enhanced electrochemical performance. Adv. Funct. Mater. 26, 4760–4767 (2016). https://doi.org/10.1002/adfm.201600576
J. Yang, P. Li, F. Zhong, X. Feng, W. Chen et al., Suppressing voltage fading of Li-rich oxide cathode via building a well-protected and partially-protonated surface by polyacrylic acid binder for cycle-stable Li-ion batteries. Adv. Energy Mater. 10, 1904264 (2020). https://doi.org/10.1002/aenm.201904264
S. Zhang, H. Gu, H. Pan, S. Yang, W. Du et al., A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Adv. Energy Mater. 7, 1601066 (2017). https://doi.org/10.1002/aenm.201601066
G. Zhang, B. Qiu, Y. Xia, X. Wang, Q. Gu et al., Double-helix-superstructure aqueous binder to boost excellent electrochemical performance in Li-rich layered oxide cathode. J. Power. Sources 420, 29–37 (2019). https://doi.org/10.1016/j.jpowsour.2019.02.086
C. Yin, X. Wen, L. Wan, Z. Shi, Z. Wei et al., Surface reinforcement doping to suppress oxygen release of Li-rich layered oxides. J. Power. Sources 503, 230048 (2021). https://doi.org/10.1016/j.jpowsour.2021.230048
S. Liu, Z. Liu, X. Shen, W. Li, Y. Gao et al., Surface doping to enhance structural integrity and performance of Li-rich layered oxide. Adv. Energy Mater. 8, 1802105 (2018). https://doi.org/10.1002/aenm.201802105
D. Luo, J. Cui, B. Zhang, J. Fan, P. Liu et al., Ti-based surface integrated layer and bulk doping for stable voltage and long life of Li-rich layered cathodes. Adv. Funct. Mater. 31, 2009310 (2021). https://doi.org/10.1002/adfm.202009310
D. Luo, H. Xie, F. Tan, X. Ding, J. Cui et al., Scalable nitrate treatment for constructing integrated surface structures to mitigate capacity fading and voltage decay of Li-rich layered oxides. Angew. Chem. Int. Ed. 61, e202203698 (2022). https://doi.org/10.1002/anie.202203698
D. Luo, X. Ding, X. Hao, H. Xie, J. Cui et al., Ni/Mn and Al dual concentration-gradients to mitigate voltage decay and capacity fading of Li-rich layered cathodes. ACS Energy Lett. 6, 2755–2764 (2021). https://doi.org/10.1021/acsenergylett.1c01215
H. Guo, Z. Wei, K. Jia, B. Qiu, C. Yin et al., Abundant nanoscale defects to eliminate voltage decay in Li-rich cathode materials. Energy Storage Mater. 16, 220–227 (2019). https://doi.org/10.1016/j.ensm.2018.05.022
F. Ning, B. Li, J. Song, Y. Zuo, H. Shang et al., Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability. Nat. Commun. 11, 4973 (2020). https://doi.org/10.1038/s41467-020-18423-7
B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia et al., Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016). https://doi.org/10.1038/ncomms12108
J. Zhang, Q. Zhang, D. Wong, N. Zhang, G. Ren et al., Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nat. Commun. 12, 3071 (2021). https://doi.org/10.1038/s41467-021-23365-9
X. Cao, H. Li, Y. Qiao, M. Jia, X. Li et al., Stabilizing anionic redox chemistry in a Mn-based layered oxide cathode constructed by Li-deficient pristine state. Adv. Mater. 33, e2004280 (2021). https://doi.org/10.1002/adma.202004280
C. Delmas, J.-J. Braconnier, P. Hagenmuller, A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction. Mater. Res. Bull. 17, 117–123 (1982). https://doi.org/10.1016/0025-5408(82)90192-1
A. Mendiboure, C. Delmas, P. Hagenmuller, New layered structure obtained by electrochemical deintercalation of the metastable LiCoO2 (O2) variety. Mater. Res. Bull. 19, 1383–1392 (1984). https://doi.org/10.1016/0025-5408(84)90204-6
D. Carlier, On the metastable O2-type LiCoO2. Solid State Ion. 144, 263–276 (2001). https://doi.org/10.1016/s0167-2738(01)00982-1
D. Carlier, A. Van der Ven, C. Delmas, G. Ceder, First-principles investigation of phase stability in the O2-LiCoO2 system. Chem. Mater. 15, 2651–2660 (2003). https://doi.org/10.1021/cm030002t
F. Tournadre, L. Croguennec, P. Willmann, C. Delmas, On the mechanism of the P2-Na0.70CoO2 → O2-LiCoO2 exchange reaction: Part II: an in situ X-ray diffraction study. J. Solid State Chem. 177, 2803–2809 (2004). https://doi.org/10.1016/j.jssc.2004.04.028
S. Komaba, L. Croguennec, F. Tournadre, P. Willmann, C. Delmas, Thermal behavior of the layered oxide Li2/3Co2/3Mn1/3O2 obtained by ion exchange from the P2-type Na2/3Co2/3Mn1/3O2 phase. J. Phys. Chem. C 117, 3264–3271 (2013). https://doi.org/10.1021/jp310417q
L. Xue, C. Wang, H. Liu, H. Li, T. Chen et al., Stabilizing layered structure in aqueous electrolyte via O2-type oxygen stacking. Adv. Sci. 9, 2202194 (2022). https://doi.org/10.1002/advs.202202194
A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499–500 (1996). https://doi.org/10.1038/381499a0
Y. Shao-Horn, S.A. Hackney, A.R. Armstrong, P.G. Bruce, R. Gitzendanner et al., Structural characterization of layered LiMnO2 electrodes by electron diffraction and lattice imaging. J. Electrochem. Soc. 146, 2404–2412 (1999). https://doi.org/10.1149/1.1391949
A.R. Armstrong, A.D. Robertson, R. Gitzendanner, P.G. Bruce, The layered intercalation compounds Li(Mn1−yCoy)O2: positive electrode materials for lithium–ion batteries. J. Solid State Chem. 145, 549–556 (1999). https://doi.org/10.1006/jssc.1999.8216
P.G. Bruce, A.R. Armstrong, R.L. Gitzendanner, New intercalation compounds for lithium batteries: layered LiMnO2. J. Mater. Chem. 9, 193–198 (1999). https://doi.org/10.1039/A803938K
A.D. Robertson, A.R. Armstrong, A.J. Fowkes, P.G. Bruce, Lix(Mn1−yCoy)O2 intercalation compounds as electrodes for lithium batteries: influence of ion exchange on structure and performance. J. Mater. Chem. 11, 113–118 (2001). https://doi.org/10.1039/B002948N
J.M. Paulsen, C.L. Thomas, J.R. Dahn, Layered Li-Mn-oxide with the O2 structure: a cathode material for Li-ion cells which does not convert to spinel. J. Electrochem. Soc. 146, 3560–3565 (1999). https://doi.org/10.1149/1.1392514
J.M. Paulsen, J.R. Dahn, Studies of the layered manganese bronzes, Na2/3[Mn1−xMx]O2 with M = Co, Ni, Li, and Li2/3[Mn1−xMx]O2 prepared by ion-exchange. Solid State Ion. 126, 3–24 (1999). https://doi.org/10.1016/S0167-2738(99)00147-2
J.M. Paulsen, D. Larcher, J.R. Dahn, O2 structure Li2/3[Ni1/3Mn2/3]O2: a new layered cathode material for rechargeable lithium batteries III. ion exchange. J. Electrochem. Soc. 147, 2862 (2000). https://doi.org/10.1149/1.1393617
J.M. Paulsen, J.R. Dahn, O2-type Li2/3[Ni1/3Mn2/3]O2: a new layered cathode material for rechargeable lithium batteries II. structure, composition, and properties. J. Electrochem. Soc. 147, 2478 (2000). https://doi.org/10.1149/1.1393556
Z. Lu, J.R. Dahn, Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3–xMn2/3]O2. Chem. Mater. 13, 1252–1257 (2001). https://doi.org/10.1021/cm000721x
Z. Lu, J.R. Dahn, The effect of co substitution for Ni on the structure and electrochemical behavior of T2 and O2 structure Li2/3[CoxNi1/3–xMn2/3]O2. J. Electrochem. Soc. 148, A237 (2001). https://doi.org/10.1149/1.1350016
C. Delmas, C. Fouassier, P. Hagenmuller, Structural classification and properties of the layered oxides. Phys. B+C 99, 81–85 (1980). https://doi.org/10.1016/0378-4363(80)90214-4
J. Feng, Y.-S. Jiang, F.-D. Yu, W. Ke, L.-F. Que et al., Understanding Li roles in chemical reversibility of O2-type Li-rich layered cathode materials. J. Energy Chem. 66, 666–675 (2022). https://doi.org/10.1016/j.jechem.2021.08.064
V. Saïbi, L. Castro, I. Sugiyama, S. Belin, C. Delmas et al., Stacking faults in an O2-type cobalt-free lithium-rich layered oxide: mechanisms of the ion exchange reaction and lithium electrochemical (de)intercalation. Chem. Mater. 35, 8540–8550 (2023). https://doi.org/10.1021/acs.chemmater.3c01426
W. Hua, S. Wang, K. Wang, A. Missyul, Q. Fu et al., Li+/Na+ ion exchange in layered Na2/3(Ni0.25Mn0.75)O2: a simple and fast way to synthesize O3/O2-type layered oxides. Chem. Mater. 33, 5606–5617 (2021). https://doi.org/10.1021/acs.chemmater.1c00962
C. Heubner, T. Lein, M. Schneider, A. Michaelis, Intercalation materials for secondary batteries based on alkali metal exchange: developments and perspectives. J. Mater. Chem. A 8, 16854–16883 (2020). https://doi.org/10.1039/D0TA03115A
N. Li, S. Hwang, M. Sun, Y. Fu, V.S. Battaglia et al., Unraveling the voltage decay phenomenon in Li-rich layered oxide cathode of no oxygen activity. Adv. Energy Mater. 9, 1902258 (2019). https://doi.org/10.1002/aenm.201902258
K. Ku, J. Hong, H. Kim, H. Park, W.M. Seong et al., Suppression of voltage decay through manganese deactivation and nickel redox buffering in high-energy layered lithium-rich electrodes. Adv. Energy Mater. 8, 1800606 (2018). https://doi.org/10.1002/aenm.201800606
J. Reed, G. Ceder, Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104 (10), 4513–4534 (2004). https://doi.org/10.1021/cr020733x
C. Cui, X. Fan, X. Zhou, J. Chen, Q. Wang et al., Structure and interface design enable stable Li-rich cathode. J. Am. Chem. Soc. 142, 8918–8927 (2020). https://doi.org/10.1021/jacs.0c02302
N. Yabuuchi, R. Hara, M. Kajiyama, K. Kubota, T. Ishigaki et al., New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries. Adv. Energy Mater. 4, 1301453 (2014). https://doi.org/10.1002/aenm.201301453
S. Cao, C. Wu, X. Xie, H. Li, Z. Zang et al., Suppressing the voltage decay based on a distinct stacking sequence of oxygen atoms for Li-rich cathode materials. ACS Appl. Mater. Interfaces 13, 17639–17648 (2021). https://doi.org/10.1021/acsami.1c02424
H. Shang, Y. Zuo, F. Shen, J. Song, F. Ning et al., O2-type Li0.78[Li0.24Mn0.76]O2 nanowires for high-performance lithium-ion battery cathode. Nano Lett. 20, 5779–5785 (2020). https://doi.org/10.1021/acs.nanolett.0c01640
Y. Zuo, B. Li, N. Jiang, W. Chu, H. Zhang et al., A high-capacity O2-type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv. Mater. 30, e1707255 (2018). https://doi.org/10.1002/adma.201707255
X. Cao, J. Sun, Z. Chang, P. Wang, X. Yue et al., Enabling long-term cycling stability within layered Li-rich cathode materials by O2/O3-type biphasic design strategy. Adv. Funct. Mater. 32, 2205199 (2022). https://doi.org/10.1002/adfm.202205199
Y. Chen, Y. Liu, J. Zhang, H. Zhu, Y. Ren et al., Constructing O2/O3 homogeneous hybrid stabilizes Li-rich layered cathodes. Energy Storage Mater. 51, 756–763 (2022). https://doi.org/10.1016/j.ensm.2022.07.016
K. Kawai, X.-M. Shi, N. Takenaka, J. Jang, B.M. de Boisse et al., Kinetic square scheme in oxygen-redox battery electrodes. Energy Environ. Sci. 15, 2591–2600 (2022). https://doi.org/10.1039/D1EE03503G
X. Cao, H. Li, Y. Qiao, M. Jia, P. He et al., Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Mater. 38, 1–8 (2021). https://doi.org/10.1016/j.ensm.2021.02.047
X. Cao, H. Li, Y. Qiao, M. Jia, P. He et al., Triggering and stabilizing oxygen redox chemistry in layered Li[Na1/3Ru2/3]O2 enabled by stable Li–O–Na configuration. ACS Energy Lett. 7, 2349–2356 (2022). https://doi.org/10.1021/acsenergylett.2c01072
Z. Wang, Y. Wang, D. Meng, Q. Zheng, Y. Zhang et al., High-capacity O2-type layered oxide cathode materials for lithium-ion batteries: ion-exchange synthesis and electrochemistry. J. Electrochem. Soc. 169, 020508 (2022). https://doi.org/10.1149/1945-7111/ac4cd5
P. Hou, Z. Sun, M. Dong, M. Gong, F. Li et al., Boosting the voltage/capacity stability of O2-type Li-rich layered cathodes by tailoring transition metal distribution for Li-ion batteries. Inorg. Chem. Front. 10, 5752–5761 (2023). https://doi.org/10.1039/D3QI01275A
H. Liu, C. Li, W. Tong, B. Hu, Highly reversible local structural transformation enabled by native vacancies in O2-type Li-rich layered oxides with anion redox activity. J. Phys. Chem. Lett. 14, 2323–2330 (2023). https://doi.org/10.1021/acs.jpclett.2c03880
B.M. de Boisse, J. Jang, M. Okubo, A. Yamada, Cobalt-free O2-type lithium-rich layered oxides. J. Electrochem. Soc. 165, A3630–A3633 (2018). https://doi.org/10.1149/2.1331814jes
H. Umeno, M. Okubo, A. Yamada, Lithium-rich O2-type Li0.66[Li0.22Ru0.78]O2 positive electrode material. J. Electrochem. Soc. 169, 040536 (2022). https://doi.org/10.1149/1945-7111/ac6459
X. Cao, Y. Qiao, M. Jia, P. He, H. Zhou, Ion-exchange: a promising strategy to design Li-rich and Li-excess layered cathode materials for Li-ion batteries. Adv. Energy Mater. 12, 2003972 (2022). https://doi.org/10.1002/aenm.202003972