Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes
Corresponding Author: Piaoping Yang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 28
Abstract
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007, nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity, low cost, mild reaction conditions, good stability, and suitable for large-scale production. Recently, with the cross fusion of nanomedicine and nanocatalysis, nanozyme-based theranostic strategies attract great attention, since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects. Thus, various nanozymes have been developed and used for tumor therapy. In this review, more than 270 research articles are discussed systematically to present progress in the past five years. First, the discovery and development of nanozymes are summarized. Second, classification and catalytic mechanism of nanozymes are discussed. Third, activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory, machine learning, biomimetic and chemical design. Then, synergistic theranostic strategy of nanozymes are introduced. Finally, current challenges and future prospects of nanozymes used for tumor theranostic are outlined, including selectivity, biosafety, repeatability and stability, in-depth catalytic mechanism, predicting and evaluating activities.
Highlights:
1 Classification and catalytic mechanism of nanozymes with different mimicking activities are dissertated.
2 Activity prediction and rational design methods of nanozymes are highlighted, including density functional theory, machine learning, biomimetic and chemical design.
3 The roles of nanozymes in different synergistic theranostic strategies for tumor are summarized and explained by representative examples in the past five years.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660
- R.A. Sharma, R. Plummer, J.K. Stock, T.A. Greenhalgh, O. Ataman et al., Clinical development of new drug–radiotherapy combinations. Nat. Rev. Clin. Oncol. 13(10), 627–642 (2016). https://doi.org/10.1038/nrclinonc.2016.79
- H. Greenlee, M.J. DuPont-Reyes, L.G. Balneaves, L.E. Carlson, M.R. Cohen et al., Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA-Cancer J. Clin. 67(3), 195–232 (2017). https://doi.org/10.3322/caac.21397
- D.E. Citrin, Recent developments in radiotherapy. N. Engl. J. Med. 377(11), 1065–1075 (2017). https://doi.org/10.1056/NEJMra1608986
- J.L. Markman, A. Rekechenetskiy, E. Holler, J.Y. Ljubimova, Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev. 65(13–14), 1866–1879 (2013). https://doi.org/10.1016/j.addr.2013.09.019
- Y. Yang, Z.T. Zeng, E. Almatrafi, D.L. Huang, C. Zhang et al., Core-shell structured nanops for photodynamic therapy-based cancer treatment and related imaging. Coord. Chem. Rev. 458, 214427 (2022). https://doi.org/10.1016/j.ccr.2022.214427
- H.T. Sun, Q. Zhang, J.C. Li, S.J. Peng, X.L. Wang et al., Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 37, 101073 (2021). https://doi.org/10.1016/j.nantod.2020.101073
- S. Liu, X.T. Pan, H.Y. Liu, Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. 59(15), 5890–5900 (2020). https://doi.org/10.1002/anie.201911477
- Z.L. Ding, Y.H. Gu, C. Zheng, Y.Q. Gu, J. Yang et al., Organic small molecule-based photothermal agents for cancer therapy: design strategies from single-molecule optimization to synergistic enhancement. Coord. Chem. Rev. 464, 214564 (2022). https://doi.org/10.1016/j.ccr.2022.214564
- P.-C. Lo, M. Salome Rodriguez-Morgade, R.K. Pandey, D.K.P. Ng, T. Torres et al., The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 49(4), 1041–1056 (2020). https://doi.org/10.1039/C9CS00129H
- X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17(11), 657–674 (2020). https://doi.org/10.1038/s41571-020-0410-2
- U. Chilakamarthi, L. Giribabu, Photodynamic therapy: past, present and future. Chem. Rec. 17(8), 775–802 (2017). https://doi.org/10.1002/tcr.201600121
- Y. Liu, P. Bhattarai, Z.F. Dai, X.Y. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/C8CS00618K
- C. Xu, K.Y. Pu, Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50(2), 1111–1137 (2021). https://doi.org/10.1039/D0CS00664E
- X. Deng, Z. Shao, Y. Zhao, Solutions to the drawbacks of photothermal and photodynamic cancer therapy. Adv. Sci. 8(3), 2002504 (2021). https://doi.org/10.1002/advs.202002504
- Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
- H. Wang, X. Zhang, Y. Xie, Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Mater. Sci. Eng. R. Rep. 130, 1–39 (2018). https://doi.org/10.1016/j.mser.2018.04.002
- M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
- B. Yang, Y. Chen, J. Shi, Nanocatalytic medicine. Adv. Mater. 31(39), e1901778 (2019). https://doi.org/10.1002/adma.201901778
- Q. Bao, P. Hu, Y. Xu, T. Cheng, C. Wei et al., Simultaneous blood–brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanops. ACS Nano 12(7), 6794–6805 (2018). https://doi.org/10.1021/acsnano.8b01994
- B.W. Yang, Y. Chen, J.L. Shi, Exogenous/endogenous-triggered mesoporous silica cancer nanomedicine. Adv. Healthc. Mater. 7(20), e1800268 (2018). https://doi.org/10.1002/adhm.201800268
- K. Lu, T. Aung, N. Guo, R. Weichselbaum, W. Lin, Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 30(37), 1707634 (2018). https://doi.org/10.1002/adma.201707634
- B.S. Pattni, V.V. Chupin, V.P. Torchilin, New developments in liposomal drug delivery. Chem. Rev. 115(19), 10938–10966 (2015). https://doi.org/10.1021/acs.chemrev.5b00046
- L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanops. Chem. Rev. 118(10), 4981–5079 (2018). https://doi.org/10.1021/acs.chemrev.7b00776
- M. Stubbs, P.M.J. McSheehy, J.R. Griffiths, C.L. Bashford, Causes and consequences of tumour acidity and implications for treatment. Mol. Med. Today 6(1), 15–19 (2000). https://doi.org/10.1016/S1357-4310(99)01615-9
- J. Zou, F. Zhang, S. Zhang, S.F. Pollack, M. Elsabahy et al., Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery. Adv. Healthc. Mater. 3(3), 441–448 (2014). https://doi.org/10.1002/adhm.201300235
- J. Liu, Q. Chen, L. Feng, Z. Liu, Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 21, 55–73 (2018). https://doi.org/10.1016/j.nantod.2018.06.008
- A.V.V.V. Ravi Kiran, G. Kusuma Kumari, P.T. Krishnamurthy, R.R. Khaydarov, Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater. Sci. 9(23), 7667–7704 (2021). https://doi.org/10.1039/D1BM01127H
- M. Upreti, A. Jyoti, P. Sethi, Tumor microenvironment and nanotherapeutics. Transl. Cancer Res. 2(4), 309–319 (2013)
- L.Z. Feng, Z.L. Dong, D.L. Tao, Y.C. Zhang, Z. Liu, The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl. Sci. Rev. 5(2), 269–286 (2018). https://doi.org/10.1093/nsr/nwx062
- W. Zhang, J. Lu, X. Gao, P. Li, W. Zhang et al., Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with CuII as the active center. Angew. Chem. Int. Ed. 57(18), 4891–4896 (2018). https://doi.org/10.1002/anie.201710800
- L. Yu, Y. Chen, H. Chen, H2O2-responsive theranostic nanomedicine. Chin. Chem. Lett. 28(9), 1841–1850 (2017). https://doi.org/10.1016/j.cclet.2017.05.023
- N.E. Sounni, A. Noel, Targeting the tumor microenvironment for cancer therapy. Clin. Chem. 59(1), 85–93 (2013). https://doi.org/10.1373/clinchem.2012.185363
- Y. Xiao, D. Yu, Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 221, 107753 (2021). https://doi.org/10.1016/j.pharmthera.2020.107753
- H.-J. Li, J.-Z. Du, J. Liu, X.-J. Du, S. Shen et al., Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration. ACS Nano 10(7), 6753–6761 (2016). https://doi.org/10.1021/acsnano.6b02326
- J.-X. Fan, M.-Y. Peng, H. Wang, H.-R. Zheng, Z.-L. Liu et al., Engineered bacterial bioreactor for tumor therapy via Fenton-like reaction with localized H2O2 generation. Adv. Mater. 31(16), 1808278 (2019). https://doi.org/10.1002/adma.201808278
- B. Ma, S. Wang, F. Liu, S. Zhang, J. Duan et al., Self-assembled copper–amino acid nanops for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 141(2), 849–857 (2019). https://doi.org/10.1021/jacs.8b08714
- Z. He, Y. Dai, X. Li, D. Guo, Y. Liu et al., Hybrid nanomedicine fabricated from photosensitizer-terminated metal–organic framework nanops for photodynamic therapy and hypoxia-activated cascade chemotherapy. Small 15(4), 1804131 (2019). https://doi.org/10.1002/smll.201804131
- T. Hao, J. Li, F. Yao, D. Dong, Y. Wang et al., Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in brown adipose-derived stem cells and cardiac repair. ACS Nano 11(6), 5474–5488 (2017). https://doi.org/10.1021/acsnano.7b00221
- D. Furtado, M. Björnmalm, S. Ayton, A.I. Bush, K. Kempe et al., Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv. Mater. 30(46), 1801362 (2018). https://doi.org/10.1002/adma.201801362
- H. Lin, Y. Chen, J. Shi, Nanop-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 47(6), 1938–1958 (2018). https://doi.org/10.1039/C7CS00471K
- L. Gao, H. Koo, Do catalytic nanops offer an improved therapeutic strategy to combat dental biofilms? Nanomedicine 12(4), 275–279 (2017). https://doi.org/10.2217/nnm-2016-0400
- Z.A. Zhang, K.L. Fan, Bioorthogonal nanozymes: an emerging strategy for disease therapy. Nanoscale 15(1), 41–62 (2022). https://doi.org/10.1039/D2NR05920G
- Y.C. Li, R.F. Zhang, X.Y. Yan, K.L. Fan, Machine learning facilitating the rational design of nanozymes. J. Mater. Chem. B 11(28), 6466–6477 (2023). https://doi.org/10.1039/D3TB00842H
- Q. Li, T.T. Wu, X.W. Fan, X.B. Guo, W. Jiang et al., Multifaceted nanozymes for synergistic antitumor therapy: a review. Mater. Des. 224, 111430 (2022). https://doi.org/10.1016/j.matdes.2022.111430
- X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14(1), 95 (2022). https://doi.org/10.1007/s40820-022-00828-2
- X. Ding, Z. Zhao, Y. Zhang, M. Duan, C. Liu et al., Activity regulating strategies of nanozymes for biomedical applications. Small 19(11), 2207142 (2023). https://doi.org/10.1002/smll.202207142
- W. Yang, X. Yang, L. Zhu, H. Chu, X. Li et al., Nanozymes: activity origin, catalytic mechanism, and biological application. Coord. Chem. Rev. 448, 214170 (2021). https://doi.org/10.1016/j.ccr.2021.214170
- R. Wolfenden, M.J. Snider, The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 34(12), 938–945 (2001). https://doi.org/10.1021/ar000058i
- U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore et al., Engineering the third wave of biocatalysis. Nature 485(7397), 185–194 (2012). https://doi.org/10.1038/nature11117
- R.R. Breaker, DNA enzymes. Nat. Biotechnol. 15(5), 427–431 (1997). https://doi.org/10.1038/nbt0597-427
- A.J. Kirby, Efficiency of proton transfer catalysis in models and enzymes. Acc. Chem. Res. 30(7), 290–296 (1997). https://doi.org/10.1021/ar960056r
- I. Hubatsch, M. Ridderström, B. Mannervik, Human glutathione transferase A4–4: an Alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem. J. 330(1), 175–179 (1998). https://doi.org/10.1042/bj3300175
- J. Haseloff, W.L. Gerlach, Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334(6183), 585–591 (1988). https://doi.org/10.1038/334585a0
- M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52(8), 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
- Y. Lin, J. Ren, X. Qu, Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc. Chem. Res. 47(4), 1097–1105 (2014). https://doi.org/10.1021/ar400250z
- H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/C3CS35486E
- J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/C8CS00457A
- F. Manea, F.B. Houillon, L. Pasquato, P. Scrimin, Nanozymes: gold-nanop-based transphosphorylation catalysts. Angew. Chem. Int. Ed. 43(45), 6165–6169 (2004). https://doi.org/10.1002/anie.200460649
- L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanops. Nat. Nanotechnol. 2(9), 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
- B. Xu, H. Wang, W. Wang, L. Gao, S. Li et al., A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 58(15), 4911–4916 (2019). https://doi.org/10.1002/anie.201813994
- Y. Sang, F. Cao, W. Li, L. Zhang, Y. You et al., Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. J. Am. Chem. Soc. 142(11), 5177–5183 (2020). https://doi.org/10.1021/jacs.9b12873
- W. Feng, X. Han, H. Hu, M. Chang, L. Ding et al., 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 12(1), 2203 (2021). https://doi.org/10.1038/s41467-021-22278-x
- Z. Zhou, Y. Wang, F. Peng, F. Meng, J. Zha et al., Intercalation-activated layered MoO3 nanobelts as biodegradable nanozymes for tumor-specific photo-enhanced catalytic therapy. Angew. Chem. Int. Ed. 61(16), e202115939 (2022). https://doi.org/10.1002/anie.202115939
- W. Gao, J. He, L. Chen, X. Meng, Y. Ma et al., Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat. Commun. 14(1), 160 (2023). https://doi.org/10.1038/s41467-023-35828-2
- H. Ding, Y. Cai, L. Gao, M. Liang, B. Miao et al., Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma. Nano Lett. 19(1), 203–209 (2019). https://doi.org/10.1021/acs.nanolett.8b03709
- H. Wang, K. Wan, X. Shi, Recent advances in nanozyme research. Adv. Mater. 31(45), 1805368 (2019). https://doi.org/10.1002/adma.201805368
- Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 13(1), 154 (2021). https://doi.org/10.1007/s40820-021-00674-8
- H. Sun, Y. Zhou, J. Ren, X. Qu, Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int. Ed. 57(30), 9224–9237 (2018). https://doi.org/10.1002/anie.201712469
- D.M. He, M.M. Yan, P.J. Sun, Y.Q. Sun, L.B. Qu et al., Recent progress in carbon-dots-based nanozymes for chemosensing and biomedical applications. Chin. Chem. Lett. 32(10), 2994–3006 (2021). https://doi.org/10.1016/j.cclet.2021.03.078
- L.-F. Javier, D. Bhaskar, E. Christopher, C. Cuong, Gold nanozymes: from concept to biomedical applications. Nano-Micro Lett. 13(1), 10 (2020). https://doi.org/10.1007/s40820-020-00532-z
- M. Lang, J. Fuben, F. Xin, W. Liyun, H. Chao et al., Metal-organic-framework-engineered enzyme-mimetic catalysts. Adv. Mater. 32(49), e2003065 (2020). https://doi.org/10.1002/adma.202003065
- X. Niu, X. Li, Z. Lyu, J. Pan, S. Ding et al., Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chem. Commun. 56(77), 11338–11353 (2020). https://doi.org/10.1039/D0CC04890A
- O.L.-C. Diana, G.-G. Reyna Berenice, S. Ashutosh, B. Muhammad, P.-S. Roberto et al., Bioactive material-based nanozymes with multifunctional attributes for biomedicine: expanding antioxidant therapeutics for neuroprotection, cancer, and anti-inflammatory pathologies. Coord. Chem. Rev. 469, 214685 (2022). https://doi.org/10.1016/j.ccr.2022.214685
- X. Fan, F. Yang, C.X. Nie, L. Ma, C. Cheng et al., Biocatalytic nanomaterials: a new pathway for bacterial disinfection. Adv. Mater. 33(33), e2100637 (2021). https://doi.org/10.1002/adma.202100637
- Y.X. Shang, F.S. Liu, Y.N. Wang, N. Li, B.Q. Ding, Enzyme mimic nanomaterials and their biomedical applications. ChemBioChem 21(17), 2408–2418 (2020). https://doi.org/10.1002/cbic.202000123
- Y. Ai, Z.-N. Hu, X. Liang, H.-B. Sun, H. Xin et al., Recent advances in nanozymes: from matters to bioapplications. Adv. Funct. Mater. 32(14), 2110432 (2022). https://doi.org/10.1002/adfm.202110432
- K. Fan, H. Wang, J. Xi, Q. Liu, X. Meng et al., Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 53(2), 424–427 (2017). https://doi.org/10.1039/C6CC08542C
- Q. Wang, C.Y. Li, X.Y. Wang, J. Pu, S. Zhang et al., eg occupancy as a predictive descriptor for spinel oxide nanozymes. Nano Lett. 22(24), 10003–10009 (2022). https://doi.org/10.1021/acs.nanolett.2c03598
- A.P. Nagvenkar, A. Gedanken, Cu0.89Zn0.11O, a new peroxidase-mimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl. Mater. Interfaces 8(34), 22301–22308 (2016). https://doi.org/10.1021/acsami.6b05354
- F. Gong, N. Yang, Y. Wang, M. Zhuo, Q. Zhao et al., Oxygen-deficient bimetallic oxide FeWOX nanosheets as peroxidase-like nanozyme for sensing cancer via photoacoustic imaging. Small 16(46), 2003496 (2020). https://doi.org/10.1002/smll.202003496
- S. Li, L. Shang, B. Xu, S. Wang, K. Gu et al., A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem. Int. Ed. 58(36), 12624–12631 (2019). https://doi.org/10.1002/anie.201904751
- H. Su, D.-D. Liu, M. Zhao, W.-L. Hu, S.-S. Xue et al., Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanops and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl. Mater. Interfaces 7(15), 8233–8242 (2015). https://doi.org/10.1021/acsami.5b01271
- G. Jin, J. Liu, C. Wang, W. Gu, G. Ran et al., Ir nanops with multi-enzyme activities and its application in the selective oxidation of aromatic alcohols. Appl. Catal. B 267, 118725 (2020). https://doi.org/10.1016/j.apcatb.2020.118725
- J.-M. Park, H.-W. Jung, Y.W. Chang, H.-S. Kim, M.-J. Kang et al., Chemiluminescence lateral flow immunoassay based on Pt nanop with peroxidase activity. Anal. Chim. Acta 853, 360–367 (2015). https://doi.org/10.1016/j.aca.2014.10.011
- J. Wang, J. Sun, W. Hu, Y. Wang, T. Chou et al., A porous Au@Rh bimetallic core–shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 32(22), 2001862 (2020). https://doi.org/10.1002/adma.202001862
- Y. Zhang, J. Zhao, L. Zhang, Y. Zhao, Y. Zhang et al., A cascade nanoreactor for enhancing sonodynamic therapy on colorectal cancer via synergistic ROS augment and autophagy blockage. Nano Today 49, 101798 (2023). https://doi.org/10.1016/j.nantod.2023.101798
- B. Hu, X. Xiao, P. Chen, J. Qian, G. Yuan et al., Enhancing anti-tumor effect of ultrasensitive bimetallic RuCu nanops as radiosensitizers with dual enzyme-like activities. Biomaterials 290, 121811 (2022). https://doi.org/10.1016/j.biomaterials.2022.121811
- M. Hou, H. Su, Q. Wu, W. Sun, P. Zhang et al., A self-enhancing nanoreactor reinforces radioimmunotherapy by reprogramming nutrients and redox metabolisms. Adv. Funct. Mater. 33(16), 2212510 (2023). https://doi.org/10.1002/adfm.202212510
- J. Xi, R. Zhang, L. Wang, W. Xu, Q. Liang et al., A nanozyme-based artificial peroxisome ameliorates hyperuricemia and ischemic stroke. Adv. Funct. Mater. 31(9), 2007130 (2021). https://doi.org/10.1002/adfm.202007130
- K. Fan, J. Xi, L. Fan, P. Wang, C. Zhu et al., In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 9(1), 1440 (2018). https://doi.org/10.1038/s41467-018-03903-8
- S. Ji, B. Jiang, H. Hao, Y. Chen, J. Dong et al., Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4(5), 407–417 (2021). https://doi.org/10.1038/s41929-021-00609-x
- M. Wen, J. Ouyang, C. Wei, H. Li, W. Chen et al., Artificial enzyme catalyzed cascade reactions: antitumor immunotherapy reinforced by NIR-II light. Angew. Chem. Int. Ed. 58(48), 17425–17432 (2019). https://doi.org/10.1002/anie.201909729
- X. Wei, J. Chen, M.C. Ali, J.C. Munyemana, H. Qiu, Cadmium cobaltite nanosheets synthesized in basic deep eutectic solvents with oxidase-like, peroxidase-like, and catalase-like activities and application in the colorimetric assay of glucose. Microchim. Acta 187(6), 314 (2020). https://doi.org/10.1007/s00604-020-04298-4
- J. Wu, Y. Yu, Y. Cheng, C. Cheng, Y. Zhang et al., Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal-organic framework nanozyme for therapy. Angew. Chem. Int. Ed. 60(3), 1227–1234 (2021). https://doi.org/10.1002/anie.202010714
- M. Jiao, Z. Li, X. Li, Z. Zhang, Q. Yuan et al., Solving the H2O2 by-product problem using a catalase-mimicking nanozyme cascade to enhance glycolic acid oxidase. Chem. Eng. J. 388, 124249 (2020). https://doi.org/10.1016/j.cej.2020.124249
- F. Attar, M.G. Shahpar, B. Rasti, M. Sharifi, A.A. Saboury et al., Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq. 278, 130–144 (2019). https://doi.org/10.1016/j.molliq.2018.12.011
- X. Liu, D. Huang, C. Lai, L. Qin, G. Zeng et al., Peroxidase-like activity of smart nanomaterials and their advanced application in colorimetric glucose biosensors. Small 15(17), e1900133 (2019). https://doi.org/10.1002/smll.201900133
- B. Yuan, H.L. Chou, Y.K. Peng, Disclosing the origin of transition metal oxides as peroxidase (and catalase) mimetics. ACS Appl. Mater. Interfaces 14(20), 22728–22736 (2022). https://doi.org/10.1021/acsami.1c13429
- Y. Qiu, B. Yuan, H. Mi, J.-H. Lee, S.-W. Chou et al., An atomic insight into the confusion on the activity of Fe3O4 nanops as peroxidase mimetics and their comparison with horseradish peroxidase. J. Phys. Chem. Lett. 13(38), 8872–8878 (2022). https://doi.org/10.1021/acs.jpclett.2c02331
- X.M. Shen, Z.Z. Wang, X.J.J. Gao, X.F. Gao, Reaction mechanisms and kinetics of nanozymes: insights from theory and computation. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211151
- W. Zhang, S.L. Hu, J.-J. Yin, W. He, W. Lu et al., Prussian blue nanops as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 138(18), 5860–5865 (2016). https://doi.org/10.1021/jacs.5b12070
- H. Dong, W. Du, J. Dong, R. Che, F. Kong et al., Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 13(1), 5365 (2022). https://doi.org/10.1038/s41467-022-33098-y
- Y.F. Lai, J.Y. Wang, N. Yue, Q.C. Zhang, J.J.X. Wu et al., Glutathione peroxidase-like nanozymes: mechanism, classification, and bioapplication. Biomater. Sci. 11(7), 2292–2316 (2023). https://doi.org/10.1039/D2BM01915A
- S. Wang, R. Cazelles, W.-C. Liao, M. Vázquez-González, A. Zoabi et al., Mimicking horseradish peroxidase and NADH peroxidase by heterogeneous Cu2+-modified graphene oxide nanops. Nano Lett. 17(3), 2043–2048 (2017). https://doi.org/10.1021/acs.nanolett.7b00093
- Z. Wang, R. Yu, Hollow micro/nanostructured ceria-based materials: synthetic strategies and versatile applications. Adv. Mater. 31(38), 1800592 (2019). https://doi.org/10.1002/adma.201800592
- X. Jiao, H. Song, H. Zhao, W. Bai, L. Zhang et al., Well-redispersed ceria nanops: promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods 4(10), 3261–3267 (2012). https://doi.org/10.1039/C2AY25511A
- Z. Yang, Z. Shuna, F. Jing, S. Shuyan, S. Weidong et al., Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem 7(8), 2022–2059 (2021). https://doi.org/10.1016/j.chempr.2021.02.015
- V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.F. Berret, The enzyme-like catalytic activity of cerium oxide nanops and its dependency on Ce3+ surface area concentration. Nanoscale 10(15), 6971–6980 (2018). https://doi.org/10.1039/C8NR00325D
- E.G. Heckert, S. Seal, W.T. Self, Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environ. Sci. Technol. 42(13), 5014–5019 (2008). https://doi.org/10.1021/es8001508
- X. Jiao, W. Liu, D. Wu, W. Liu, H. Song, Enhanced peroxidase-like activity of Mo-doped ceria nanops for sensitive colorimetric detection of glucose. Anal. Methods 10(1), 76–83 (2018). https://doi.org/10.1039/C7AY02459B
- T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert et al., Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46(16), 2736–2738 (2010). https://doi.org/10.1039/B922024K
- S. Dong, Y. Dong, T. Jia, S. Liu, J. Liu et al., GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv. Mater. 32(42), 2002439 (2020). https://doi.org/10.1002/adma.202002439
- M.M. Pereira, M. Santana, M. Teixeira, A novel scenario for the evolution of haem–copper oxygen reductases. Biochim. Biophys. Acta-Bioenerg. 1505(2), 185–208 (2001). https://doi.org/10.1016/S0005-2728(01)00169-4
- X. Liu, Q. Wang, H. Zhao, L. Zhang, Y. Su et al., BSA-templated MnO2 nanops as both peroxidase and oxidase mimics. Analyst 137(19), 4552–4558 (2012). https://doi.org/10.1039/C2AN35700C
- S. Cai, C. Qi, Y. Li, Q. Han, R. Yang et al., PtCo bimetallic nanops with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B 4(10), 1869–1877 (2016). https://doi.org/10.1039/C5TB02052B
- H. Cheng, S. Lin, F. Muhammad, Y.-W. Lin, H. Wei, Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sens. 1(11), 1336–1343 (2016). https://doi.org/10.1021/acssensors.6b00500
- Y. Xiong, S. Chen, F. Ye, L. Su, C. Zhang et al., Synthesis of a mixed valence state Ce–MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem. Commun. 51(22), 4635–4638 (2015). https://doi.org/10.1039/C4CC10346G
- Y. Chong, Q. Liu, C. Ge, Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications. Nano Today 37, 101076 (2021). https://doi.org/10.1016/j.nantod.2021.101076
- Y. Wang, Z. Zhang, G. Jia, L. Zheng, J. Zhao et al., Elucidating the mechanism of the structure-dependent enzymatic activity of Fe–N/C oxidase mimics. Chem. Commun. 55(36), 5271–5274 (2019). https://doi.org/10.1039/C9CC01503E
- J. Liu, X. Jiang, L. Wang, Z. Hu, T. Wen et al., Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Res. 8(12), 4024–4037 (2015). https://doi.org/10.1007/s12274-015-0904-x
- J. Chen, Q. Ma, M. Li, D. Chao, L. Huang et al., Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 12(1), 3375 (2021). https://doi.org/10.1038/s41467-021-23737-1
- Y. Chen, T. Chen, X. Wu, G. Yang, Oxygen vacancy-engineered PEGylated MoO3−x nanops with superior sulfite oxidase mimetic activity for vitamin B1 detection. Small 15(46), 1903153 (2019). https://doi.org/10.1002/smll.201903153
- S. Biella, L. Prati, M. Rossi, Selective oxidation of D-glucose on gold catalyst. J. Catal. 206(2), 242–247 (2002). https://doi.org/10.1006/jcat.2001.3497
- M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, The catalytic activity of “Naked” gold ps. Angew. Chem. Int. Ed. 43(43), 5812–5815 (2004). https://doi.org/10.1002/anie.200460446
- R. Ragg, F. Natalio, M.N. Tahir, H. Janssen, A. Kashyap et al., Molybdenum trioxide nanops with intrinsic sulfite oxidase activity. ACS Nano 8(5), 5182–5189 (2014). https://doi.org/10.1021/nn501235j
- Y. Chen, X. Wu, T. Chen, G. Yang, Hot carriers and photothermal effects of monolayer MoOx for promoting sulfite oxidase mimetic activity. ACS Appl. Mater. Interfaces 12(17), 19357–19368 (2020). https://doi.org/10.1021/acsami.0c04987
- C. Glorieux, P.B. Calderon, Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem. 398(10), 1095–1108 (2017). https://doi.org/10.1515/hsz-2017-0131
- D. Xu, L. Wu, H. Yao, L. Zhao, Catalase-like nanozymes: classification, catalytic mechanisms, and their applications. Small 18(37), 2203400 (2022). https://doi.org/10.1002/smll.202203400
- Z. Wang, W. Wang, J. Wang, D. Wang, M. Liu et al., Single-atom catalysts with ultrahigh catalase-like activity through electron filling and orbital energy regulation. Adv. Funct. Mater. 33(2), 2209560 (2023). https://doi.org/10.1002/adfm.202209560
- B.T. Qiao, A.Q. Wang, X.F. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt-1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/nchem.1095
- I. Fridovich, Superoxide radicals, superoxide dismutases and the aerobic lifestyle. Photochem. Photobiol. 28(4–5), 733–741 (1978). https://doi.org/10.1111/j.1751-1097.1978.tb07009.x
- H. Zhao, R. Zhang, X. Yan, K. Fan, Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J. Mater. Chem. B 9(35), 6939–6957 (2021). https://doi.org/10.1039/D1TB00720C
- C. Korsvik, S. Patil, S. Seal, W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanops. Chem. Commun. 10, 1056–1058 (2007). https://doi.org/10.1039/B615134E
- H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene. Nature 318(6042), 162–163 (1985). https://doi.org/10.1038/318162a0
- S.S. Ali, J.I. Hardt, K.L. Quick, J. Sook Kim-Han, B.F. Erlanger et al., A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 37(8), 1191–1202 (2004). https://doi.org/10.1016/j.freeradbiomed.2004.07.002
- X. Shen, W. Liu, X. Gao, Z. Lu, X. Wu et al., Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J. Am. Chem. Soc. 137(50), 15882–15891 (2015). https://doi.org/10.1021/jacs.5b10346
- S. Guo, L. Guo, Unraveling the multi-enzyme-like activities of iron oxide nanozyme via a first-principles microkinetic study. J. Phys. Chem. C 123(50), 30318–30334 (2019). https://doi.org/10.1021/acs.jpcc.9b07802
- B. Yang, H. Yao, J. Yang, C. Chen, Y. Guo et al., In situ synthesis of natural antioxidase mimics for catalytic anti-inflammatory treatments: rheumatoid arthritis as an example. J. Am. Chem. Soc. 144(1), 314–330 (2022). https://doi.org/10.1021/jacs.1c09993
- I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Pharmacological potential of cerium oxide nanops. Nanoscale 3(4), 1411–1420 (2011). https://doi.org/10.1039/C0NR00875C
- L. Gabrielli, L.J. Prins, F. Rastrelli, F. Mancin, P. Scrimin, Hydrolytic nanozymes. Eur. J. Org. Chem. 2020(32), 5044–5055 (2020). https://doi.org/10.1002/ejoc.202000356
- Q. Hou, X. Zhang, M. Lin, Y. Dai, F. Xia, Organic monolayer on gold nanops as hydrolytic nanozymes. Giant 12, 100122 (2022). https://doi.org/10.1016/j.giant.2022.100122
- Y. Ding, N.H. Williams, C.A. Hunter, A synthetic vesicle-to-vesicle communication system. J. Am. Chem. Soc. 141(44), 17847–17853 (2019). https://doi.org/10.1021/jacs.9b09102
- L. Pasquato, F. Rancan, P. Scrimin, F. Mancin, C. Frigeri, N-Methylimidazole-functionalized gold nanops as catalysts for cleavage of a carboxylic acid ester. Chem. Commun. 22, 2253–2254 (2000). https://doi.org/10.1039/B005244M
- I. Fernández, J. Pérez-Juste, P. Hervés, Cationic mixed micelles as reaction medium for hydrolysis reactions. J. Solut. Chem. 44(9), 1866–1874 (2015). https://doi.org/10.1007/s10953-015-0383-4
- L.J. Prins, Emergence of complex chemistry on an organic monolayer. Acc. Chem. Res. 48(7), 1920–1928 (2015). https://doi.org/10.1021/acs.accounts.5b00173
- G. Pieters, L.J. Prins, Catalytic self-assembled monolayers on gold nanops. New J. Chem. 36(10), 1931–1939 (2012). https://doi.org/10.1039/C2NJ40424A
- P. Pengo, S. Polizzi, L. Pasquato, P. Scrimin, Carboxylate−imidazole cooperativity in dipeptide-functionalized gold nanops with esterase-like activity. J. Am. Chem. Soc. 127(6), 1616–1617 (2005). https://doi.org/10.1021/ja043547c
- T. Serizawa, Y. Hirai, M. Aizawa, Novel synthetic route to peptide-capped gold nanops. Langmuir 25(20), 12229–12234 (2009). https://doi.org/10.1021/la9021799
- D.J. Mikolajczak, J.L. Heier, B. Schade, B. Koksch, Catalytic activity of peptide–nanop conjugates regulated by a conformational change. Biomacromol 18(11), 3557–3562 (2017). https://doi.org/10.1021/acs.biomac.7b00887
- S. Liang, X.-L. Wu, M.-H. Zong, W.-Y. Lou, Construction of Zn-heptapeptide bionanozymes with intrinsic hydrolase-like activity for degradation of di(2-ethylhexyl) phthalate. J. Colloid Interface Sci. 622, 860–870 (2022). https://doi.org/10.1016/j.jcis.2022.04.122
- P. Lin, M. Cao, F. Xia, H. Liao, H. Sun et al., A phosphatase-mimetic nano-stabilizer of mast cells for long-term prevention of allergic disease. Adv. Sci. 8(8), 2004115 (2021). https://doi.org/10.1002/advs.202004115
- D.J. Mikolajczak, J. Scholz, B. Koksch, Tuning the catalytic activity and substrate specificity of peptide-nanop conjugates. ChemCatChem 10(24), 5665–5668 (2018). https://doi.org/10.1002/cctc.201801521
- D.J. Mikolajczak, B. Koksch, Peptide-gold nanop conjugates as sequential cascade catalysts. ChemCatChem 10(19), 4324–4328 (2018). https://doi.org/10.1002/cctc.201800961
- S. Li, Z. Zhou, Z. Tie, B. Wang, M. Ye et al., Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 13(1), 827 (2022). https://doi.org/10.1038/s41467-022-28344-2
- X. Shen, Z. Wang, X. Gao, Y. Zhao, Density functional theory-based method to predict the activities of nanomaterials as peroxidase mimics. ACS Catal. 10(21), 12657–12665 (2020). https://doi.org/10.1021/acscatal.0c03426
- Z. Wang, J. Wu, J.-J. Zheng, X. Shen, L. Yan et al., Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat. Commun. 12(1), 6866 (2021). https://doi.org/10.1038/s41467-021-27194-8
- X. Wang, X.J. Gao, L. Qin, C. Wang, L. Song et al., eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat. Commun. 10(1), 704 (2019). https://doi.org/10.1038/s41467-019-08657-5
- Y.H. Wei, J. Wu, Y.X. Wu, H.J. Liu, F.Q. Meng et al., Prediction and design of nanozymes using explainable machine learning. Adv. Mater. 34(27), 2201736 (2022). https://doi.org/10.1002/adma.202201736
- C.H. Zhang, Y.X. Yu, S.G. Shi, M.M. Liang, D.Q. Yang et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 22(21), 8592–8600 (2022). https://doi.org/10.1021/acs.nanolett.2c03119
- J. Razlivina, N. Serov, O. Shapovalova, V. Vinogradov, DiZyme: open-access expandable resource for quantitative prediction of nanozyme catalytic activity. Small 18(12), 2105673 (2022). https://doi.org/10.1002/smll.202105673
- J. Zhuang, A.C. Midgley, Y. Wei, Q. Liu, D. Kong et al., Machine-learning-assisted nanozyme design: lessons from materials and engineered enzymes. Adv. Mater. 885, 848 (2023). https://doi.org/10.1002/adma.202210848
- R. Zhang, X. Yan, K. Fan, Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2(7), 534–547 (2021). https://doi.org/10.1021/accountsmr.1c00074
- J.Y. Liang, W.N. Lipscomb, Binding of substrate CO2 to the active site of human carbonic anhydrase II: a molecular dynamics study. Proc. Natl. Acad. Sci. 87(10), 3675–3679 (1990). https://doi.org/10.1073/pnas.87.10.3675
- L. Gráf, A. Jancsó, L. Szilágyi, G. Hegyi, K. Pintér et al., Electrostatic complementarity within the substrate-binding pocket of trypsin. Proc. Natl. Acad. Sci. 85(14), 4961–4965 (1988). https://doi.org/10.1073/pnas.85.14.4961
- B.L. Vallee, D.S. Auld, Active-site zinc ligands and activated H2O of zinc enzymes. Proc. Natl. Acad. Sci. 87(1), 220–224 (1990). https://doi.org/10.1073/pnas.87.1.220
- B.L. Vallee, R.J. Williams, Metalloenzymes: the entatic nature of their active sites. Proc. Natl. Acad. Sci. 59(2), 498–505 (1968). https://doi.org/10.1073/pnas.59.2.498
- M. Zhao, H.-B. Wang, L.-N. Ji, Z.-W. Mao, Insights into metalloenzyme microenvironments: biomimetic metal complexes with a functional second coordination sphere. Chem. Soc. Rev. 42(21), 8360–8375 (2013). https://doi.org/10.1039/C3CS60162E
- W. Nam, High-valent iron(IV)–oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc. Chem. Res. 40(7), 522–531 (2007). https://doi.org/10.1021/ar700027f
- Q. Liang, J. Xi, X.J. Gao, R. Zhang, Y. Yang et al., A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today 35, 100935 (2020). https://doi.org/10.1016/j.nantod.2020.100935
- L. Zhang, H. Wang, X. Qu, Biosystem-inspired engineering of nanozymes for biomedical applications. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211147
- M. Wei, J. Lee, F. Xia, P. Lin, X. Hu et al., Chemical design of nanozymes for biomedical applications. Acta Biomater. 126, 15–30 (2021). https://doi.org/10.1016/j.actbio.2021.02.036
- Z. Qin, B. Chen, Y. Mao, C. Shi, Y. Li et al., Achieving ultrasmall prussian blue nanops as high-performance biomedical agents with multifunctions. ACS Appl. Mater. Interfaces 12(51), 57382–57390 (2020). https://doi.org/10.1021/acsami.0c18357
- Y. Wang, Z. Tan, Z. Zhang, P. Zhu, S.W. Tam et al., Facet-dependent activity of CeO2 nanozymes regulate the fate of human neural cell via redox homeostasis. ACS Appl. Mater. Interfaces 14(31), 35423–35433 (2022). https://doi.org/10.1021/acsami.2c09304
- Y. Wu, W. Xu, L. Jiao, Y. Tang, Y. Chen et al., Defect engineering in nanozymes. Mater. Today 52, 327–347 (2022). https://doi.org/10.1016/j.mattod.2021.10.032
- S. Dong, Y. Dong, Z. Zhao, J. Liu, S. Liu et al., “Electron transport chain interference” strategy of amplified mild-photothermal therapy and defect-engineered multi-enzymatic activities for synergistic tumor-personalized suppression. J. Am. Chem. Soc. 145(17), 9488–9507 (2023). https://doi.org/10.1021/jacs.2c09608
- H. Fan, J. Zheng, J. Xie, J. Liu, X. Gao et al., Surface ligand engineering ruthenium nanozyme superior to horseradish peroxidase for enhanced immunoassay. Adv. Mater. 23, 387 (2023). https://doi.org/10.1002/adma.202300387
- G. Tang, J. He, J. Liu, X. Yan, K. Fan, Nanozyme for tumor therapy: surface modification matters. Exploration 1(1), 75–89 (2021). https://doi.org/10.1002/EXP.20210005
- W. Xia, P. Zhang, W. Fu, L. Hu, Y. Wang, Aggregation/dispersion-mediated peroxidase-like activity of MoS2 quantum dots for colorimetric pyrophosphate detection. Chem. Commun. 55(14), 2039–2042 (2019). https://doi.org/10.1039/C8CC09799B
- X. Zhang, G. Li, G. Chen, D. Wu, Y. Wu et al., Enzyme mimics for engineered biomimetic cascade nanoreactors: mechanism, applications, and prospects. Adv. Funct. Mater. 31(50), 2106139 (2021). https://doi.org/10.1002/adfm.202106139
- M. Tang, Z. Zhang, T. Sun, B. Li, Z. Wu, Manganese-based nanozymes: preparation, catalytic mechanisms, and biomedical applications. Adv. Healthc. Mater. 11(21), e2201733 (2022). https://doi.org/10.1002/adhm.202201733
- H. Dong, Y. Fan, W. Zhang, N. Gu, Y. Zhang, Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem. 30(5), 1273–1296 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00171
- M. Fanchi, Z. Pengbo, Y. Lini, X. Lixin, L. Hongyang, Nanozymes with atomically dispersed metal centers: structure-activity relationships and biomedical applications. Chem. Eng. J. 452(2), 139411 (2022). https://doi.org/10.1016/j.cej.2022.139411
- X. Cai, L. Jiao, H. Yan, Y. Wu, W. Gu et al., Nanozyme-involved biomimetic cascade catalysis for biomedical applications. Mater. Today 44, 211–228 (2021). https://doi.org/10.1016/j.mattod.2020.12.005
- S.-Y. Yin, G. Song, Y. Yang, Y. Zhao, P. Wang et al., Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@metal–organic frameworks for enhanced photodynamic therapy. Adv. Funct. Mater. 29(25), 1901417 (2019). https://doi.org/10.1002/adfm.201901417
- D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan et al., Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 48(14), 3683–3704 (2019). https://doi.org/10.1039/C8CS00718G
- Y. Chen, Z.-H. Li, J.-J. Hu, S.-Y. Peng, L. Rong et al., Remote-controlled multi-enzyme system for enhanced tumor therapy via dark/light relay catalysis. Nanoscale Horiz. 5(2), 283–293 (2020). https://doi.org/10.1039/C9NH00583H
- Z. Ma, L. Wu, K. Han, H. Han, Pt nanozyme for O2 self-sufficient, tumor-specific oxidative damage and drug resistance reversal. Nanoscale Horiz. 4(5), 1124–1131 (2019). https://doi.org/10.1039/C9NH00088G
- R. Zhao, Y. Zhu, J. Zhou, B. Liu, Y. Du et al., Dual glutathione depletion enhanced enzyme catalytic activity for hyperthermia assisted tumor therapy on semi-metallic VSe2/Mn-CS. ACS Nano 16(7), 10904–10917 (2022). https://doi.org/10.1021/acsnano.2c03222
- Y. Wang, G.R. Jia, X.Q. Cui, X. Zhao, Q.H. Zhang et al., Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 7(2), 436–449 (2021). https://doi.org/10.1016/j.chempr.2020.10.023
- J. Zhou, D. Xu, G. Tian, Q. He, X. Zhang et al., Coordination-driven self-assembly strategy-activated Cu single-atom nanozymes for catalytic tumor-specific therapy. J. Am. Chem. Soc. 145(7), 4279–4293 (2023). https://doi.org/10.1021/jacs.2c13597
- G. Liu, J. Zhu, H. Guo, A. Sun, P. Chen et al., Mo2C-derived polyoxometalate for NIR-II photoacoustic imaging-guided chemodynamic/photothermal synergistic therapy. Angew. Chem. Int. Ed. 58(51), 18641–18646 (2019). https://doi.org/10.1002/anie.201910815
- Y. Yang, M. Chen, B. Wang, P. Wang, Y. Liu et al., NIR-II driven plasmon-enhanced catalysis for a timely supply of oxygen to overcome hypoxia-induced radiotherapy tolerance. Angew. Chem. Int. Ed. 58(42), 15069–15075 (2019). https://doi.org/10.1002/anie.201906758
- J. Xu, W. Han, P. Yang, T. Jia, S. Dong et al., Tumor microenvironment-responsive mesoporous MnO2-coated upconversion nanoplatform for self-enhanced tumor theranostics. Adv. Funct. Mater. 28(36), 1803804 (2018). https://doi.org/10.1002/adfm.201803804
- F. Liu, L. Lin, Y. Zhang, Y. Wang, S. Sheng et al., A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy. Adv. Mater. 31(40), 1902885 (2019). https://doi.org/10.1002/adma.201902885
- Z. Wang, Z. Li, Z. Sun, S. Wang, Z. Ali et al., Visualization nanozyme based on tumor microenvironment “unlocking” for intensive combination therapy of breast cancer. Sci. Adv. 6(48), eabc8733 (2020). https://doi.org/10.1126/sciadv.abc8733
- Z. Ma, M.F. Foda, H. Liang, Y. Zhao, H. Han, In situ nanozyme-amplified NIR-II phototheranostics for tumor-specific imaging and therapy. Adv. Funct. Mater. 31(37), 2103765 (2021). https://doi.org/10.1002/adfm.202103765
- M. Wang, M. Chang, Q. Chen, D. Wang, C. Li et al., Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy / phototherapy. Biomaterials 252, 120093 (2020). https://doi.org/10.1016/j.biomaterials.2020.120093
- F. Yang, S. Hu, Y. Zhang, X. Cai, Y. Huang et al., A hydrogen peroxide-responsive O2 nanogenerator for ultrasound and magnetic-resonance dual modality imaging. Adv. Mater. 24(38), 5205–5211 (2012). https://doi.org/10.1002/adma.201202367
- C. Cao, H. Zou, N. Yang, H. Li, Y. Cai et al., Fe3O4/Ag/Bi2MoO6 photoactivatable nanozyme for self-replenishing and sustainable cascaded nanocatalytic cancer therapy. Adv. Mater. 33(52), 2106996 (2021). https://doi.org/10.1002/adma.202106996
- X. Zhong, X. Wang, L. Cheng, Y.A. Tang, G. Zhan et al., GSH-depleted PtCu3 nanocages for chemodynamic- enhanced sonodynamic cancer therapy. Adv. Funct. Mater. 30(4), 1907954 (2020). https://doi.org/10.1002/adfm.201907954
- L. Feng, B. Liu, R. Xie, D. Wang, C. Qian et al., An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy. Adv. Funct. Mater. 31(5), 2006216 (2021). https://doi.org/10.1002/adfm.202006216
- D. Wang, H. Wu, S.Z.F. Phua, G. Yang, W. Qi Lim et al., Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 11(1), 357 (2020). https://doi.org/10.1038/s41467-019-14199-7
- R. Yue, C. Zhang, L. Xu, Y. Wang, G. Guan et al., Dual key co-activated nanoplatform for switchable MRI monitoring accurate ferroptosis-based synergistic therapy. Chem 8(7), 1956–1981 (2022). https://doi.org/10.1016/j.chempr.2022.03.009
- G.Q. Guan, C. Zhang, H.Y. Liu, Y.J. Wang, Z. Dong et al., Ternary alloy PtWMn as a Mn nanoreservoir for high-field MRI monitoring and highly selective ferroptosis therapy. Angew. Chem. Int. Ed. 61(31), e202117229 (2022). https://doi.org/10.1002/anie.202117229
- Z. Dong, P. Liang, G.Q. Guan, B.L. Yin, Y.J. Wang et al., Overcoming hypoxia-induced ferroptosis resistance via a F19/H1-MRI traceable core-shell nanostructure. Angew. Chem. Int. Ed. 61(48), e202206074 (2022). https://doi.org/10.1002/anie.202206074
- L. Shi, Y. Wang, C. Zhang, Y. Zhao, C. Lu et al., An acidity-unlocked magnetic nanoplatform enables self-boosting ROS generation through upregulation of lactate for imaging-guided highly specific chemodynamic therapy. Angew. Chem. Int. Ed. 60(17), 9562–9572 (2021). https://doi.org/10.1002/anie.202014415
- R. Yue, M. Zhou, X. Li, L. Xu, C. Lu et al., GSH/APE1 cascade-activated nanoplatform for imaging therapy resistance dynamics and enzyme-mediated adaptive ferroptosis. ACS Nano 17(14), 13792–13810 (2023). https://doi.org/10.1021/acsnano.3c03443
- C. Lu, C. Zhang, P. Wang, Y. Zhao, Y. Yang et al., Light-free generation of singlet oxygen through manganese-thiophene nanosystems for pH-responsive chemiluminescence imaging and tumor therapy. Chem 6(9), 2314–2334 (2020). https://doi.org/10.1016/j.chempr.2020.06.024
- L. Teng, X. Han, Y. Liu, C. Lu, B. Yin et al., Smart nanozyme platform with activity-correlated ratiometric molecular imaging for predicting therapeutic effects. Angew. Chem. Int. Ed. 60(50), 26142–26150 (2021). https://doi.org/10.1002/anie.202110427
- X. Huang, J. Song, B.C. Yung, X. Huang, Y. Xiong et al., Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 47(8), 2873–2920 (2018). https://doi.org/10.1039/C7CS00612H
- Y. Deng, W. Zhan, G. Liang, Intracellular self-assembly of peptide conjugates for tumor imaging and therapy. Adv. Healthc. Mater. 10(1), 2001211 (2021). https://doi.org/10.1002/adhm.202001211
- Y. Fan, S. Wang, F. Zhang, Optical multiplexed bioassays for improved biomedical diagnostics. Angew. Chem. Int. Ed. 58(38), 13208–13219 (2019). https://doi.org/10.1002/anie.201901964
- Z. Yang, Y. Dai, C. Yin, Q. Fan, W. Zhang et al., Activatable semiconducting theranostics: Simultaneous generation and ratiometric photoacoustic imaging of reactive oxygen species in vivo. Adv. Mater. 30(23), 1707509 (2018). https://doi.org/10.1002/adma.201707509
- K.C. Nicolaou, J.S. Chen, The art of total synthesis through cascade reactions. Chem. Soc. Rev. 38(11), 2993–3009 (2009). https://doi.org/10.1039/B903290H
- S. Gao, H. Lin, H. Zhang, H. Yao, Y. Chen et al., Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 6(3), 1801733 (2019). https://doi.org/10.1002/advs.201801733
- L. Wang, X. Zhang, Z. You, Z. Yang, M. Guo et al., A molybdenum disulfide nanozyme with charge-enhanced activity for ultrasound-mediated cascade-catalytic tumor ferroptosis. Angew. Chem. Int. Ed. 62(11), e202217448 (2023). https://doi.org/10.1002/anie.202217448
- M. Chang, Z. Wang, C. Dong, R. Zhou, L. Chen et al., Ultrasound-amplified enzyodynamic tumor therapy by perovskite nanoenzyme-enabled cell pyroptosis and cascade catalysis. Adv. Mater. 35(7), 2208817 (2023). https://doi.org/10.1002/adma.202208817
- Y. Zhao, W.H. Kong, P. Wang, G.S. Song, Z.L. Song et al., Tumor-specific multipath nucleic acid damages strategy by symbiosed nanozyme@enzyme with synergistic self-cyclic catalysis. Small 17(28), 2100766 (2021). https://doi.org/10.1002/smll.202100766
- X. Meng, D. Li, L. Chen, H. He, Q. Wang et al., High-performance self-cascade pyrite nanozymes for apoptosis–ferroptosis synergistic tumor therapy. ACS Nano 15(3), 5735–5751 (2021). https://doi.org/10.1021/acsnano.1c01248
- S.M. Dong, Y.S. Dong, T. Jia, F.M. Zhang, Z. Wang et al., Sequential catalytic, magnetic targeting nanoplatform for synergistic photothermal and NIR-enhanced chemodynamic therapy. Chem. Mater. 32(23), 9868–9881 (2020). https://doi.org/10.1021/acs.chemmater.9b05170
- M. Huo, L. Wang, Y. Chen, J. Shi, Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8(1), 357 (2017). https://doi.org/10.1038/s41467-017-00424-8
- R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze et al., V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 21(3), 501–509 (2011). https://doi.org/10.1002/adfm.201001302
- L. Han, L. Zeng, M. Wei, C.M. Li, A. Liu, A V2O3-ordered mesoporous carbon composite with novel peroxidase-like activity towards the glucose colorimetric assay. Nanoscale 7(27), 11678–11685 (2015). https://doi.org/10.1039/C5NR02694F
- L. Tian, J. Qi, K. Qian, O. Oderinde, Q. Liu et al., Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer. J. Electroanal. Chem. 812, 1–9 (2018). https://doi.org/10.1016/j.jelechem.2017.12.012
- A. Jiao, L. Xu, Y. Tian, Q. Cui, X. Liu et al., Cu2O nanocubes–grafted highly dense Au nanops with modulated electronic structures for improving peroxidase catalytic performances. Talanta 225, 121990 (2021). https://doi.org/10.1016/j.talanta.2020.121990
- C. Liu, M. Zhang, H. Geng, P. Zhang, Z. Zheng et al., NIR enhanced peroxidase-like activity of Au@CeO2 hybrid nanozyme by plasmon-induced hot electrons and photothermal effect for bacteria killing. Appl. Catal. B 295, 120317 (2021). https://doi.org/10.1016/j.apcatb.2021.120317
- L. Huang, S. Zhao, J. Wu, L. Yu, N. Singh et al., Photodynamic therapy for hypoxic tumors: advances and perspectives. Coord. Chem. Rev. 438, 213888 (2021). https://doi.org/10.1016/j.ccr.2021.213888
- J.D. Lambeth, NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4(3), 181–189 (2004). https://doi.org/10.1038/nri1312
- S. Son, J.H. Kim, X. Wang, C. Zhang, S.A. Yoon et al., Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 49(11), 3244–3261 (2020). https://doi.org/10.1039/C9CS00648F
- S. Liang, X. Deng, P.A. Ma, Z. Cheng, J. Lin, Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv. Mater. 32(47), e2003214 (2020). https://doi.org/10.1002/adma.202003214
- N.R. Patel, B.S. Pattni, A.H. Abouzeid, V.P. Torchilin, Nanopreparations to overcome multidrug resistance in cancer. Adv. Drug Deliv. Rev. 65(13–14), 1748–1762 (2013). https://doi.org/10.1016/j.addr.2013.08.004
- H. Liu, D. Chen, L. Li, T. Liu, L. Tan et al., Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed. 50(4), 891–895 (2011). https://doi.org/10.1002/anie.201002820
- X. Zhu, Y. Gong, Y. Liu, C. Yang, S. Wu et al., Ru@CeO2 yolk shell nanozymes: Oxygen supply in situ enhanced dual chemotherapy combined with photothermal therapy for orthotopic/subcutaneous colorectal cancer. Biomaterials 242, 119923 (2020). https://doi.org/10.1016/j.biomaterials.2020.119923
- F. Li, H. Sun, J. Ren, B. Zhang, X. Hu et al., A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance. Nat. Commun. 13(1), 7361 (2022). https://doi.org/10.1038/s41467-022-35022-w
- X. Zeng, J. Sun, S. Li, J. Shi, H. Gao et al., Blood-triggered generation of platinum nanop functions as an anti-cancer agent. Nat. Commun. 11(1), 567 (2020). https://doi.org/10.1038/s41467-019-14131-z
- J. Chen, X. Wang, Y. Yuan, H. Chen, L. Zhang et al., Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair–inhibiting (HYDRI) nanomedicine. Sci. Adv. 7(13), eabc5267 (2021). https://doi.org/10.1126/sciadv.abc5267
- A. Yimit, O. Adebali, A. Sancar, Y. Jiang, Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nat. Commun. 10(1), 309 (2019). https://doi.org/10.1038/s41467-019-08290-2
- S. Rottenberg, C. Disler, P. Perego, The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 21(1), 37–50 (2021). https://doi.org/10.1038/s41568-020-00308-y
- C.J. Lord, A. Ashworth, The DNA damage response and cancer therapy. Nature 481(7381), 287–294 (2012). https://doi.org/10.1038/nature10760
- P. Bouwman, J. Jonkers, The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat. Rev. Cancer 12(9), 587–598 (2012). https://doi.org/10.1038/nrc3342
- S.P. Jackson, J. Bartek, The DNA-damage response in human biology and disease. Nature 461(7267), 1071–1078 (2009). https://doi.org/10.1038/nature08467
- D.M. Zhu, H. Chen, C.Y. Huang, G.X. Li, X. Wang et al., H2O2 self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming “cold” tumors. Adv. Funct. Mater. 32(16), 2110268 (2022). https://doi.org/10.1002/adfm.202110268
- J.N. Xie, L.J. Gong, S. Zhu, Y. Yong, Z.J. Gu et al., Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv. Mater. 31(3), 25 (2019). https://doi.org/10.1002/adma.201802244
- C. Zhang, L. Yan, Z. Gu, Y. Zhao, Strategies based on metal-based nanops for hypoxic-tumor radiotherapy. Chem. Sci. 10(29), 6932–6943 (2019). https://doi.org/10.1039/C9SC02107H
- X. Yang, L. Gao, Q. Guo, Y. Li, Y. Ma et al., Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy. Nano Res. 13(10), 2579–2594 (2020). https://doi.org/10.1007/s12274-020-2722-z
- C. Sandhya, M.C. Jared, D. Wei, G. Anna, N. Saadia et al., Mechanisms for tuning engineered nanomaterials to enhance radiation therapy of cancer. Adv. Sci. 7(24), 2003584 (2020). https://doi.org/10.1002/advs.202003584
- R.F. Zhang, L. Chen, Q. Liang, J.Q. Xi, H.Q. Zhao et al., Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy. Nano Today 41, 101317 (2021). https://doi.org/10.1016/j.nantod.2021.101317
- I. Martínez-Reyes, N.S. Chandel, Cancer metabolism: looking forward. Nat. Rev. Cancer 21(10), 669–680 (2021). https://doi.org/10.1038/s41568-021-00378-6
- C.A. Lyssiotis, A.C. Kimmelman, Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27(11), 863–875 (2017). https://doi.org/10.1016/j.tcb.2017.06.003
- W. Xie, W.-W. Deng, M. Zan, L. Rao, G.-T. Yu et al., Cancer cell membrane camouflaged nanops to realize starvation therapy together with checkpoint blockades for enhancing cancer therapy. ACS Nano 13(3), 2849–2857 (2019). https://doi.org/10.1021/acsnano.8b03788
- Z. Yu, P. Zhou, W. Pan, N. Li, B. Tang, A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat. Commun. 9(1), 5044 (2018). https://doi.org/10.1038/s41467-018-07197-8
- L.K. Boroughs, R.J. DeBerardinis, Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17(4), 351–359 (2015). https://doi.org/10.1038/ncb3124
- J. Wu, Y. Zhang, K. Jiang, X. Wang, N.T. Blum et al., Enzyme-engineered conjugated polymer nanoplatform for activatable companion diagnostics and multistage augmented synergistic therapy. Adv. Mater. 34(18), 2200062 (2022). https://doi.org/10.1002/adma.202200062
- X. Li, C. Jiang, Q. Wang, S. Yang, Y. Cao et al., A “valve-closing” starvation strategy for amplification of tumor-specific chemotherapy. Adv. Sci. 9(8), 2104671 (2022). https://doi.org/10.1002/advs.202104671
- C. Zhang, D. Ni, Y. Liu, H. Yao, W. Bu et al., Magnesium silicide nanops as a deoxygenation agent for cancer starvation therapy. Nat. Nanotechnol. 12, 378 (2017). https://doi.org/10.1038/nnano.2016.280
- Z. Zhou, J. Huang, Z. Zhang, L. Zhang, Y. Cao et al., Bimetallic PdPt-based nanocatalysts for photothermal-augmented tumor starvation and sonodynamic therapy in NIR-II biowindow assisted by an oxygen self-supply strategy. Chem. Eng. J. 435, 135085 (2022). https://doi.org/10.1016/j.cej.2022.135085
- Y. Zou, W. Liu, W. Sun, J. Du, J. Fan et al., Highly inoxidizable heptamethine cyanine–glucose oxidase conjugate nanoagent for combination of enhanced photothermal therapy and tumor starvation. Adv. Funct. Mater. 32(17), 2111853 (2022). https://doi.org/10.1002/adfm.202111853
- D. Zhu, T. Zhang, Y. Li, C. Huang, M. Suo et al., Tumor-derived exosomes co-delivering aggregation-induced emission luminogens and proton pump inhibitors for tumor glutamine starvation therapy and enhanced type-I photodynamic therapy. Biomaterials 283, 121462 (2022). https://doi.org/10.1016/j.biomaterials.2022.121462
- M. Wang, M. Chang, C. Li, Q. Chen, Z. Hou et al., Tumor-microenvironment-activated reactive oxygen species amplifier for enzymatic cascade cancer starvation/chemodynamic /immunotherapy. Adv. Mater. 34(4), 2106010 (2022). https://doi.org/10.1002/adma.202106010
- K. Li, C. Lin, M. Li, K. Xu, Y. He et al., Multienzyme-like reactivity cooperatively impairs glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways in triple-negative breast cancer for sensitized ferroptosis therapy. ACS Nano 16(2), 2381–2398 (2022). https://doi.org/10.1021/acsnano.1c08664
- Z.H. Lei, C.X. Sun, P. Pei, S.F. Wang, D.D. Li et al., Stable, wavelength-tunable fluorescent dyes in the NIR-II region for in vivo high-contrast bioimaging and multiplexed biosensing. Angew. Chem. Int. Ed. 58(24), 8166–8171 (2019). https://doi.org/10.1002/anie.201904182
- Z. Liu, Q. Liu, H. Zhang, X. Zhang, J. Wu et al., Genetically engineered protein corona-based cascade nanozymes for enhanced tumor therapy. Adv. Funct. Mater. 32(51), 2208513 (2022). https://doi.org/10.1002/adfm.202208513
- Y.J. Li, Y. Zhang, Y. Dong, O.U. Akakuru, X.H. Yao et al., Ablation of gap junction protein improves the efficiency of nanozyme-mediated catalytic/starvation/mild-temperature photothermal therapy. Adv. Mater. 35(22), 2210464 (2023). https://doi.org/10.1002/adma.202210464
- G. Ningqiang, C.S. Neil, M.B. Margaret, H.J. Carl, J.M. Michael, Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol. 16(1), 25–36 (2021). https://doi.org/10.1038/s41565-020-00822-y
- M. Yarchoan, A. Hopkins, E.M. Jaffee, Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377(25), 2500–2501 (2017). https://doi.org/10.1056/NEJMc1713444
- J. Nam, S. Son, K.S. Park, W. Zou, L.D. Shea et al., Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4(6), 398–414 (2019). https://doi.org/10.1038/s41578-019-0108-1
- C.H. Patel, R.D. Leone, M.R. Horton, J.D. Powell, Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat. Rev. Drug Discov. 18(9), 669–688 (2019). https://doi.org/10.1038/s41573-019-0032-5
- X. Zhang, Y. Kang, J. Wang, J. Yan, Q. Chen et al., Engineered PD-L1-expressing platelets reverse new-onset type 1 diabetes. Adv. Mater. 32(26), 1907692 (2020). https://doi.org/10.1002/adma.201907692
- Z. Jiang, Z. Liu, M. Li, C. Chen, X. Wang, Increased glycolysis correlates with elevated immune activity in tumor immune microenvironment. EBioMed 42, 431–442 (2019). https://doi.org/10.1016/j.ebiom.2019.03.068
- C.-H. Chang, J. Qiu, D. O’Sullivan, M.D. Buck, T. Noguchi et al., Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6), 1229–1241 (2015). https://doi.org/10.1016/j.cell.2015.08.016
- S. Zhang, Y. Zhang, Y. Feng, J. Wu, Y. Hu et al., Biomineralized two-enzyme nanops regulate tumor glycometabolism inducing tumor cell pyroptosis and robust antitumor immunotherapy. Adv. Mater. 34(50), 2206851 (2022). https://doi.org/10.1002/adma.202206851
- Z. Zhao, S. Dong, Y. Liu, J. Wang, L. Ba et al., Tumor microenvironment-activable manganese-boosted catalytic immunotherapy combined with PD-1 checkpoint blockade. ACS Nano 16(12), 20400–20418 (2022). https://doi.org/10.1021/acsnano.2c06646
- M. de Miguel, E. Calvo, Clinical challenges of immune checkpoint inhibitors. Cancer Cell 38(3), 326–333 (2020). https://doi.org/10.1016/j.ccell.2020.07.004
- C. Zhang, K. Pu, Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem. Soc. Rev. 49(13), 4234–4253 (2020). https://doi.org/10.1039/C9CS00773C
- L. Liu, Y. Pan, C. Zhao, P. Huang, X. Chen et al., Boosting checkpoint immunotherapy with biomaterials. ACS Nano 17(4), 3225–3258 (2023). https://doi.org/10.1021/acsnano.2c11691
- Q. Chen, Y. He, Y. Wang, C. Li, Y. Zhang et al., Penetrable nanoplatform for “cold” tumor immune microenvironment reeducation. Adv. Sci. 7(17), 2000411 (2020). https://doi.org/10.1002/advs.202000411
References
H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660
R.A. Sharma, R. Plummer, J.K. Stock, T.A. Greenhalgh, O. Ataman et al., Clinical development of new drug–radiotherapy combinations. Nat. Rev. Clin. Oncol. 13(10), 627–642 (2016). https://doi.org/10.1038/nrclinonc.2016.79
H. Greenlee, M.J. DuPont-Reyes, L.G. Balneaves, L.E. Carlson, M.R. Cohen et al., Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA-Cancer J. Clin. 67(3), 195–232 (2017). https://doi.org/10.3322/caac.21397
D.E. Citrin, Recent developments in radiotherapy. N. Engl. J. Med. 377(11), 1065–1075 (2017). https://doi.org/10.1056/NEJMra1608986
J.L. Markman, A. Rekechenetskiy, E. Holler, J.Y. Ljubimova, Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev. 65(13–14), 1866–1879 (2013). https://doi.org/10.1016/j.addr.2013.09.019
Y. Yang, Z.T. Zeng, E. Almatrafi, D.L. Huang, C. Zhang et al., Core-shell structured nanops for photodynamic therapy-based cancer treatment and related imaging. Coord. Chem. Rev. 458, 214427 (2022). https://doi.org/10.1016/j.ccr.2022.214427
H.T. Sun, Q. Zhang, J.C. Li, S.J. Peng, X.L. Wang et al., Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 37, 101073 (2021). https://doi.org/10.1016/j.nantod.2020.101073
S. Liu, X.T. Pan, H.Y. Liu, Two-dimensional nanomaterials for photothermal therapy. Angew. Chem. Int. Ed. 59(15), 5890–5900 (2020). https://doi.org/10.1002/anie.201911477
Z.L. Ding, Y.H. Gu, C. Zheng, Y.Q. Gu, J. Yang et al., Organic small molecule-based photothermal agents for cancer therapy: design strategies from single-molecule optimization to synergistic enhancement. Coord. Chem. Rev. 464, 214564 (2022). https://doi.org/10.1016/j.ccr.2022.214564
P.-C. Lo, M. Salome Rodriguez-Morgade, R.K. Pandey, D.K.P. Ng, T. Torres et al., The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 49(4), 1041–1056 (2020). https://doi.org/10.1039/C9CS00129H
X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17(11), 657–674 (2020). https://doi.org/10.1038/s41571-020-0410-2
U. Chilakamarthi, L. Giribabu, Photodynamic therapy: past, present and future. Chem. Rec. 17(8), 775–802 (2017). https://doi.org/10.1002/tcr.201600121
Y. Liu, P. Bhattarai, Z.F. Dai, X.Y. Chen, Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48(7), 2053–2108 (2019). https://doi.org/10.1039/C8CS00618K
C. Xu, K.Y. Pu, Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50(2), 1111–1137 (2021). https://doi.org/10.1039/D0CS00664E
X. Deng, Z. Shao, Y. Zhao, Solutions to the drawbacks of photothermal and photodynamic cancer therapy. Adv. Sci. 8(3), 2002504 (2021). https://doi.org/10.1002/advs.202002504
Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
H. Wang, X. Zhang, Y. Xie, Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Mater. Sci. Eng. R. Rep. 130, 1–39 (2018). https://doi.org/10.1016/j.mser.2018.04.002
M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016). https://doi.org/10.1021/acs.chemrev.5b00462
B. Yang, Y. Chen, J. Shi, Nanocatalytic medicine. Adv. Mater. 31(39), e1901778 (2019). https://doi.org/10.1002/adma.201901778
Q. Bao, P. Hu, Y. Xu, T. Cheng, C. Wei et al., Simultaneous blood–brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanops. ACS Nano 12(7), 6794–6805 (2018). https://doi.org/10.1021/acsnano.8b01994
B.W. Yang, Y. Chen, J.L. Shi, Exogenous/endogenous-triggered mesoporous silica cancer nanomedicine. Adv. Healthc. Mater. 7(20), e1800268 (2018). https://doi.org/10.1002/adhm.201800268
K. Lu, T. Aung, N. Guo, R. Weichselbaum, W. Lin, Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 30(37), 1707634 (2018). https://doi.org/10.1002/adma.201707634
B.S. Pattni, V.V. Chupin, V.P. Torchilin, New developments in liposomal drug delivery. Chem. Rev. 115(19), 10938–10966 (2015). https://doi.org/10.1021/acs.chemrev.5b00046
L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanops. Chem. Rev. 118(10), 4981–5079 (2018). https://doi.org/10.1021/acs.chemrev.7b00776
M. Stubbs, P.M.J. McSheehy, J.R. Griffiths, C.L. Bashford, Causes and consequences of tumour acidity and implications for treatment. Mol. Med. Today 6(1), 15–19 (2000). https://doi.org/10.1016/S1357-4310(99)01615-9
J. Zou, F. Zhang, S. Zhang, S.F. Pollack, M. Elsabahy et al., Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery. Adv. Healthc. Mater. 3(3), 441–448 (2014). https://doi.org/10.1002/adhm.201300235
J. Liu, Q. Chen, L. Feng, Z. Liu, Nanomedicine for tumor microenvironment modulation and cancer treatment enhancement. Nano Today 21, 55–73 (2018). https://doi.org/10.1016/j.nantod.2018.06.008
A.V.V.V. Ravi Kiran, G. Kusuma Kumari, P.T. Krishnamurthy, R.R. Khaydarov, Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater. Sci. 9(23), 7667–7704 (2021). https://doi.org/10.1039/D1BM01127H
M. Upreti, A. Jyoti, P. Sethi, Tumor microenvironment and nanotherapeutics. Transl. Cancer Res. 2(4), 309–319 (2013)
L.Z. Feng, Z.L. Dong, D.L. Tao, Y.C. Zhang, Z. Liu, The acidic tumor microenvironment: a target for smart cancer nano-theranostics. Natl. Sci. Rev. 5(2), 269–286 (2018). https://doi.org/10.1093/nsr/nwx062
W. Zhang, J. Lu, X. Gao, P. Li, W. Zhang et al., Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with CuII as the active center. Angew. Chem. Int. Ed. 57(18), 4891–4896 (2018). https://doi.org/10.1002/anie.201710800
L. Yu, Y. Chen, H. Chen, H2O2-responsive theranostic nanomedicine. Chin. Chem. Lett. 28(9), 1841–1850 (2017). https://doi.org/10.1016/j.cclet.2017.05.023
N.E. Sounni, A. Noel, Targeting the tumor microenvironment for cancer therapy. Clin. Chem. 59(1), 85–93 (2013). https://doi.org/10.1373/clinchem.2012.185363
Y. Xiao, D. Yu, Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 221, 107753 (2021). https://doi.org/10.1016/j.pharmthera.2020.107753
H.-J. Li, J.-Z. Du, J. Liu, X.-J. Du, S. Shen et al., Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration. ACS Nano 10(7), 6753–6761 (2016). https://doi.org/10.1021/acsnano.6b02326
J.-X. Fan, M.-Y. Peng, H. Wang, H.-R. Zheng, Z.-L. Liu et al., Engineered bacterial bioreactor for tumor therapy via Fenton-like reaction with localized H2O2 generation. Adv. Mater. 31(16), 1808278 (2019). https://doi.org/10.1002/adma.201808278
B. Ma, S. Wang, F. Liu, S. Zhang, J. Duan et al., Self-assembled copper–amino acid nanops for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 141(2), 849–857 (2019). https://doi.org/10.1021/jacs.8b08714
Z. He, Y. Dai, X. Li, D. Guo, Y. Liu et al., Hybrid nanomedicine fabricated from photosensitizer-terminated metal–organic framework nanops for photodynamic therapy and hypoxia-activated cascade chemotherapy. Small 15(4), 1804131 (2019). https://doi.org/10.1002/smll.201804131
T. Hao, J. Li, F. Yao, D. Dong, Y. Wang et al., Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in brown adipose-derived stem cells and cardiac repair. ACS Nano 11(6), 5474–5488 (2017). https://doi.org/10.1021/acsnano.7b00221
D. Furtado, M. Björnmalm, S. Ayton, A.I. Bush, K. Kempe et al., Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv. Mater. 30(46), 1801362 (2018). https://doi.org/10.1002/adma.201801362
H. Lin, Y. Chen, J. Shi, Nanop-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 47(6), 1938–1958 (2018). https://doi.org/10.1039/C7CS00471K
L. Gao, H. Koo, Do catalytic nanops offer an improved therapeutic strategy to combat dental biofilms? Nanomedicine 12(4), 275–279 (2017). https://doi.org/10.2217/nnm-2016-0400
Z.A. Zhang, K.L. Fan, Bioorthogonal nanozymes: an emerging strategy for disease therapy. Nanoscale 15(1), 41–62 (2022). https://doi.org/10.1039/D2NR05920G
Y.C. Li, R.F. Zhang, X.Y. Yan, K.L. Fan, Machine learning facilitating the rational design of nanozymes. J. Mater. Chem. B 11(28), 6466–6477 (2023). https://doi.org/10.1039/D3TB00842H
Q. Li, T.T. Wu, X.W. Fan, X.B. Guo, W. Jiang et al., Multifaceted nanozymes for synergistic antitumor therapy: a review. Mater. Des. 224, 111430 (2022). https://doi.org/10.1016/j.matdes.2022.111430
X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14(1), 95 (2022). https://doi.org/10.1007/s40820-022-00828-2
X. Ding, Z. Zhao, Y. Zhang, M. Duan, C. Liu et al., Activity regulating strategies of nanozymes for biomedical applications. Small 19(11), 2207142 (2023). https://doi.org/10.1002/smll.202207142
W. Yang, X. Yang, L. Zhu, H. Chu, X. Li et al., Nanozymes: activity origin, catalytic mechanism, and biological application. Coord. Chem. Rev. 448, 214170 (2021). https://doi.org/10.1016/j.ccr.2021.214170
R. Wolfenden, M.J. Snider, The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 34(12), 938–945 (2001). https://doi.org/10.1021/ar000058i
U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore et al., Engineering the third wave of biocatalysis. Nature 485(7397), 185–194 (2012). https://doi.org/10.1038/nature11117
R.R. Breaker, DNA enzymes. Nat. Biotechnol. 15(5), 427–431 (1997). https://doi.org/10.1038/nbt0597-427
A.J. Kirby, Efficiency of proton transfer catalysis in models and enzymes. Acc. Chem. Res. 30(7), 290–296 (1997). https://doi.org/10.1021/ar960056r
I. Hubatsch, M. Ridderström, B. Mannervik, Human glutathione transferase A4–4: an Alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem. J. 330(1), 175–179 (1998). https://doi.org/10.1042/bj3300175
J. Haseloff, W.L. Gerlach, Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334(6183), 585–591 (1988). https://doi.org/10.1038/334585a0
M. Liang, X. Yan, Nanozymes: from new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 52(8), 2190–2200 (2019). https://doi.org/10.1021/acs.accounts.9b00140
Y. Lin, J. Ren, X. Qu, Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc. Chem. Res. 47(4), 1097–1105 (2014). https://doi.org/10.1021/ar400250z
H. Wei, E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 42(14), 6060–6093 (2013). https://doi.org/10.1039/C3CS35486E
J. Wu, X. Wang, Q. Wang, Z. Lou, S. Li et al., Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev. 48(4), 1004–1076 (2019). https://doi.org/10.1039/C8CS00457A
F. Manea, F.B. Houillon, L. Pasquato, P. Scrimin, Nanozymes: gold-nanop-based transphosphorylation catalysts. Angew. Chem. Int. Ed. 43(45), 6165–6169 (2004). https://doi.org/10.1002/anie.200460649
L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanops. Nat. Nanotechnol. 2(9), 577–583 (2007). https://doi.org/10.1038/nnano.2007.260
B. Xu, H. Wang, W. Wang, L. Gao, S. Li et al., A single-atom nanozyme for wound disinfection applications. Angew. Chem. Int. Ed. 58(15), 4911–4916 (2019). https://doi.org/10.1002/anie.201813994
Y. Sang, F. Cao, W. Li, L. Zhang, Y. You et al., Bioinspired construction of a nanozyme-based H2O2 homeostasis disruptor for intensive chemodynamic therapy. J. Am. Chem. Soc. 142(11), 5177–5183 (2020). https://doi.org/10.1021/jacs.9b12873
W. Feng, X. Han, H. Hu, M. Chang, L. Ding et al., 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 12(1), 2203 (2021). https://doi.org/10.1038/s41467-021-22278-x
Z. Zhou, Y. Wang, F. Peng, F. Meng, J. Zha et al., Intercalation-activated layered MoO3 nanobelts as biodegradable nanozymes for tumor-specific photo-enhanced catalytic therapy. Angew. Chem. Int. Ed. 61(16), e202115939 (2022). https://doi.org/10.1002/anie.202115939
W. Gao, J. He, L. Chen, X. Meng, Y. Ma et al., Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nat. Commun. 14(1), 160 (2023). https://doi.org/10.1038/s41467-023-35828-2
H. Ding, Y. Cai, L. Gao, M. Liang, B. Miao et al., Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma. Nano Lett. 19(1), 203–209 (2019). https://doi.org/10.1021/acs.nanolett.8b03709
H. Wang, K. Wan, X. Shi, Recent advances in nanozyme research. Adv. Mater. 31(45), 1805368 (2019). https://doi.org/10.1002/adma.201805368
Q. Liu, A. Zhang, R. Wang, Q. Zhang, D. Cui, A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 13(1), 154 (2021). https://doi.org/10.1007/s40820-021-00674-8
H. Sun, Y. Zhou, J. Ren, X. Qu, Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew. Chem. Int. Ed. 57(30), 9224–9237 (2018). https://doi.org/10.1002/anie.201712469
D.M. He, M.M. Yan, P.J. Sun, Y.Q. Sun, L.B. Qu et al., Recent progress in carbon-dots-based nanozymes for chemosensing and biomedical applications. Chin. Chem. Lett. 32(10), 2994–3006 (2021). https://doi.org/10.1016/j.cclet.2021.03.078
L.-F. Javier, D. Bhaskar, E. Christopher, C. Cuong, Gold nanozymes: from concept to biomedical applications. Nano-Micro Lett. 13(1), 10 (2020). https://doi.org/10.1007/s40820-020-00532-z
M. Lang, J. Fuben, F. Xin, W. Liyun, H. Chao et al., Metal-organic-framework-engineered enzyme-mimetic catalysts. Adv. Mater. 32(49), e2003065 (2020). https://doi.org/10.1002/adma.202003065
X. Niu, X. Li, Z. Lyu, J. Pan, S. Ding et al., Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chem. Commun. 56(77), 11338–11353 (2020). https://doi.org/10.1039/D0CC04890A
O.L.-C. Diana, G.-G. Reyna Berenice, S. Ashutosh, B. Muhammad, P.-S. Roberto et al., Bioactive material-based nanozymes with multifunctional attributes for biomedicine: expanding antioxidant therapeutics for neuroprotection, cancer, and anti-inflammatory pathologies. Coord. Chem. Rev. 469, 214685 (2022). https://doi.org/10.1016/j.ccr.2022.214685
X. Fan, F. Yang, C.X. Nie, L. Ma, C. Cheng et al., Biocatalytic nanomaterials: a new pathway for bacterial disinfection. Adv. Mater. 33(33), e2100637 (2021). https://doi.org/10.1002/adma.202100637
Y.X. Shang, F.S. Liu, Y.N. Wang, N. Li, B.Q. Ding, Enzyme mimic nanomaterials and their biomedical applications. ChemBioChem 21(17), 2408–2418 (2020). https://doi.org/10.1002/cbic.202000123
Y. Ai, Z.-N. Hu, X. Liang, H.-B. Sun, H. Xin et al., Recent advances in nanozymes: from matters to bioapplications. Adv. Funct. Mater. 32(14), 2110432 (2022). https://doi.org/10.1002/adfm.202110432
K. Fan, H. Wang, J. Xi, Q. Liu, X. Meng et al., Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chem. Commun. 53(2), 424–427 (2017). https://doi.org/10.1039/C6CC08542C
Q. Wang, C.Y. Li, X.Y. Wang, J. Pu, S. Zhang et al., eg occupancy as a predictive descriptor for spinel oxide nanozymes. Nano Lett. 22(24), 10003–10009 (2022). https://doi.org/10.1021/acs.nanolett.2c03598
A.P. Nagvenkar, A. Gedanken, Cu0.89Zn0.11O, a new peroxidase-mimicking nanozyme with high sensitivity for glucose and antioxidant detection. ACS Appl. Mater. Interfaces 8(34), 22301–22308 (2016). https://doi.org/10.1021/acsami.6b05354
F. Gong, N. Yang, Y. Wang, M. Zhuo, Q. Zhao et al., Oxygen-deficient bimetallic oxide FeWOX nanosheets as peroxidase-like nanozyme for sensing cancer via photoacoustic imaging. Small 16(46), 2003496 (2020). https://doi.org/10.1002/smll.202003496
S. Li, L. Shang, B. Xu, S. Wang, K. Gu et al., A nanozyme with photo-enhanced dual enzyme-like activities for deep pancreatic cancer therapy. Angew. Chem. Int. Ed. 58(36), 12624–12631 (2019). https://doi.org/10.1002/anie.201904751
H. Su, D.-D. Liu, M. Zhao, W.-L. Hu, S.-S. Xue et al., Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanops and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl. Mater. Interfaces 7(15), 8233–8242 (2015). https://doi.org/10.1021/acsami.5b01271
G. Jin, J. Liu, C. Wang, W. Gu, G. Ran et al., Ir nanops with multi-enzyme activities and its application in the selective oxidation of aromatic alcohols. Appl. Catal. B 267, 118725 (2020). https://doi.org/10.1016/j.apcatb.2020.118725
J.-M. Park, H.-W. Jung, Y.W. Chang, H.-S. Kim, M.-J. Kang et al., Chemiluminescence lateral flow immunoassay based on Pt nanop with peroxidase activity. Anal. Chim. Acta 853, 360–367 (2015). https://doi.org/10.1016/j.aca.2014.10.011
J. Wang, J. Sun, W. Hu, Y. Wang, T. Chou et al., A porous Au@Rh bimetallic core–shell nanostructure as an H2O2-driven oxygenerator to alleviate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 32(22), 2001862 (2020). https://doi.org/10.1002/adma.202001862
Y. Zhang, J. Zhao, L. Zhang, Y. Zhao, Y. Zhang et al., A cascade nanoreactor for enhancing sonodynamic therapy on colorectal cancer via synergistic ROS augment and autophagy blockage. Nano Today 49, 101798 (2023). https://doi.org/10.1016/j.nantod.2023.101798
B. Hu, X. Xiao, P. Chen, J. Qian, G. Yuan et al., Enhancing anti-tumor effect of ultrasensitive bimetallic RuCu nanops as radiosensitizers with dual enzyme-like activities. Biomaterials 290, 121811 (2022). https://doi.org/10.1016/j.biomaterials.2022.121811
M. Hou, H. Su, Q. Wu, W. Sun, P. Zhang et al., A self-enhancing nanoreactor reinforces radioimmunotherapy by reprogramming nutrients and redox metabolisms. Adv. Funct. Mater. 33(16), 2212510 (2023). https://doi.org/10.1002/adfm.202212510
J. Xi, R. Zhang, L. Wang, W. Xu, Q. Liang et al., A nanozyme-based artificial peroxisome ameliorates hyperuricemia and ischemic stroke. Adv. Funct. Mater. 31(9), 2007130 (2021). https://doi.org/10.1002/adfm.202007130
K. Fan, J. Xi, L. Fan, P. Wang, C. Zhu et al., In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 9(1), 1440 (2018). https://doi.org/10.1038/s41467-018-03903-8
S. Ji, B. Jiang, H. Hao, Y. Chen, J. Dong et al., Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4(5), 407–417 (2021). https://doi.org/10.1038/s41929-021-00609-x
M. Wen, J. Ouyang, C. Wei, H. Li, W. Chen et al., Artificial enzyme catalyzed cascade reactions: antitumor immunotherapy reinforced by NIR-II light. Angew. Chem. Int. Ed. 58(48), 17425–17432 (2019). https://doi.org/10.1002/anie.201909729
X. Wei, J. Chen, M.C. Ali, J.C. Munyemana, H. Qiu, Cadmium cobaltite nanosheets synthesized in basic deep eutectic solvents with oxidase-like, peroxidase-like, and catalase-like activities and application in the colorimetric assay of glucose. Microchim. Acta 187(6), 314 (2020). https://doi.org/10.1007/s00604-020-04298-4
J. Wu, Y. Yu, Y. Cheng, C. Cheng, Y. Zhang et al., Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal-organic framework nanozyme for therapy. Angew. Chem. Int. Ed. 60(3), 1227–1234 (2021). https://doi.org/10.1002/anie.202010714
M. Jiao, Z. Li, X. Li, Z. Zhang, Q. Yuan et al., Solving the H2O2 by-product problem using a catalase-mimicking nanozyme cascade to enhance glycolic acid oxidase. Chem. Eng. J. 388, 124249 (2020). https://doi.org/10.1016/j.cej.2020.124249
F. Attar, M.G. Shahpar, B. Rasti, M. Sharifi, A.A. Saboury et al., Nanozymes with intrinsic peroxidase-like activities. J. Mol. Liq. 278, 130–144 (2019). https://doi.org/10.1016/j.molliq.2018.12.011
X. Liu, D. Huang, C. Lai, L. Qin, G. Zeng et al., Peroxidase-like activity of smart nanomaterials and their advanced application in colorimetric glucose biosensors. Small 15(17), e1900133 (2019). https://doi.org/10.1002/smll.201900133
B. Yuan, H.L. Chou, Y.K. Peng, Disclosing the origin of transition metal oxides as peroxidase (and catalase) mimetics. ACS Appl. Mater. Interfaces 14(20), 22728–22736 (2022). https://doi.org/10.1021/acsami.1c13429
Y. Qiu, B. Yuan, H. Mi, J.-H. Lee, S.-W. Chou et al., An atomic insight into the confusion on the activity of Fe3O4 nanops as peroxidase mimetics and their comparison with horseradish peroxidase. J. Phys. Chem. Lett. 13(38), 8872–8878 (2022). https://doi.org/10.1021/acs.jpclett.2c02331
X.M. Shen, Z.Z. Wang, X.J.J. Gao, X.F. Gao, Reaction mechanisms and kinetics of nanozymes: insights from theory and computation. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211151
W. Zhang, S.L. Hu, J.-J. Yin, W. He, W. Lu et al., Prussian blue nanops as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 138(18), 5860–5865 (2016). https://doi.org/10.1021/jacs.5b12070
H. Dong, W. Du, J. Dong, R. Che, F. Kong et al., Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 13(1), 5365 (2022). https://doi.org/10.1038/s41467-022-33098-y
Y.F. Lai, J.Y. Wang, N. Yue, Q.C. Zhang, J.J.X. Wu et al., Glutathione peroxidase-like nanozymes: mechanism, classification, and bioapplication. Biomater. Sci. 11(7), 2292–2316 (2023). https://doi.org/10.1039/D2BM01915A
S. Wang, R. Cazelles, W.-C. Liao, M. Vázquez-González, A. Zoabi et al., Mimicking horseradish peroxidase and NADH peroxidase by heterogeneous Cu2+-modified graphene oxide nanops. Nano Lett. 17(3), 2043–2048 (2017). https://doi.org/10.1021/acs.nanolett.7b00093
Z. Wang, R. Yu, Hollow micro/nanostructured ceria-based materials: synthetic strategies and versatile applications. Adv. Mater. 31(38), 1800592 (2019). https://doi.org/10.1002/adma.201800592
X. Jiao, H. Song, H. Zhao, W. Bai, L. Zhang et al., Well-redispersed ceria nanops: promising peroxidase mimetics for H2O2 and glucose detection. Anal. Methods 4(10), 3261–3267 (2012). https://doi.org/10.1039/C2AY25511A
Z. Yang, Z. Shuna, F. Jing, S. Shuyan, S. Weidong et al., Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem 7(8), 2022–2059 (2021). https://doi.org/10.1016/j.chempr.2021.02.015
V. Baldim, F. Bedioui, N. Mignet, I. Margaill, J.F. Berret, The enzyme-like catalytic activity of cerium oxide nanops and its dependency on Ce3+ surface area concentration. Nanoscale 10(15), 6971–6980 (2018). https://doi.org/10.1039/C8NR00325D
E.G. Heckert, S. Seal, W.T. Self, Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environ. Sci. Technol. 42(13), 5014–5019 (2008). https://doi.org/10.1021/es8001508
X. Jiao, W. Liu, D. Wu, W. Liu, H. Song, Enhanced peroxidase-like activity of Mo-doped ceria nanops for sensitive colorimetric detection of glucose. Anal. Methods 10(1), 76–83 (2018). https://doi.org/10.1039/C7AY02459B
T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert et al., Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem. Commun. 46(16), 2736–2738 (2010). https://doi.org/10.1039/B922024K
S. Dong, Y. Dong, T. Jia, S. Liu, J. Liu et al., GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv. Mater. 32(42), 2002439 (2020). https://doi.org/10.1002/adma.202002439
M.M. Pereira, M. Santana, M. Teixeira, A novel scenario for the evolution of haem–copper oxygen reductases. Biochim. Biophys. Acta-Bioenerg. 1505(2), 185–208 (2001). https://doi.org/10.1016/S0005-2728(01)00169-4
X. Liu, Q. Wang, H. Zhao, L. Zhang, Y. Su et al., BSA-templated MnO2 nanops as both peroxidase and oxidase mimics. Analyst 137(19), 4552–4558 (2012). https://doi.org/10.1039/C2AN35700C
S. Cai, C. Qi, Y. Li, Q. Han, R. Yang et al., PtCo bimetallic nanops with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B 4(10), 1869–1877 (2016). https://doi.org/10.1039/C5TB02052B
H. Cheng, S. Lin, F. Muhammad, Y.-W. Lin, H. Wei, Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays. ACS Sens. 1(11), 1336–1343 (2016). https://doi.org/10.1021/acssensors.6b00500
Y. Xiong, S. Chen, F. Ye, L. Su, C. Zhang et al., Synthesis of a mixed valence state Ce–MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem. Commun. 51(22), 4635–4638 (2015). https://doi.org/10.1039/C4CC10346G
Y. Chong, Q. Liu, C. Ge, Advances in oxidase-mimicking nanozymes: classification, activity regulation and biomedical applications. Nano Today 37, 101076 (2021). https://doi.org/10.1016/j.nantod.2021.101076
Y. Wang, Z. Zhang, G. Jia, L. Zheng, J. Zhao et al., Elucidating the mechanism of the structure-dependent enzymatic activity of Fe–N/C oxidase mimics. Chem. Commun. 55(36), 5271–5274 (2019). https://doi.org/10.1039/C9CC01503E
J. Liu, X. Jiang, L. Wang, Z. Hu, T. Wen et al., Ferroxidase-like activity of Au nanorod/Pt nanodot structures and implications for cellular oxidative stress. Nano Res. 8(12), 4024–4037 (2015). https://doi.org/10.1007/s12274-015-0904-x
J. Chen, Q. Ma, M. Li, D. Chao, L. Huang et al., Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 12(1), 3375 (2021). https://doi.org/10.1038/s41467-021-23737-1
Y. Chen, T. Chen, X. Wu, G. Yang, Oxygen vacancy-engineered PEGylated MoO3−x nanops with superior sulfite oxidase mimetic activity for vitamin B1 detection. Small 15(46), 1903153 (2019). https://doi.org/10.1002/smll.201903153
S. Biella, L. Prati, M. Rossi, Selective oxidation of D-glucose on gold catalyst. J. Catal. 206(2), 242–247 (2002). https://doi.org/10.1006/jcat.2001.3497
M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, The catalytic activity of “Naked” gold ps. Angew. Chem. Int. Ed. 43(43), 5812–5815 (2004). https://doi.org/10.1002/anie.200460446
R. Ragg, F. Natalio, M.N. Tahir, H. Janssen, A. Kashyap et al., Molybdenum trioxide nanops with intrinsic sulfite oxidase activity. ACS Nano 8(5), 5182–5189 (2014). https://doi.org/10.1021/nn501235j
Y. Chen, X. Wu, T. Chen, G. Yang, Hot carriers and photothermal effects of monolayer MoOx for promoting sulfite oxidase mimetic activity. ACS Appl. Mater. Interfaces 12(17), 19357–19368 (2020). https://doi.org/10.1021/acsami.0c04987
C. Glorieux, P.B. Calderon, Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem. 398(10), 1095–1108 (2017). https://doi.org/10.1515/hsz-2017-0131
D. Xu, L. Wu, H. Yao, L. Zhao, Catalase-like nanozymes: classification, catalytic mechanisms, and their applications. Small 18(37), 2203400 (2022). https://doi.org/10.1002/smll.202203400
Z. Wang, W. Wang, J. Wang, D. Wang, M. Liu et al., Single-atom catalysts with ultrahigh catalase-like activity through electron filling and orbital energy regulation. Adv. Funct. Mater. 33(2), 2209560 (2023). https://doi.org/10.1002/adfm.202209560
B.T. Qiao, A.Q. Wang, X.F. Yang, L.F. Allard, Z. Jiang et al., Single-atom catalysis of CO oxidation using Pt-1/FeOx. Nat. Chem. 3(8), 634–641 (2011). https://doi.org/10.1038/nchem.1095
I. Fridovich, Superoxide radicals, superoxide dismutases and the aerobic lifestyle. Photochem. Photobiol. 28(4–5), 733–741 (1978). https://doi.org/10.1111/j.1751-1097.1978.tb07009.x
H. Zhao, R. Zhang, X. Yan, K. Fan, Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J. Mater. Chem. B 9(35), 6939–6957 (2021). https://doi.org/10.1039/D1TB00720C
C. Korsvik, S. Patil, S. Seal, W.T. Self, Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanops. Chem. Commun. 10, 1056–1058 (2007). https://doi.org/10.1039/B615134E
H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene. Nature 318(6042), 162–163 (1985). https://doi.org/10.1038/318162a0
S.S. Ali, J.I. Hardt, K.L. Quick, J. Sook Kim-Han, B.F. Erlanger et al., A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic. Biol. Med. 37(8), 1191–1202 (2004). https://doi.org/10.1016/j.freeradbiomed.2004.07.002
X. Shen, W. Liu, X. Gao, Z. Lu, X. Wu et al., Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J. Am. Chem. Soc. 137(50), 15882–15891 (2015). https://doi.org/10.1021/jacs.5b10346
S. Guo, L. Guo, Unraveling the multi-enzyme-like activities of iron oxide nanozyme via a first-principles microkinetic study. J. Phys. Chem. C 123(50), 30318–30334 (2019). https://doi.org/10.1021/acs.jpcc.9b07802
B. Yang, H. Yao, J. Yang, C. Chen, Y. Guo et al., In situ synthesis of natural antioxidase mimics for catalytic anti-inflammatory treatments: rheumatoid arthritis as an example. J. Am. Chem. Soc. 144(1), 314–330 (2022). https://doi.org/10.1021/jacs.1c09993
I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Pharmacological potential of cerium oxide nanops. Nanoscale 3(4), 1411–1420 (2011). https://doi.org/10.1039/C0NR00875C
L. Gabrielli, L.J. Prins, F. Rastrelli, F. Mancin, P. Scrimin, Hydrolytic nanozymes. Eur. J. Org. Chem. 2020(32), 5044–5055 (2020). https://doi.org/10.1002/ejoc.202000356
Q. Hou, X. Zhang, M. Lin, Y. Dai, F. Xia, Organic monolayer on gold nanops as hydrolytic nanozymes. Giant 12, 100122 (2022). https://doi.org/10.1016/j.giant.2022.100122
Y. Ding, N.H. Williams, C.A. Hunter, A synthetic vesicle-to-vesicle communication system. J. Am. Chem. Soc. 141(44), 17847–17853 (2019). https://doi.org/10.1021/jacs.9b09102
L. Pasquato, F. Rancan, P. Scrimin, F. Mancin, C. Frigeri, N-Methylimidazole-functionalized gold nanops as catalysts for cleavage of a carboxylic acid ester. Chem. Commun. 22, 2253–2254 (2000). https://doi.org/10.1039/B005244M
I. Fernández, J. Pérez-Juste, P. Hervés, Cationic mixed micelles as reaction medium for hydrolysis reactions. J. Solut. Chem. 44(9), 1866–1874 (2015). https://doi.org/10.1007/s10953-015-0383-4
L.J. Prins, Emergence of complex chemistry on an organic monolayer. Acc. Chem. Res. 48(7), 1920–1928 (2015). https://doi.org/10.1021/acs.accounts.5b00173
G. Pieters, L.J. Prins, Catalytic self-assembled monolayers on gold nanops. New J. Chem. 36(10), 1931–1939 (2012). https://doi.org/10.1039/C2NJ40424A
P. Pengo, S. Polizzi, L. Pasquato, P. Scrimin, Carboxylate−imidazole cooperativity in dipeptide-functionalized gold nanops with esterase-like activity. J. Am. Chem. Soc. 127(6), 1616–1617 (2005). https://doi.org/10.1021/ja043547c
T. Serizawa, Y. Hirai, M. Aizawa, Novel synthetic route to peptide-capped gold nanops. Langmuir 25(20), 12229–12234 (2009). https://doi.org/10.1021/la9021799
D.J. Mikolajczak, J.L. Heier, B. Schade, B. Koksch, Catalytic activity of peptide–nanop conjugates regulated by a conformational change. Biomacromol 18(11), 3557–3562 (2017). https://doi.org/10.1021/acs.biomac.7b00887
S. Liang, X.-L. Wu, M.-H. Zong, W.-Y. Lou, Construction of Zn-heptapeptide bionanozymes with intrinsic hydrolase-like activity for degradation of di(2-ethylhexyl) phthalate. J. Colloid Interface Sci. 622, 860–870 (2022). https://doi.org/10.1016/j.jcis.2022.04.122
P. Lin, M. Cao, F. Xia, H. Liao, H. Sun et al., A phosphatase-mimetic nano-stabilizer of mast cells for long-term prevention of allergic disease. Adv. Sci. 8(8), 2004115 (2021). https://doi.org/10.1002/advs.202004115
D.J. Mikolajczak, J. Scholz, B. Koksch, Tuning the catalytic activity and substrate specificity of peptide-nanop conjugates. ChemCatChem 10(24), 5665–5668 (2018). https://doi.org/10.1002/cctc.201801521
D.J. Mikolajczak, B. Koksch, Peptide-gold nanop conjugates as sequential cascade catalysts. ChemCatChem 10(19), 4324–4328 (2018). https://doi.org/10.1002/cctc.201800961
S. Li, Z. Zhou, Z. Tie, B. Wang, M. Ye et al., Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 13(1), 827 (2022). https://doi.org/10.1038/s41467-022-28344-2
X. Shen, Z. Wang, X. Gao, Y. Zhao, Density functional theory-based method to predict the activities of nanomaterials as peroxidase mimics. ACS Catal. 10(21), 12657–12665 (2020). https://doi.org/10.1021/acscatal.0c03426
Z. Wang, J. Wu, J.-J. Zheng, X. Shen, L. Yan et al., Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat. Commun. 12(1), 6866 (2021). https://doi.org/10.1038/s41467-021-27194-8
X. Wang, X.J. Gao, L. Qin, C. Wang, L. Song et al., eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat. Commun. 10(1), 704 (2019). https://doi.org/10.1038/s41467-019-08657-5
Y.H. Wei, J. Wu, Y.X. Wu, H.J. Liu, F.Q. Meng et al., Prediction and design of nanozymes using explainable machine learning. Adv. Mater. 34(27), 2201736 (2022). https://doi.org/10.1002/adma.202201736
C.H. Zhang, Y.X. Yu, S.G. Shi, M.M. Liang, D.Q. Yang et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 22(21), 8592–8600 (2022). https://doi.org/10.1021/acs.nanolett.2c03119
J. Razlivina, N. Serov, O. Shapovalova, V. Vinogradov, DiZyme: open-access expandable resource for quantitative prediction of nanozyme catalytic activity. Small 18(12), 2105673 (2022). https://doi.org/10.1002/smll.202105673
J. Zhuang, A.C. Midgley, Y. Wei, Q. Liu, D. Kong et al., Machine-learning-assisted nanozyme design: lessons from materials and engineered enzymes. Adv. Mater. 885, 848 (2023). https://doi.org/10.1002/adma.202210848
R. Zhang, X. Yan, K. Fan, Nanozymes inspired by natural enzymes. Acc. Mater. Res. 2(7), 534–547 (2021). https://doi.org/10.1021/accountsmr.1c00074
J.Y. Liang, W.N. Lipscomb, Binding of substrate CO2 to the active site of human carbonic anhydrase II: a molecular dynamics study. Proc. Natl. Acad. Sci. 87(10), 3675–3679 (1990). https://doi.org/10.1073/pnas.87.10.3675
L. Gráf, A. Jancsó, L. Szilágyi, G. Hegyi, K. Pintér et al., Electrostatic complementarity within the substrate-binding pocket of trypsin. Proc. Natl. Acad. Sci. 85(14), 4961–4965 (1988). https://doi.org/10.1073/pnas.85.14.4961
B.L. Vallee, D.S. Auld, Active-site zinc ligands and activated H2O of zinc enzymes. Proc. Natl. Acad. Sci. 87(1), 220–224 (1990). https://doi.org/10.1073/pnas.87.1.220
B.L. Vallee, R.J. Williams, Metalloenzymes: the entatic nature of their active sites. Proc. Natl. Acad. Sci. 59(2), 498–505 (1968). https://doi.org/10.1073/pnas.59.2.498
M. Zhao, H.-B. Wang, L.-N. Ji, Z.-W. Mao, Insights into metalloenzyme microenvironments: biomimetic metal complexes with a functional second coordination sphere. Chem. Soc. Rev. 42(21), 8360–8375 (2013). https://doi.org/10.1039/C3CS60162E
W. Nam, High-valent iron(IV)–oxo complexes of heme and non-heme ligands in oxygenation reactions. Acc. Chem. Res. 40(7), 522–531 (2007). https://doi.org/10.1021/ar700027f
Q. Liang, J. Xi, X.J. Gao, R. Zhang, Y. Yang et al., A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. Nano Today 35, 100935 (2020). https://doi.org/10.1016/j.nantod.2020.100935
L. Zhang, H. Wang, X. Qu, Biosystem-inspired engineering of nanozymes for biomedical applications. Adv. Mater. (2023). https://doi.org/10.1002/adma.202211147
M. Wei, J. Lee, F. Xia, P. Lin, X. Hu et al., Chemical design of nanozymes for biomedical applications. Acta Biomater. 126, 15–30 (2021). https://doi.org/10.1016/j.actbio.2021.02.036
Z. Qin, B. Chen, Y. Mao, C. Shi, Y. Li et al., Achieving ultrasmall prussian blue nanops as high-performance biomedical agents with multifunctions. ACS Appl. Mater. Interfaces 12(51), 57382–57390 (2020). https://doi.org/10.1021/acsami.0c18357
Y. Wang, Z. Tan, Z. Zhang, P. Zhu, S.W. Tam et al., Facet-dependent activity of CeO2 nanozymes regulate the fate of human neural cell via redox homeostasis. ACS Appl. Mater. Interfaces 14(31), 35423–35433 (2022). https://doi.org/10.1021/acsami.2c09304
Y. Wu, W. Xu, L. Jiao, Y. Tang, Y. Chen et al., Defect engineering in nanozymes. Mater. Today 52, 327–347 (2022). https://doi.org/10.1016/j.mattod.2021.10.032
S. Dong, Y. Dong, Z. Zhao, J. Liu, S. Liu et al., “Electron transport chain interference” strategy of amplified mild-photothermal therapy and defect-engineered multi-enzymatic activities for synergistic tumor-personalized suppression. J. Am. Chem. Soc. 145(17), 9488–9507 (2023). https://doi.org/10.1021/jacs.2c09608
H. Fan, J. Zheng, J. Xie, J. Liu, X. Gao et al., Surface ligand engineering ruthenium nanozyme superior to horseradish peroxidase for enhanced immunoassay. Adv. Mater. 23, 387 (2023). https://doi.org/10.1002/adma.202300387
G. Tang, J. He, J. Liu, X. Yan, K. Fan, Nanozyme for tumor therapy: surface modification matters. Exploration 1(1), 75–89 (2021). https://doi.org/10.1002/EXP.20210005
W. Xia, P. Zhang, W. Fu, L. Hu, Y. Wang, Aggregation/dispersion-mediated peroxidase-like activity of MoS2 quantum dots for colorimetric pyrophosphate detection. Chem. Commun. 55(14), 2039–2042 (2019). https://doi.org/10.1039/C8CC09799B
X. Zhang, G. Li, G. Chen, D. Wu, Y. Wu et al., Enzyme mimics for engineered biomimetic cascade nanoreactors: mechanism, applications, and prospects. Adv. Funct. Mater. 31(50), 2106139 (2021). https://doi.org/10.1002/adfm.202106139
M. Tang, Z. Zhang, T. Sun, B. Li, Z. Wu, Manganese-based nanozymes: preparation, catalytic mechanisms, and biomedical applications. Adv. Healthc. Mater. 11(21), e2201733 (2022). https://doi.org/10.1002/adhm.202201733
H. Dong, Y. Fan, W. Zhang, N. Gu, Y. Zhang, Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjug. Chem. 30(5), 1273–1296 (2019). https://doi.org/10.1021/acs.bioconjchem.9b00171
M. Fanchi, Z. Pengbo, Y. Lini, X. Lixin, L. Hongyang, Nanozymes with atomically dispersed metal centers: structure-activity relationships and biomedical applications. Chem. Eng. J. 452(2), 139411 (2022). https://doi.org/10.1016/j.cej.2022.139411
X. Cai, L. Jiao, H. Yan, Y. Wu, W. Gu et al., Nanozyme-involved biomimetic cascade catalysis for biomedical applications. Mater. Today 44, 211–228 (2021). https://doi.org/10.1016/j.mattod.2020.12.005
S.-Y. Yin, G. Song, Y. Yang, Y. Zhao, P. Wang et al., Persistent regulation of tumor microenvironment via circulating catalysis of MnFe2O4@metal–organic frameworks for enhanced photodynamic therapy. Adv. Funct. Mater. 29(25), 1901417 (2019). https://doi.org/10.1002/adfm.201901417
D. Jiang, D. Ni, Z.T. Rosenkrans, P. Huang, X. Yan et al., Nanozyme: new horizons for responsive biomedical applications. Chem. Soc. Rev. 48(14), 3683–3704 (2019). https://doi.org/10.1039/C8CS00718G
Y. Chen, Z.-H. Li, J.-J. Hu, S.-Y. Peng, L. Rong et al., Remote-controlled multi-enzyme system for enhanced tumor therapy via dark/light relay catalysis. Nanoscale Horiz. 5(2), 283–293 (2020). https://doi.org/10.1039/C9NH00583H
Z. Ma, L. Wu, K. Han, H. Han, Pt nanozyme for O2 self-sufficient, tumor-specific oxidative damage and drug resistance reversal. Nanoscale Horiz. 4(5), 1124–1131 (2019). https://doi.org/10.1039/C9NH00088G
R. Zhao, Y. Zhu, J. Zhou, B. Liu, Y. Du et al., Dual glutathione depletion enhanced enzyme catalytic activity for hyperthermia assisted tumor therapy on semi-metallic VSe2/Mn-CS. ACS Nano 16(7), 10904–10917 (2022). https://doi.org/10.1021/acsnano.2c03222
Y. Wang, G.R. Jia, X.Q. Cui, X. Zhao, Q.H. Zhang et al., Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 7(2), 436–449 (2021). https://doi.org/10.1016/j.chempr.2020.10.023
J. Zhou, D. Xu, G. Tian, Q. He, X. Zhang et al., Coordination-driven self-assembly strategy-activated Cu single-atom nanozymes for catalytic tumor-specific therapy. J. Am. Chem. Soc. 145(7), 4279–4293 (2023). https://doi.org/10.1021/jacs.2c13597
G. Liu, J. Zhu, H. Guo, A. Sun, P. Chen et al., Mo2C-derived polyoxometalate for NIR-II photoacoustic imaging-guided chemodynamic/photothermal synergistic therapy. Angew. Chem. Int. Ed. 58(51), 18641–18646 (2019). https://doi.org/10.1002/anie.201910815
Y. Yang, M. Chen, B. Wang, P. Wang, Y. Liu et al., NIR-II driven plasmon-enhanced catalysis for a timely supply of oxygen to overcome hypoxia-induced radiotherapy tolerance. Angew. Chem. Int. Ed. 58(42), 15069–15075 (2019). https://doi.org/10.1002/anie.201906758
J. Xu, W. Han, P. Yang, T. Jia, S. Dong et al., Tumor microenvironment-responsive mesoporous MnO2-coated upconversion nanoplatform for self-enhanced tumor theranostics. Adv. Funct. Mater. 28(36), 1803804 (2018). https://doi.org/10.1002/adfm.201803804
F. Liu, L. Lin, Y. Zhang, Y. Wang, S. Sheng et al., A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy. Adv. Mater. 31(40), 1902885 (2019). https://doi.org/10.1002/adma.201902885
Z. Wang, Z. Li, Z. Sun, S. Wang, Z. Ali et al., Visualization nanozyme based on tumor microenvironment “unlocking” for intensive combination therapy of breast cancer. Sci. Adv. 6(48), eabc8733 (2020). https://doi.org/10.1126/sciadv.abc8733
Z. Ma, M.F. Foda, H. Liang, Y. Zhao, H. Han, In situ nanozyme-amplified NIR-II phototheranostics for tumor-specific imaging and therapy. Adv. Funct. Mater. 31(37), 2103765 (2021). https://doi.org/10.1002/adfm.202103765
M. Wang, M. Chang, Q. Chen, D. Wang, C. Li et al., Au2Pt-PEG-Ce6 nanoformulation with dual nanozyme activities for synergistic chemodynamic therapy / phototherapy. Biomaterials 252, 120093 (2020). https://doi.org/10.1016/j.biomaterials.2020.120093
F. Yang, S. Hu, Y. Zhang, X. Cai, Y. Huang et al., A hydrogen peroxide-responsive O2 nanogenerator for ultrasound and magnetic-resonance dual modality imaging. Adv. Mater. 24(38), 5205–5211 (2012). https://doi.org/10.1002/adma.201202367
C. Cao, H. Zou, N. Yang, H. Li, Y. Cai et al., Fe3O4/Ag/Bi2MoO6 photoactivatable nanozyme for self-replenishing and sustainable cascaded nanocatalytic cancer therapy. Adv. Mater. 33(52), 2106996 (2021). https://doi.org/10.1002/adma.202106996
X. Zhong, X. Wang, L. Cheng, Y.A. Tang, G. Zhan et al., GSH-depleted PtCu3 nanocages for chemodynamic- enhanced sonodynamic cancer therapy. Adv. Funct. Mater. 30(4), 1907954 (2020). https://doi.org/10.1002/adfm.201907954
L. Feng, B. Liu, R. Xie, D. Wang, C. Qian et al., An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy. Adv. Funct. Mater. 31(5), 2006216 (2021). https://doi.org/10.1002/adfm.202006216
D. Wang, H. Wu, S.Z.F. Phua, G. Yang, W. Qi Lim et al., Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 11(1), 357 (2020). https://doi.org/10.1038/s41467-019-14199-7
R. Yue, C. Zhang, L. Xu, Y. Wang, G. Guan et al., Dual key co-activated nanoplatform for switchable MRI monitoring accurate ferroptosis-based synergistic therapy. Chem 8(7), 1956–1981 (2022). https://doi.org/10.1016/j.chempr.2022.03.009
G.Q. Guan, C. Zhang, H.Y. Liu, Y.J. Wang, Z. Dong et al., Ternary alloy PtWMn as a Mn nanoreservoir for high-field MRI monitoring and highly selective ferroptosis therapy. Angew. Chem. Int. Ed. 61(31), e202117229 (2022). https://doi.org/10.1002/anie.202117229
Z. Dong, P. Liang, G.Q. Guan, B.L. Yin, Y.J. Wang et al., Overcoming hypoxia-induced ferroptosis resistance via a F19/H1-MRI traceable core-shell nanostructure. Angew. Chem. Int. Ed. 61(48), e202206074 (2022). https://doi.org/10.1002/anie.202206074
L. Shi, Y. Wang, C. Zhang, Y. Zhao, C. Lu et al., An acidity-unlocked magnetic nanoplatform enables self-boosting ROS generation through upregulation of lactate for imaging-guided highly specific chemodynamic therapy. Angew. Chem. Int. Ed. 60(17), 9562–9572 (2021). https://doi.org/10.1002/anie.202014415
R. Yue, M. Zhou, X. Li, L. Xu, C. Lu et al., GSH/APE1 cascade-activated nanoplatform for imaging therapy resistance dynamics and enzyme-mediated adaptive ferroptosis. ACS Nano 17(14), 13792–13810 (2023). https://doi.org/10.1021/acsnano.3c03443
C. Lu, C. Zhang, P. Wang, Y. Zhao, Y. Yang et al., Light-free generation of singlet oxygen through manganese-thiophene nanosystems for pH-responsive chemiluminescence imaging and tumor therapy. Chem 6(9), 2314–2334 (2020). https://doi.org/10.1016/j.chempr.2020.06.024
L. Teng, X. Han, Y. Liu, C. Lu, B. Yin et al., Smart nanozyme platform with activity-correlated ratiometric molecular imaging for predicting therapeutic effects. Angew. Chem. Int. Ed. 60(50), 26142–26150 (2021). https://doi.org/10.1002/anie.202110427
X. Huang, J. Song, B.C. Yung, X. Huang, Y. Xiong et al., Ratiometric optical nanoprobes enable accurate molecular detection and imaging. Chem. Soc. Rev. 47(8), 2873–2920 (2018). https://doi.org/10.1039/C7CS00612H
Y. Deng, W. Zhan, G. Liang, Intracellular self-assembly of peptide conjugates for tumor imaging and therapy. Adv. Healthc. Mater. 10(1), 2001211 (2021). https://doi.org/10.1002/adhm.202001211
Y. Fan, S. Wang, F. Zhang, Optical multiplexed bioassays for improved biomedical diagnostics. Angew. Chem. Int. Ed. 58(38), 13208–13219 (2019). https://doi.org/10.1002/anie.201901964
Z. Yang, Y. Dai, C. Yin, Q. Fan, W. Zhang et al., Activatable semiconducting theranostics: Simultaneous generation and ratiometric photoacoustic imaging of reactive oxygen species in vivo. Adv. Mater. 30(23), 1707509 (2018). https://doi.org/10.1002/adma.201707509
K.C. Nicolaou, J.S. Chen, The art of total synthesis through cascade reactions. Chem. Soc. Rev. 38(11), 2993–3009 (2009). https://doi.org/10.1039/B903290H
S. Gao, H. Lin, H. Zhang, H. Yao, Y. Chen et al., Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme-catalyzed cascade reaction. Adv. Sci. 6(3), 1801733 (2019). https://doi.org/10.1002/advs.201801733
L. Wang, X. Zhang, Z. You, Z. Yang, M. Guo et al., A molybdenum disulfide nanozyme with charge-enhanced activity for ultrasound-mediated cascade-catalytic tumor ferroptosis. Angew. Chem. Int. Ed. 62(11), e202217448 (2023). https://doi.org/10.1002/anie.202217448
M. Chang, Z. Wang, C. Dong, R. Zhou, L. Chen et al., Ultrasound-amplified enzyodynamic tumor therapy by perovskite nanoenzyme-enabled cell pyroptosis and cascade catalysis. Adv. Mater. 35(7), 2208817 (2023). https://doi.org/10.1002/adma.202208817
Y. Zhao, W.H. Kong, P. Wang, G.S. Song, Z.L. Song et al., Tumor-specific multipath nucleic acid damages strategy by symbiosed nanozyme@enzyme with synergistic self-cyclic catalysis. Small 17(28), 2100766 (2021). https://doi.org/10.1002/smll.202100766
X. Meng, D. Li, L. Chen, H. He, Q. Wang et al., High-performance self-cascade pyrite nanozymes for apoptosis–ferroptosis synergistic tumor therapy. ACS Nano 15(3), 5735–5751 (2021). https://doi.org/10.1021/acsnano.1c01248
S.M. Dong, Y.S. Dong, T. Jia, F.M. Zhang, Z. Wang et al., Sequential catalytic, magnetic targeting nanoplatform for synergistic photothermal and NIR-enhanced chemodynamic therapy. Chem. Mater. 32(23), 9868–9881 (2020). https://doi.org/10.1021/acs.chemmater.9b05170
M. Huo, L. Wang, Y. Chen, J. Shi, Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 8(1), 357 (2017). https://doi.org/10.1038/s41467-017-00424-8
R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze et al., V2O5 nanowires with an intrinsic peroxidase-like activity. Adv. Funct. Mater. 21(3), 501–509 (2011). https://doi.org/10.1002/adfm.201001302
L. Han, L. Zeng, M. Wei, C.M. Li, A. Liu, A V2O3-ordered mesoporous carbon composite with novel peroxidase-like activity towards the glucose colorimetric assay. Nanoscale 7(27), 11678–11685 (2015). https://doi.org/10.1039/C5NR02694F
L. Tian, J. Qi, K. Qian, O. Oderinde, Q. Liu et al., Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer. J. Electroanal. Chem. 812, 1–9 (2018). https://doi.org/10.1016/j.jelechem.2017.12.012
A. Jiao, L. Xu, Y. Tian, Q. Cui, X. Liu et al., Cu2O nanocubes–grafted highly dense Au nanops with modulated electronic structures for improving peroxidase catalytic performances. Talanta 225, 121990 (2021). https://doi.org/10.1016/j.talanta.2020.121990
C. Liu, M. Zhang, H. Geng, P. Zhang, Z. Zheng et al., NIR enhanced peroxidase-like activity of Au@CeO2 hybrid nanozyme by plasmon-induced hot electrons and photothermal effect for bacteria killing. Appl. Catal. B 295, 120317 (2021). https://doi.org/10.1016/j.apcatb.2021.120317
L. Huang, S. Zhao, J. Wu, L. Yu, N. Singh et al., Photodynamic therapy for hypoxic tumors: advances and perspectives. Coord. Chem. Rev. 438, 213888 (2021). https://doi.org/10.1016/j.ccr.2021.213888
J.D. Lambeth, NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4(3), 181–189 (2004). https://doi.org/10.1038/nri1312
S. Son, J.H. Kim, X. Wang, C. Zhang, S.A. Yoon et al., Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 49(11), 3244–3261 (2020). https://doi.org/10.1039/C9CS00648F
S. Liang, X. Deng, P.A. Ma, Z. Cheng, J. Lin, Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv. Mater. 32(47), e2003214 (2020). https://doi.org/10.1002/adma.202003214
N.R. Patel, B.S. Pattni, A.H. Abouzeid, V.P. Torchilin, Nanopreparations to overcome multidrug resistance in cancer. Adv. Drug Deliv. Rev. 65(13–14), 1748–1762 (2013). https://doi.org/10.1016/j.addr.2013.08.004
H. Liu, D. Chen, L. Li, T. Liu, L. Tan et al., Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed. 50(4), 891–895 (2011). https://doi.org/10.1002/anie.201002820
X. Zhu, Y. Gong, Y. Liu, C. Yang, S. Wu et al., Ru@CeO2 yolk shell nanozymes: Oxygen supply in situ enhanced dual chemotherapy combined with photothermal therapy for orthotopic/subcutaneous colorectal cancer. Biomaterials 242, 119923 (2020). https://doi.org/10.1016/j.biomaterials.2020.119923
F. Li, H. Sun, J. Ren, B. Zhang, X. Hu et al., A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance. Nat. Commun. 13(1), 7361 (2022). https://doi.org/10.1038/s41467-022-35022-w
X. Zeng, J. Sun, S. Li, J. Shi, H. Gao et al., Blood-triggered generation of platinum nanop functions as an anti-cancer agent. Nat. Commun. 11(1), 567 (2020). https://doi.org/10.1038/s41467-019-14131-z
J. Chen, X. Wang, Y. Yuan, H. Chen, L. Zhang et al., Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair–inhibiting (HYDRI) nanomedicine. Sci. Adv. 7(13), eabc5267 (2021). https://doi.org/10.1126/sciadv.abc5267
A. Yimit, O. Adebali, A. Sancar, Y. Jiang, Differential damage and repair of DNA-adducts induced by anti-cancer drug cisplatin across mouse organs. Nat. Commun. 10(1), 309 (2019). https://doi.org/10.1038/s41467-019-08290-2
S. Rottenberg, C. Disler, P. Perego, The rediscovery of platinum-based cancer therapy. Nat. Rev. Cancer 21(1), 37–50 (2021). https://doi.org/10.1038/s41568-020-00308-y
C.J. Lord, A. Ashworth, The DNA damage response and cancer therapy. Nature 481(7381), 287–294 (2012). https://doi.org/10.1038/nature10760
P. Bouwman, J. Jonkers, The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat. Rev. Cancer 12(9), 587–598 (2012). https://doi.org/10.1038/nrc3342
S.P. Jackson, J. Bartek, The DNA-damage response in human biology and disease. Nature 461(7267), 1071–1078 (2009). https://doi.org/10.1038/nature08467
D.M. Zhu, H. Chen, C.Y. Huang, G.X. Li, X. Wang et al., H2O2 self-producing single-atom nanozyme hydrogels as light-controlled oxidative stress amplifier for enhanced synergistic therapy by transforming “cold” tumors. Adv. Funct. Mater. 32(16), 2110268 (2022). https://doi.org/10.1002/adfm.202110268
J.N. Xie, L.J. Gong, S. Zhu, Y. Yong, Z.J. Gu et al., Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv. Mater. 31(3), 25 (2019). https://doi.org/10.1002/adma.201802244
C. Zhang, L. Yan, Z. Gu, Y. Zhao, Strategies based on metal-based nanops for hypoxic-tumor radiotherapy. Chem. Sci. 10(29), 6932–6943 (2019). https://doi.org/10.1039/C9SC02107H
X. Yang, L. Gao, Q. Guo, Y. Li, Y. Ma et al., Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy. Nano Res. 13(10), 2579–2594 (2020). https://doi.org/10.1007/s12274-020-2722-z
C. Sandhya, M.C. Jared, D. Wei, G. Anna, N. Saadia et al., Mechanisms for tuning engineered nanomaterials to enhance radiation therapy of cancer. Adv. Sci. 7(24), 2003584 (2020). https://doi.org/10.1002/advs.202003584
R.F. Zhang, L. Chen, Q. Liang, J.Q. Xi, H.Q. Zhao et al., Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy. Nano Today 41, 101317 (2021). https://doi.org/10.1016/j.nantod.2021.101317
I. Martínez-Reyes, N.S. Chandel, Cancer metabolism: looking forward. Nat. Rev. Cancer 21(10), 669–680 (2021). https://doi.org/10.1038/s41568-021-00378-6
C.A. Lyssiotis, A.C. Kimmelman, Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27(11), 863–875 (2017). https://doi.org/10.1016/j.tcb.2017.06.003
W. Xie, W.-W. Deng, M. Zan, L. Rao, G.-T. Yu et al., Cancer cell membrane camouflaged nanops to realize starvation therapy together with checkpoint blockades for enhancing cancer therapy. ACS Nano 13(3), 2849–2857 (2019). https://doi.org/10.1021/acsnano.8b03788
Z. Yu, P. Zhou, W. Pan, N. Li, B. Tang, A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nat. Commun. 9(1), 5044 (2018). https://doi.org/10.1038/s41467-018-07197-8
L.K. Boroughs, R.J. DeBerardinis, Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17(4), 351–359 (2015). https://doi.org/10.1038/ncb3124
J. Wu, Y. Zhang, K. Jiang, X. Wang, N.T. Blum et al., Enzyme-engineered conjugated polymer nanoplatform for activatable companion diagnostics and multistage augmented synergistic therapy. Adv. Mater. 34(18), 2200062 (2022). https://doi.org/10.1002/adma.202200062
X. Li, C. Jiang, Q. Wang, S. Yang, Y. Cao et al., A “valve-closing” starvation strategy for amplification of tumor-specific chemotherapy. Adv. Sci. 9(8), 2104671 (2022). https://doi.org/10.1002/advs.202104671
C. Zhang, D. Ni, Y. Liu, H. Yao, W. Bu et al., Magnesium silicide nanops as a deoxygenation agent for cancer starvation therapy. Nat. Nanotechnol. 12, 378 (2017). https://doi.org/10.1038/nnano.2016.280
Z. Zhou, J. Huang, Z. Zhang, L. Zhang, Y. Cao et al., Bimetallic PdPt-based nanocatalysts for photothermal-augmented tumor starvation and sonodynamic therapy in NIR-II biowindow assisted by an oxygen self-supply strategy. Chem. Eng. J. 435, 135085 (2022). https://doi.org/10.1016/j.cej.2022.135085
Y. Zou, W. Liu, W. Sun, J. Du, J. Fan et al., Highly inoxidizable heptamethine cyanine–glucose oxidase conjugate nanoagent for combination of enhanced photothermal therapy and tumor starvation. Adv. Funct. Mater. 32(17), 2111853 (2022). https://doi.org/10.1002/adfm.202111853
D. Zhu, T. Zhang, Y. Li, C. Huang, M. Suo et al., Tumor-derived exosomes co-delivering aggregation-induced emission luminogens and proton pump inhibitors for tumor glutamine starvation therapy and enhanced type-I photodynamic therapy. Biomaterials 283, 121462 (2022). https://doi.org/10.1016/j.biomaterials.2022.121462
M. Wang, M. Chang, C. Li, Q. Chen, Z. Hou et al., Tumor-microenvironment-activated reactive oxygen species amplifier for enzymatic cascade cancer starvation/chemodynamic /immunotherapy. Adv. Mater. 34(4), 2106010 (2022). https://doi.org/10.1002/adma.202106010
K. Li, C. Lin, M. Li, K. Xu, Y. He et al., Multienzyme-like reactivity cooperatively impairs glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways in triple-negative breast cancer for sensitized ferroptosis therapy. ACS Nano 16(2), 2381–2398 (2022). https://doi.org/10.1021/acsnano.1c08664
Z.H. Lei, C.X. Sun, P. Pei, S.F. Wang, D.D. Li et al., Stable, wavelength-tunable fluorescent dyes in the NIR-II region for in vivo high-contrast bioimaging and multiplexed biosensing. Angew. Chem. Int. Ed. 58(24), 8166–8171 (2019). https://doi.org/10.1002/anie.201904182
Z. Liu, Q. Liu, H. Zhang, X. Zhang, J. Wu et al., Genetically engineered protein corona-based cascade nanozymes for enhanced tumor therapy. Adv. Funct. Mater. 32(51), 2208513 (2022). https://doi.org/10.1002/adfm.202208513
Y.J. Li, Y. Zhang, Y. Dong, O.U. Akakuru, X.H. Yao et al., Ablation of gap junction protein improves the efficiency of nanozyme-mediated catalytic/starvation/mild-temperature photothermal therapy. Adv. Mater. 35(22), 2210464 (2023). https://doi.org/10.1002/adma.202210464
G. Ningqiang, C.S. Neil, M.B. Margaret, H.J. Carl, J.M. Michael, Nanomaterials for T-cell cancer immunotherapy. Nat. Nanotechnol. 16(1), 25–36 (2021). https://doi.org/10.1038/s41565-020-00822-y
M. Yarchoan, A. Hopkins, E.M. Jaffee, Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377(25), 2500–2501 (2017). https://doi.org/10.1056/NEJMc1713444
J. Nam, S. Son, K.S. Park, W. Zou, L.D. Shea et al., Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4(6), 398–414 (2019). https://doi.org/10.1038/s41578-019-0108-1
C.H. Patel, R.D. Leone, M.R. Horton, J.D. Powell, Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat. Rev. Drug Discov. 18(9), 669–688 (2019). https://doi.org/10.1038/s41573-019-0032-5
X. Zhang, Y. Kang, J. Wang, J. Yan, Q. Chen et al., Engineered PD-L1-expressing platelets reverse new-onset type 1 diabetes. Adv. Mater. 32(26), 1907692 (2020). https://doi.org/10.1002/adma.201907692
Z. Jiang, Z. Liu, M. Li, C. Chen, X. Wang, Increased glycolysis correlates with elevated immune activity in tumor immune microenvironment. EBioMed 42, 431–442 (2019). https://doi.org/10.1016/j.ebiom.2019.03.068
C.-H. Chang, J. Qiu, D. O’Sullivan, M.D. Buck, T. Noguchi et al., Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162(6), 1229–1241 (2015). https://doi.org/10.1016/j.cell.2015.08.016
S. Zhang, Y. Zhang, Y. Feng, J. Wu, Y. Hu et al., Biomineralized two-enzyme nanops regulate tumor glycometabolism inducing tumor cell pyroptosis and robust antitumor immunotherapy. Adv. Mater. 34(50), 2206851 (2022). https://doi.org/10.1002/adma.202206851
Z. Zhao, S. Dong, Y. Liu, J. Wang, L. Ba et al., Tumor microenvironment-activable manganese-boosted catalytic immunotherapy combined with PD-1 checkpoint blockade. ACS Nano 16(12), 20400–20418 (2022). https://doi.org/10.1021/acsnano.2c06646
M. de Miguel, E. Calvo, Clinical challenges of immune checkpoint inhibitors. Cancer Cell 38(3), 326–333 (2020). https://doi.org/10.1016/j.ccell.2020.07.004
C. Zhang, K. Pu, Molecular and nanoengineering approaches towards activatable cancer immunotherapy. Chem. Soc. Rev. 49(13), 4234–4253 (2020). https://doi.org/10.1039/C9CS00773C
L. Liu, Y. Pan, C. Zhao, P. Huang, X. Chen et al., Boosting checkpoint immunotherapy with biomaterials. ACS Nano 17(4), 3225–3258 (2023). https://doi.org/10.1021/acsnano.2c11691
Q. Chen, Y. He, Y. Wang, C. Li, Y. Zhang et al., Penetrable nanoplatform for “cold” tumor immune microenvironment reeducation. Adv. Sci. 7(17), 2000411 (2020). https://doi.org/10.1002/advs.202000411