Applications of Metal–Organic Frameworks and Their Derivatives in Electrochemical CO2 Reduction
Corresponding Author: Chuan Xia
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 113
Abstract
Electrochemically reducing CO2 to more reduced chemical species is a promising way that not only enables the conversion of intermittent energy resources to stable fuels, but also helps to build a closed-loop anthropogenic carbon cycle. Among various electrocatalysts for electrochemical CO2 reduction, multifunctional metal–organic frameworks (MOFs) have been employed as highly efficient and selective heterogeneous electrocatalysts due to their ultrahigh porosity and topologically diverse structures. Up to now, great progress has been achieved in the design and synthesis of highly active and selective MOF-related catalysts for electrochemical CO2 reduction reaction (CO2RR), and their corresponding reaction mechanisms have been thoroughly studied. In this review, we summarize the recent progress of applying MOFs and their derivatives in CO2RR, with a focus on the design strategies for electrocatalysts and electrolyzers. We first discussed the reaction mechanisms for different CO2RR products and introduced the commonly applied electrolyzer configurations in the current CO2RR system. Then, an overview of several categories of products (CO, HCOOH, CH4, CH3OH, and multi-carbon chemicals) generated from MOFs or their derivatives via CO2RR was discussed. Finally, we offer some insights and perspectives for the future development of MOFs and their derivatives in electrochemical CO2 reduction. We aim to provide new insights into this field and further guide future research for large-scale applications.
Highlights:
1 The electrochemical techniques utilizing metal-organic frameworks (MOFs)-based catalysts for converting CO2 into chemical species are discussed.
2 The structure–activity relationship of MOF-based catalysts in electrocatalytic CO2 reduction reactions is thoroughly reviewed
3 The challenges and opportunities of large-scale applications of MOF-based materials in electrochemical CO2 reduction reactions are discussed, and possible directions for the future development of MOFs and their derivatives are outlined.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- B. Obama, The irreversible momentum of clean energy. Science 355(6321), 126–129 (2017). https://doi.org/10.1126/science.aam6284
- S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2016). https://doi.org/10.1038/nmat4834
- I. Mexis, G. Todeschini, Battery energy storage systems in the United Kingdom: a review of current state-of-the-art and future applications. Energies 13(14), 3616 (2020). https://doi.org/10.3390/en13143616
- P.D. Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo et al., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364(6438), 350 (2019). https://doi.org/10.1126/science.aav3506
- J.B. Greenblatt, D.J. Miller, J.W. Ager, F.A. Houle, I.D. Sharp, The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products. Joule 2(3), 381–420 (2018). https://doi.org/10.1016/j.joule.2018.01.014
- O.S. Bushuyev, P.D. Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2(5), 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
- T. Zheng, C. Liu, C. Guo, M. Zhang, X. Li et al., Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 16(12), 1386–1393 (2021). https://doi.org/10.1038/s41565-021-00974-5
- C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang et al., Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4(9), 776–785 (2019). https://doi.org/10.1038/s41560-019-0451-x
- X. Wang, Z. Wang, F.P. García de Arquer, C.-T. Dinh, A. Ozden et al., Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5(6), 478–486 (2020). https://doi.org/10.1038/s41560-020-0607-8
- Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4(9), 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
- J. Li, H. Zeng, X. Dong, Y. Ding, S. Hu et al., Selective CO2 electrolysis to co using isolated antimony alloyed copper. Nat. Commun. 14(1), 340 (2023). https://doi.org/10.1038/s41467-023-35960-z
- L. Fan, C. Xia, F.Q. Yang, J. Wang, H.T. Wang et al., Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 6(8), 17 (2020). https://doi.org/10.1126/sciadv.aay3111
- Y. Li, G. Shi, T. Chen, L. Zhu, D. Yu et al., Simultaneous increase of conductivity, active sites and structural strain by nitrogen injection for high-yield CO2 electro-hydrogenation to liquid fuel. Appl. Catal. B Environ. 305, 121080 (2022). https://doi.org/10.1016/j.apcatb.2022.121080
- R. Yu, C. Qiu, Z. Lin, H. Liu, J. Gao et al., CeOx promoted electrocatalytic CO2 reduction to formate by assisting in the critical hydrogenation step. ACS Mater. Lett. 4(9), 1749–1755 (2022). https://doi.org/10.1021/acsmaterialslett.2c00512
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13(1), 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13(1), 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
- J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43(2), 631–675 (2014). https://doi.org/10.1039/c3cs60323g
- C. Liu, M. Zhang, J. Li, W. Xue, T. Zheng et al., Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling. Angew. Chem. Int. Ed. 61(3), e202113498 (2022). https://doi.org/10.1002/anie.202113498
- T. Tang, Z. Wang, J. Guan, Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom m-n-c materials. Adv. Funct. Mater. 32(19), 2111504 (2022). https://doi.org/10.1002/adfm.202111504
- J. Zhu, Y. Wang, A. Zhi, Z. Chen, L. Shi et al., Cation-deficiency-dependent CO2 electroreduction over copper-based ruddlesden-popper perovskite oxides. Angew. Chem. Int. Ed. 61(3), e202111670 (2022). https://doi.org/10.1002/anie.202111670
- T. Ahmad, S. Liu, M. Sajid, K. Li, M. Ali et al., Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: a review. Nano Res. Energy 1, 9120021 (2022). https://doi.org/10.26599/nre.2022.9120021
- J. Chen, L. Wang, Effects of the catalyst dynamic changes and influence of the reaction environment on the performance of electrochemical CO2 reduction. Adv. Mater. 34(25), e2103900 (2022). https://doi.org/10.1002/adma.202103900
- B. Zhang, B. Zhang, Y. Jiang, T. Ma, H. Pan et al., Single-atom electrocatalysts for multi-electron reduction of CO2. Small 17(36), e2101443 (2021). https://doi.org/10.1002/smll.202101443
- S. Abednatanzi, P.G. Derakhshandeh, H. Depauw, F.X. Coudert, H. Vrielinck et al., Mixed-metal metal-organic frameworks. Chem. Soc. Rev. 48(9), 2535–2565 (2019). https://doi.org/10.1039/c8cs00337h
- G. Huang, L. Yang, Q. Yin, Z.B. Fang, X.J. Hu et al., A comparison of two isoreticular metal-organic frameworks with cationic and neutral skeletons: stability, mechanism, and catalytic activity. Angew. Chem. Int. Ed. 59(11), 4385–4390 (2020). https://doi.org/10.1002/anie.201916649
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444 (2013). https://doi.org/10.1126/science.1230444
- U. Khan, A. Nairan, J. Gao, Q. Zhang, Current progress in 2D metal-organic frameworks for electrocatalysis. Small Struct (2022). https://doi.org/10.1002/sstr.202200109
- Y. Wu, Y. Li, J. Gao, Q. Zhang, Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis. SusMat. 1(1), 66–87 (2021). https://doi.org/10.1002/sus2.3
- R. Dong, P. Han, H. Arora, M. Ballabio, M. Karakusn et al., High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat. Mater. 17(11), 1027–1032 (2018). https://doi.org/10.1038/s41563-018-0189-z
- J. Gao, X. Qian, R.B. Lin, R. Krishna, H. Wu et al., Mixed metal-organic framework with multiple binding sites for efficient C2H2/CO2 separation. Angew. Chem. Int. Ed. 59(11), 4396–4400 (2020). https://doi.org/10.1002/anie.202000323
- Y. Cui, J. Zhang, H. He, G. Qian, Photonic functional metal-organic frameworks. Chem. Soc. Rev. 47(15), 5740–5785 (2018). https://doi.org/10.1039/c7cs00879a
- H.B. Wu, X.W. Lou, Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci. Adv. 3(12), 16 (2017). https://doi.org/10.1126/sciadv.aap9252
- J. Liang, Z. Liang, R. Zou, Y. Zhao, Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater. 29(30), 1701139 (2017). https://doi.org/10.1002/adma.201701139
- M. Du, Q. Li, Y. Zhao, C.-S. Liu, H. Pang, A review of electrochemical energy storage behaviors based on pristine metal-organic frameworks and their composites. Coordin. Chem. Rev. 416, 213341 (2020). https://doi.org/10.1016/j.ccr.2020.213341
- S.S.A. Shah, T. Najam, M.K. Aslam, M. Ashfaq, M.M. Rahman et al., Recent advances on oxygen reduction electrocatalysis: correlating the characteristic properties of metal organic frameworks and the derived nanomaterials. Appl. Catal. B Environ. 268(5), 118570 (2020). https://doi.org/10.1016/j.apcatb.2019.118570
- H. Zhang, J. Nai, L. Yu, X.W. Lou, Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1(1), 77–107 (2017). https://doi.org/10.1016/j.joule.2017.08.008
- F.-Y. Yi, R. Zhang, H. Wang, L.-F. Chen, L. Han et al., Metal-organic frameworks and their composites: synthesis and electrochemical applications. Small Methods 1, 1700187 (2017). https://doi.org/10.1002/smtd.201700187
- B.Y. Guan, X.Y. Yu, H.B. Wu, X.W.D. Lou, Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29(47), 1703614 (2017). https://doi.org/10.1002/adma.201703614
- J.W. Maina, C. Pozo-Gonzalo, J.A. Schütz, J. Wang, L.F. Dumée, Tuning CO2 conversion product selectivity of metal organic frameworks derived hybrid carbon photoelectrocatalytic reactors. Carbon 148, 80–90 (2019). https://doi.org/10.1016/j.carbon.2019.03.043
- J.-K. Sun, Q. Xu, Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ. Sci. 7(7), 2071–2100 (2014). https://doi.org/10.1039/c4ee00517a
- X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46(10), 2660–2677 (2017). https://doi.org/10.1039/c6cs00426a
- J. Liu, D. Zhu, C. Guo, A. Vasileff, S.Z. Qiao, Design strategies toward advanced mof-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 7(23), 1700518 (2017). https://doi.org/10.1002/aenm.201700518
- X.F. Lu, Y. Fang, D. Luan, X.W.D. Lou, Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: a mini review. Nano Lett. 21(4), 1555–1565 (2021). https://doi.org/10.1021/acs.nanolett.0c04898
- R. Yan, T. Ma, M. Cheng, X. Tao, Z. Yang et al., Metal-organic-framework-derived nanostructures as multifaceted electrodes in metal-sulfur batteries. Adv. Mater. 33(27), e2008784 (2021). https://doi.org/10.1002/adma.202008784
- S. Sanati, R. Abazari, J. Albero, A. Morsali, H. Garcia et al., Metal-organic framework derived bimetallic materials for electrochemical energy storage. Angew. Chem. Int. Ed. 60(20), 11048–11067 (2021). https://doi.org/10.1002/anie.202010093
- Z. Liang, T. Qiu, S. Gao, R. Zhong, R. Zou, Multi-scale design of metal–organic framework-derived materials for energy electrocatalysis. Adv. Energy Mater. 12(4), 2003410 (2021). https://doi.org/10.1002/aenm.202003410
- L. Li, X.D. Li, Y.F. Sun, Y. Xie, Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 51(4), 1234–1252 (2022). https://doi.org/10.1039/d1cs00893e
- R. Kortlever, J. Shen, K.J. Schouten, F. Calle-Vallejo, M.T. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6(20), 4073–4082 (2015). https://doi.org/10.1021/acs.jpclett.5b01559
- M.T.M. Koper, Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660(2), 254–260 (2011). https://doi.org/10.1016/j.jelechem.2010.10.004
- A.D. Handoko, F. Wei, B.S. Jenndy, Z.W. She. Yeo, Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1(12), 922–934 (2018). https://doi.org/10.1038/s41929-018-0182-6
- S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119(12), 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
- E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38(1), 89–99 (2009). https://doi.org/10.1039/b804323j
- J. Wu, Y. Huang, W. Ye, Y. Li, CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4(11), 1700194 (2017). https://doi.org/10.1002/advs.201700194
- J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7(7), 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
- S. Zhang, P. Kang, T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136(5), 1734–1737 (2014). https://doi.org/10.1021/ja4113885
- Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
- B. Schmid, C. Reller, S. Neubauer, M. Fleischer, R. Dorta et al., Reactivity of copper electrodes towards functional groups and small molecules in the context of CO2 electro-reductions. Catalysts 7(5), 161 (2017). https://doi.org/10.3390/catal7050161
- A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Norskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3(9), 1311–1315 (2010). https://doi.org/10.1039/c0ee00071j
- S. Li, H. Duan, J. Yu, C. Qiu, R. Yu et al., Cu vacancy induced product switching from formate to Co for CO2 reduction on copper sulfide. ACS Catal. 12(15), 9074–9082 (2022). https://doi.org/10.1021/acscatal.2c01750
- A.J. Garza, A.T. Bell, M. Head-Gordon, Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8(2), 1490–1499 (2018). https://doi.org/10.1021/acscatal.7b03477
- K.J. Schouten, Z. Qin, E.P. Gallent, M.T. Koper, Two pathways for the formation of ethylene in co reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134(24), 9864–9867 (2012). https://doi.org/10.1021/ja302668n
- X. Nie, M.R. Esopi, M.J. Janik, A. Asthagiri, Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52(9), 2459–2462 (2013). https://doi.org/10.1002/anie.201208320
- Y. Hori, R. Takahashi, Y. Yoshinami, A. Murata, Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101(36), 7075–7081 (1997). https://doi.org/10.1021/jp970284i
- S. Ma, M. Sadakiyo, R. Luo, M. Heima, M. Yamauchi et al., One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.124
- F. Calle-Vallejo, M.T. Koper, Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52(28), 7282–7285 (2013). https://doi.org/10.1002/anie.201301470
- K.J.P. Schouten, Y. Kwon, C.J.M. van der Ham, Z. Qin, M.T.M. Koper, A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2(10), 1902–1909 (2011). https://doi.org/10.1039/c1sc00277e
- J.H. Montoya, C. Shi, K. Chan, J.K. Norskov, Theoretical insights into a co dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6(11), 2032–2037 (2015). https://doi.org/10.1021/acs.jpclett.5b00722
- J.D. Goodpaster, A.T. Bell, M. Head-Gordon, Identification of possible pathways for c-c bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7(8), 1471–1477 (2016). https://doi.org/10.1021/acs.jpclett.6b00358
- T. Burdyny, W.A. Smith, CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12(5), 1442–1453 (2019). https://doi.org/10.1039/c8ee03134g
- M.R. Singh, E.L. Clark, A.T. Bell, Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17(29), 18924–18936 (2015). https://doi.org/10.1039/c5cp03283k
- Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2(12), 2551–2582 (2018). https://doi.org/10.1016/j.joule.2018.09.021
- Y. Yang, F. Li, Reactor design for electrochemical CO2 conversion toward large-scale applications. Curr. Opin. Green Sust. 27, 100419 (2021). https://doi.org/10.1016/j.cogsc.2020.100419
- L.C. Weng, A.T. Bell, A.Z. Weber, Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20(25), 16973–16984 (2018). https://doi.org/10.1039/c8cp01319e
- C. Chen, J.F.K. Kotyk, S.W. Sheehan, Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4(11), 2571–2586 (2018). https://doi.org/10.1016/j.chempr.2018.08.019
- D. Wakerley, S. Lamaison, J. Wicks, A. Clemens, J. Feaster et al., Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7(2), 130–143 (2022). https://doi.org/10.1038/s41560-021-00973-9
- Z. Xing, L. Hu, D.S. Ripatti, X. Hu, X. Feng, Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 12(1), 136 (2021). https://doi.org/10.1038/s41467-020-20397-5
- F.P.G. de Arquer, C.T. Dinh, A. Ozden, J. Wicks, C. McCallum et al., CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2. Science 367(6478), 661–666 (2020). https://doi.org/10.1126/science.aay4217
- R. Chen, H.Y. Su, D. Liu, R. Huang, X. Meng et al., Highly selective production of ethylene by the electroreduction of carbon monoxide. Angew. Chem. Int. Ed. 59(1), 154–160 (2020). https://doi.org/10.1002/anie.201910662
- S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu et al., Insights into the low overpotential electroreduction of CO2 to co on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3(1), 193–198 (2017). https://doi.org/10.1021/acsenergylett.7b01096
- T.-T. Zhuang, Z.-Q. Liang, A. Seifitokaldani, Y. Li, P.D. Luna et al., Steering post-c–c coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1(6), 421–428 (2018). https://doi.org/10.1038/s41929-018-0084-7
- S.S. Bhargava, F. Proietto, D. Azmoodeh, E.R. Cofell, D.A. Henckel et al., System design rules for intensifying the electrochemical reduction of CO2 to Co on Ag nanops. ChemElectroChem 7(9), 2001–2011 (2020). https://doi.org/10.1002/celc.202000089
- F.-Y. Gao, R.-C. Bao, M.-R. Gao, S.-H. Yu, Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers. J. Mater. Chem. A 8(31), 15458–15478 (2020). https://doi.org/10.1039/d0ta03525d
- N.T. Nesbitt, T. Burdyny, H. Simonson, D. Salvatore, D. Bohra et al., Liquid–solid boundaries dominate activity of CO2 reduction on gas-diffusion electrodes. ACS Catal. 10(23), 14093–14106 (2020). https://doi.org/10.1021/acscatal.0c03319
- Z. Yin, H. Peng, X. Wei, H. Zhou, J. Gong et al., An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12(8), 2455–2462 (2019). https://doi.org/10.1039/c9ee01204d
- B. Endrődi, E. Kecsenovity, A. Samu, T. Halmágyi, S. Rojas-Carbonell et al., High carbonate ion conductance of a robust piperion membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13(11), 4098–4105 (2020). https://doi.org/10.1039/d0ee02589e
- C.M. Gabardo, C.P. O’Brien, J.P. Edwards, C. McCallum, Y. Xu et al., Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3(11), 2777–2791 (2019). https://doi.org/10.1016/j.joule.2019.07.021
- L. Ge, H. Rabiee, M. Li, S. Subramanian, Y. Zheng et al., Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 8(3), 663–692 (2022). https://doi.org/10.1016/j.chempr.2021.12.002
- A. Gawel, T. Jaster, D. Siegmund, J. Holzmann, H. Lohmann et al., Electrochemical CO2 reduction—the macroscopic world of electrode design, reactor concepts & economic aspects. iScience 25(4), 104011 (2022). https://doi.org/10.1016/j.isci.2022.104011
- L.-C. Weng, A.T. Bell, A.Z. Weber, Towards membrane-electrode assembly systems for CO2 reduction: A modeling study. Energy Environ. Sci. 12(6), 1950–1968 (2019). https://doi.org/10.1039/c9ee00909d
- R. Hinogami, S. Yotsuhashi, M. Deguchi, Y. Zenitani, H. Hashiba et al., Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem. Lett. 1(4), H17–H19 (2012). https://doi.org/10.1149/2.001204eel
- R.S. Kumar, S.S. Kumar, M.A. Kulandainathan, Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem. Commun. 25, 70–73 (2012). https://doi.org/10.1016/j.elecom.2012.09.018
- M.C.O. Monteiro, M.F. Philips, K.J.P. Schouten, M.T.M. Koper, Efficiency and selectivity of CO2 reduction to co on gold gas diffusion electrodes in acidic media. Nat. Commun. 12(1), 4943 (2021). https://doi.org/10.1038/s41467-021-24936-6
- S. Verma, B. Kim, H.R. Jhong, S. Ma, P.J. Kenis, A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9(15), 1972–1979 (2016). https://doi.org/10.1002/cssc.201600394
- M. Jouny, W. Luc, F. Jiao, General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57(6), 2165–2177 (2018). https://doi.org/10.1021/acs.iecr.7b03514
- N. Kornienko, Y. Zhao, C.S. Kley, C. Zhu, D. Kim et al., Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137(44), 14129–14135 (2015). https://doi.org/10.1021/jacs.5b08212
- B.-X. Dong, S.-L. Qian, F.-Y. Bu, Y.-C. Wu, L.-G. Feng et al., Electrochemical reduction of CO2 to co by a heterogeneous catalyst of fe–porphyrin-based metal–organic framework. ACS Appl. Energy Mater. 1(9), 4662–4669 (2018). https://doi.org/10.1021/acsaem.8b00797
- M.-D. Zhang, D.-H. Si, J.-D. Yi, Q. Yin, Y.-B. Huang et al., Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction. Sci. China Chem. 64(8), 1332–1339 (2021). https://doi.org/10.1007/s11426-021-1022-3
- J.D. Yi, D.H. Si, R. Xie, Q. Yin, M.D. Zhang et al., Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem. Int. Ed. 60(31), 17108–17114 (2021). https://doi.org/10.1002/anie.202104564
- L. Majidi, A. Ahmadiparidari, N. Shan, S.N. Misal, K. Kumar et al., 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials. Adv. Mater. 33(10), e2004393 (2021). https://doi.org/10.1002/adma.202004393
- H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge et al., Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 11(1), 1409 (2020). https://doi.org/10.1038/s41467-020-15141-y
- S. Dou, J. Song, S. Xi, Y. Du, J. Wang et al., Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping. Angew. Chem. Int. Ed. 58(12), 4041–4045 (2019). https://doi.org/10.1002/anie.201814711
- Q. Huang, Q. Li, J. Liu, Y.R. Wang, R. Wang et al., Disclosing CO2 activation mechanism by hydroxyl-induced crystalline structure transformation in electrocatalytic process. Matter 1(6), 1656–1668 (2019). https://doi.org/10.1016/j.matt.2019.07.003
- T.A. Al-Attas, N.N. Marei, X. Yong, N.G. Yasri, V. Thangadurai et al., Ligand-engineered metal-organic frameworks for electrochemical reduction of carbon dioxide to carbon monoxide. ACS Catal. 11(12), 7350–7357 (2021). https://doi.org/10.1021/acscatal.1c01506
- Z. Xin, Y.-R. Wang, Y. Chen, W.-L. Li, L.-Z. Dong et al., Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano Energy 67, 104233 (2020). https://doi.org/10.1016/j.nanoen.2019.104233
- Z. Xin, J. Liu, X. Wang, K. Shen, Z. Yuan et al., Implanting polypyrrole in metal-porphyrin MOFs: enhanced electrocatalytic performance for CO2RR. ACS Appl. Mater. Interfaces 13(46), 54959–54966 (2021). https://doi.org/10.1021/acsami.1c15187
- Y.N. Gong, L. Jiao, Y.Y. Qian, C.Y. Pan, L.R. Zheng et al., Regulating the coordination environment of mof-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 59(7), 2705–2709 (2020). https://doi.org/10.1002/anie.201914977
- Z. Chen, X. Zhang, W. Liu, M. Jiao, K. Mou et al., Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level. Energy Environ. Sci. 14(4), 2349–2356 (2021). https://doi.org/10.1039/d0ee04052e
- L. Lin, H. Li, C. Yan, H. Li, R. Si et al., Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31(41), e1903470 (2019). https://doi.org/10.1002/adma.201903470
- J. Han, P. An, S. Liu, X. Zhang, D. Wang et al., Reordering d orbital energies of single-site catalysts for CO2 electroreduction. Angew. Chem. Int. Ed. 58(36), 12711–12716 (2019). https://doi.org/10.1002/anie.201907399
- L. Ye, X. Chen, Y. Gao, X. Ding, J. Hou et al., Ultrathin two-dimensional metal–organic framework nanosheets for efficient electrochemical CO2 reduction. J. Energy Chem. 57, 627–631 (2021). https://doi.org/10.1016/j.jechem.2020.09.021
- T. Yan, P. Wang, Z.H. Xu, W.Y. Sun, Copper(ii) frameworks with varied active site distribution for modulating selectivity of carbon dioxide electroreduction. ACS Appl. Mater. Interfaces 14(11), 13645–13652 (2022). https://doi.org/10.1021/acsami.2c00487
- Y. Guo, W. Shi, H. Yang, Q. He, Z. Zeng et al., Cooperative stabilization of the [pyridinium-CO2-CO] adduct on a metal-organic layer enhances electrocatalytic CO2 reduction. J. Am. Chem. Soc. 141(44), 17875–17883 (2019). https://doi.org/10.1021/jacs.9b09227
- Y. Lu, H. Zhong, J. Li, A.M. Dominic, Y. Hu et al., Sp-carbon incorporated conductive metal-organic framework as photocathode for photoelectrochemical hydrogen generation. Angew. Chem. Int. Ed. 61(39), e202208163 (2022). https://doi.org/10.1002/anie.202208163
- H. Zhong, K.H. Ly, M. Wang, Y. Krupskaya, X. Han et al., A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58(31), 10677–10682 (2019). https://doi.org/10.1002/anie.201907002
- M. Wang, R. Dong, X. Feng, Two-dimensional conjugated metal-organic frameworks (2d C-MOFs): Chemistry and function for moftronics. Chem. Soc. Rev. 50(4), 2764–2793 (2021). https://doi.org/10.1039/d0cs01160f
- Z. Guo, G. Chen, C. Cometto, B. Ma, H. Zhao et al., Selectivity control of co versus HCOO− production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites. Nat. Catal. 2(9), 801–808 (2019). https://doi.org/10.1038/s41929-019-0331-6
- D. Mellmann, P. Sponholz, H. Junge, M. Beller, Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 45(14), 3954–3988 (2016). https://doi.org/10.1039/c5cs00618j
- L. Calzadiaz-Ramirez, A.S. Meyer, Formate dehydrogenases for CO2 utilization. Curr. Opin. Biotech. 73, 95–100 (2022). https://doi.org/10.1016/j.copbio.2021.07.011
- Y. Zhou, S. Liu, Y. Gu, G.H. Wen, J. Ma et al., In(iii) metal-organic framework incorporated with enzyme-mimicking nickel bis(dithiolene) ligand for highly selective CO2 electroreduction. J. Am. Chem. Soc. 143(35), 14071–14076 (2021). https://doi.org/10.1021/jacs.1c06797
- Z.H. Zhu, B.H. Zhao, S.L. Hou, X.L. Jiang, Z.L. Liang et al., A facile strategy for constructing a carbon-p-modified metal-organic framework for enhancing the efficiency of CO2 electroreduction into formate. Angew. Chem. Int. Ed. 60(43), 23394–23402 (2021). https://doi.org/10.1002/anie.202110387
- C. Qiu, K. Qian, J. Yu, M. Sun, S. Cao et al., Mof-transformed In2O3-x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 14(1), 167 (2022). https://doi.org/10.1007/s40820-022-00913-6
- W. Geng, W. Chen, G. Li, X. Dong, Y. Song et al., Induced CO2 electroreduction to formic acid on metal-organic frameworks via node doping. ChemSusChem 13(16), 4035–4040 (2020). https://doi.org/10.1002/cssc.202001310
- Y. Deng, S. Wang, Y. Huang, X. Li, Structural reconstruction of Sn-based metal-organic frameworks for efficient electrochemical CO2 reduction to formate. Chin. J. Chem. Eng. 43, 353–359 (2022). https://doi.org/10.1016/j.cjche.2022.03.006
- J.X. Wu, X.R. Zhu, T. Liang, X.D. Zhang, S.Z. Hou et al., Sn(101) derived from metal-organic frameworks for efficient electrocatalytic reduction of CO2. Inorg. Chem. 60(13), 9653–9659 (2021). https://doi.org/10.1021/acs.inorgchem.1c00946
- X. Zhang, Y. Zhang, Q. Li, X. Zhou, Q. Li et al., Highly efficient and durable aqueous electrocatalytic reduction of CO2 to HCOOH with a novel bismuth-MOF: experimental and dft studies. J. Mater. Chem. A 8(19), 9776–9787 (2020). https://doi.org/10.1039/d0ta00384k
- F. Li, G.H. Gu, C. Choi, P. Kolla, S. Hong et al., Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Appl. Catal. B Environ. 277, 119241 (2020). https://doi.org/10.1016/j.apcatb.2020.119241
- J. Yang, X. Wang, Y. Qu, X. Wang, H. Huo et al., Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 10(36), 2001709 (2020). https://doi.org/10.1002/aenm.202001709
- P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou et al., Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem. Int. Ed. 59(27), 10807–10813 (2020). https://doi.org/10.1002/anie.202000657
- Y. Ying, B. Khezri, J. Kosina, M. Pumera, Reconstructed bismuth-based metal-organic framework nanofibers for selective CO2-to-formate conversion: Morphology engineering. ChemSusChem 14(16), 3402–3412 (2021). https://doi.org/10.1002/cssc.202101122
- Q. Wang, X. Yang, H. Zang, F. Chen, C. Wang et al., Metal-organic framework-derived biin bimetallic oxide nanops embedded in carbon networks for efficient electrochemical reduction of CO2 to formate. Inorg. Chem. 61(30), 12003–12011 (2022). https://doi.org/10.1021/acs.inorgchem.2c01961
- C. Cao, D.D. Ma, J.F. Gu, X. Xie, G. Zeng et al., Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. Int. Ed. 59(35), 15014–15020 (2020). https://doi.org/10.1002/anie.202005577
- W.-W. Yuan, J.-X. Wu, X.-D. Zhang, S.-Z. Hou, M. Xu et al., In situ transformation of bismuth metal-organic frameworks for efficient selective electroreduction of CO2 to formate. J. Mater. Chem. A 8(46), 24486–24492 (2020). https://doi.org/10.1039/d0ta08092f
- D. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao et al., The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem. Int. Ed. 60(33), 18178–18184 (2021). https://doi.org/10.1002/anie.202104747
- Q. Zhu, D. Yang, H. Liu, X. Sun, C. Chen et al., Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction. Angew. Chem. Int. Ed. 59(23), 8896–8901 (2020). https://doi.org/10.1002/anie.202001216
- K. Yao, H. Wang, X. Yang, Y. Huang, C. Kou et al., Metal-organic framework derived dual-metal sites for electroreduction of carbon dioxide to HCOOH. Appl. Catal. B Environ. 311, 121377 (2022). https://doi.org/10.1016/j.apcatb.2022.1213
- P. Lamagni, M. Miola, J. Catalano, M.S. Hvid, M.A.H. Mamakhel et al., Restructuring metal-organic frameworks to nanoscale bismuth electrocatalysts for highly active and selective CO2 reduction to formate. Adv. Funct. Mater. 30(16), 1910408 (2020). https://doi.org/10.1002/adfm.201910408
- Y.X. Duan, K.H. Liu, Q. Zhang, J.M. Yan, Q. Jiang, Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods 4(5), 1900846 (2020). https://doi.org/10.1002/smtd.201900846
- H.Q. Fu, J. Liu, N.M. Bedford, Y. Wang, J. Wright et al., Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 14(1), 121 (2022). https://doi.org/10.1007/s40820-022-00862-0
- D. Wu, R. Feng, C. Xu, P.-F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14(1), 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
- M. Qi, J. Park, R.S. Landon, J. Kim, Y. Liu et al., Continuous and flexible renewable-power-to-methane via liquid CO2 energy storage: revisiting the techno-economic potential. Renew. Sust. Energy Rev. 153, 111732 (2022). https://doi.org/10.1016/j.rser.2021.111732
- X. Liu, H. Yang, J. He, H. Liu, L. Song et al., Highly active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4. Small 14(16), e1704049 (2018). https://doi.org/10.1002/smll.201704049
- X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu et al., Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4(8), 690–699 (2019). https://doi.org/10.1038/s41560-019-0431-1
- M.K. Kim, H.J. Kim, H. Lim, Y. Kwon, H.M. Jeong, Metal-organic framework-mediated strategy for enhanced methane production on copper nanops in electrochemical CO2 reduction. Electrochim. Acta 306, 28–34 (2019). https://doi.org/10.1016/j.electacta.2019.03.101
- F. Yang, A. Chen, P.L. Deng, Y. Zhou, Z. Shahid et al., Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper-organic frameworks. Chem. Sci. 10(34), 7975–7981 (2019). https://doi.org/10.1039/c9sc02605c
- X. Tan, C. Yu, C. Zhao, H. Huang, X. Yao et al., Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2. ACS Appl. Mater. Interfaces 11(10), 9904–9910 (2019). https://doi.org/10.1021/acsami.8b19111
- J.D. Yi, R. Xie, Z.L. Xie, G.L. Chai, T.F. Liu et al., Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem. Int. Ed. 59(52), 23641–23648 (2020). https://doi.org/10.1002/anie.202010601
- H.-L. Zhu, J.-R. Huang, X.-W. Zhang, C. Wang, N.-Y. Huang et al., Highly efficient electroconversion of CO2 into CH4 by a metal-organic framework with trigonal pyramidal Cu(1)N3 active sites. ACS Catal. 11(18), 11786–11792 (2021). https://doi.org/10.1021/acscatal.1c02980
- L. Zhang, X.X. Li, Z.L. Lang, Y. Liu, J. Liu et al., Enhanced cuprophilic interactions in crystalline catalysts facilitate the highly selective electroreduction of CO2 to CH4. J. Am. Chem. Soc. 143(10), 3808–3816 (2021). https://doi.org/10.1021/jacs.0c11450
- Y. Zhang, L.Z. Dong, S. Li, X. Huang, J.N. Chang et al., Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nat. Commun. 12(1), 6390 (2021). https://doi.org/10.1038/s41467-021-26724-8
- Y. Liu, S. Li, L. Dai, J. Li, J. Lv et al., The synthesis of hexaazatrinaphthylene-based 2d conjugated copper metal-organic framework for highly selective and stable electroreduction of CO2 to methane. Angew. Chem. Int. Ed. 60(30), 16409–16415 (2021). https://doi.org/10.1002/anie.202105966
- Y. Zhang, Q. Zhou, Z.F. Qiu, X.Y. Zhang, J.Q. Chen et al., Tailoring coordination microenvironment of Cu(1) in metal-organic frameworks for enhancing electroreduction of CO2 to CH4. Adv. Funct. Mater. 32(36), 2203677 (2022). https://doi.org/10.1002/adfm.202203677
- Y. Fang, J.C. Flake, Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 139(9), 3399–3405 (2017). https://doi.org/10.1021/jacs.6b11023
- M.S. Xie, B.Y. Xia, Y. Li, Y. Yan, Y. Yang et al., Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9(5), 1687–1695 (2016). https://doi.org/10.1039/c5ee03694a
- S. Ahn, K. Klyukin, R.J. Wakeham, J.A. Rudd, A.R. Lewis et al., Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 8(5), 4132–4142 (2018). https://doi.org/10.1021/acscatal.7b04347
- Y. Qiu, H. Zhong, W. Xu, T. Zhang, X. Li et al., Tuning the electrocatalytic properties of a Cu electrode with organic additives containing amine group for CO2 reduction. J. Mater. Chem. A 7(10), 5453–5462 (2019). https://doi.org/10.1039/c9ta00039a
- N.J. Firet, W.A. Smith, Probing the reaction mechanism of CO2 electroreduction over ag films via operando infrared spectroscopy. ACS Catal. 7(1), 606–612 (2016). https://doi.org/10.1021/acscatal.6b02382
- E. Perez-Gallent, M.C. Figueiredo, F. Calle-Vallejo, M.T. Koper, Spectroscopic observation of a hydrogenated co dimer intermediate during co reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56(13), 3621–3624 (2017). https://doi.org/10.1002/anie.201700580
- S. Zhu, T. Li, W.-B. Cai, M. Shao, CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett. 4(3), 682–689 (2019). https://doi.org/10.1021/acsenergylett.8b02525
- Y. Pei, H. Zhong, F. Jin, A brief review of electrocatalytic reduction of CO2 materials, reaction conditions, and devices. Energy Sci. Eng. 9(7), 1012–1032 (2021). https://doi.org/10.1002/ese3.935
- S. Zivkovic, M. Veljkovic, Environmental impacts the of production and use of biodiesel. Environ. Sci. Pollut. Res. 25(1), 191–199 (2018). https://doi.org/10.1007/s11356-017-0649-z
- L. Bilgili, Comparative assessment of alternative marine fuels in life cycle perspective. Renew. Sust. Energy Rev. 144, 110985 (2021). https://doi.org/10.1016/j.rser.2021.110985
- I.U. Din, M.S. Shaharun, M.A. Alotaibi, A.I. Alharthi, A. Naeem, Recent developments on heterogeneous catalytic CO2 reduction to methanol. J. CO2 Util. 34, 20–33 (2019). https://doi.org/10.1016/j.jcou.2019.05.036
- K. Zhao, Y. Liu, X. Quan, S. Chen, H. Yu, CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework. ACS Appl. Mater. Interfaces 9(6), 5302–5311 (2017). https://doi.org/10.1021/acsami.6b15402
- X. Yang, J. Cheng, X. Yang, Y. Xu, W. Sun et al., MOF-derived Cu@Cu2O heterogeneous electrocatalyst with moderate intermediates adsorption for highly selective reduction of CO2 to methanol. Chem. Eng. J. 431, 2203677 (2022). https://doi.org/10.1016/j.cej.2021.2203677
- S. Payra, S. Shenoy, C. Chakraborty, K. Tarafder, S. Roy, Structure-sensitive electrocatalytic reduction of CO2 to methanol over carbon-supported intermetallic PtZn nano-alloys. ACS Appl. Mater. Interfaces 12(17), 19402–19414 (2020). https://doi.org/10.1021/acsami.0c00521
- H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu et al., Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 141(32), 12717–12723 (2019). https://doi.org/10.1021/jacs.9b04907
- J. Liu, D. Yang, Y. Zhou, G. Zhang, G. Xing et al., Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 60(26), 14473–14479 (2021). https://doi.org/10.1002/anie.202103398
- L. Zaza, K. Rossi, R. Buonsanti, Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products. ACS Energy Lett. 7(4), 1284–1291 (2022). https://doi.org/10.1021/acsenergylett.2c00035
- Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec et al., Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141(19), 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124
- W. Pei, S. Zhou, J. Zhao, X. Xu, Y. Du et al., Immobilized trimeric metal clusters: a family of the smallest catalysts for selective CO2 reduction toward multi-carbon products. Nano Energy 76, 105049 (2020). https://doi.org/10.1016/j.nanoen.2020.105049
- A.R. Woldu, Z. Huang, P. Zhao, L. Hu, D. Astruc, Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordin. Chem. Rev. 454, 214340 (2022). https://doi.org/10.1016/j.ccr.2021.214340
- Y. Zhang, K. Li, M. Chen, J. Wang, J. Liu et al., Cu/Cu2O nanops supported on vertically ZIF-l-coated nitrogen-doped graphene nanosheets for electroreduction of CO2 to ethanol. ACS Appl. Nano Mater. 3(1), 257–263 (2019). https://doi.org/10.1021/acsanm.9b01935
- Z.H. Zhao, K. Zheng, N.Y. Huang, H.L. Zhu, J.R. Huang et al., A Cu(111)@metal-organic framework as a tandem catalyst for highly selective CO2 electroreduction to C2H4. Chem. Commun. 57(95), 12764–12767 (2021). https://doi.org/10.1039/d1cc05376k
- Y. Han, S. Zhu, S. Xu, X. Niu, Z. Xu et al., Understanding structure-activity relationship on metal-organic-framework-derived catalyst for CO2 electroreduction to C2 products. ChemElectroChem 8(16), 3174–3180 (2021). https://doi.org/10.1002/celc.202100942
- H. Huo, J. Wang, Q. Fan, Y. Hu, J. Yang, Cu-MOFs derived porous Cu nanoribbons with strengthened electric field for selective CO2 electroreduction to C2+ fuels. Adv. Energy Mater. 11(42), 2102447 (2021). https://doi.org/10.1002/aenm.202102447
- X.F. Qiu, H.L. Zhu, J.R. Huang, P.Q. Liao, X.M. Chen, Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J. Am. Chem. Soc. 143(19), 7242–7246 (2021). https://doi.org/10.1021/jacs.1c01466
- C.F. Wen, M. Zhou, P.F. Liu, Y. Liu, X. Wu et al., Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu-S motifs in metal-organic framework based precatalysts. Angew. Chem. Int. Ed. 61(2), e202111700 (2022). https://doi.org/10.1002/anie.202111700
- X. Xie, X. Zhang, M. Xie, L. Xiong, H. Sun et al., Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 13(1), 63 (2022). https://doi.org/10.1038/s41467-021-27768-6
- D. Karapinar, N.T. Huan, N.R. Sahraie, J.K. Li, D. Wakerley et al., Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: Selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58(42), 15098–15103 (2019). https://doi.org/10.1002/anie.201907994
- K. Zhao, X. Nie, H. Wang, S. Chen, X. Quan et al., Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 11(1), 2455 (2020). https://doi.org/10.1038/s41467-020-16381-8
- Y. Yang, L. Ohnoutek, S. Ajmal, X. Zheng, Y. Feng et al., “Hot edges” in an inverse opal structure enable efficient CO2 electrochemical reduction and sensitive in situ raman characterization. J. Mater. Chem. A 7(19), 11836–11846 (2019). https://doi.org/10.1039/c9ta02288k
- G. Iijima, T. Inomata, H. Yamaguchi, M. Ito, H. Masuda, Role of a hydroxide layer on Cu electrodes in electrochemical CO2 reduction. ACS Catal. 9(7), 6305–6319 (2019). https://doi.org/10.1021/acscatal.9b00896
- Y. Liu, H. Jiang, Z. Hou, Hidden mechanism behind the roughness-enhanced selectivity of carbon monoxide electrocatalytic reduction. Angew. Chem. Int. Ed. 60(20), 11133–11137 (2021). https://doi.org/10.1002/anie.202016332
- C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360(6390), 783–787 (2018). https://doi.org/10.1126/science.aas9100
- L. Fan, C. Xia, P. Zhu, Y. Lu, H. Wang, Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11(1), 3633 (2020). https://doi.org/10.1038/s41467-020-17403-1
- T. Zheng, M. Zhang, L. Wu, S. Guo, X. Liu et al., Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5(5), 388–396 (2022). https://doi.org/10.1038/s41929-022-00775-6
References
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
B. Obama, The irreversible momentum of clean energy. Science 355(6321), 126–129 (2017). https://doi.org/10.1126/science.aam6284
S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2016). https://doi.org/10.1038/nmat4834
I. Mexis, G. Todeschini, Battery energy storage systems in the United Kingdom: a review of current state-of-the-art and future applications. Energies 13(14), 3616 (2020). https://doi.org/10.3390/en13143616
P.D. Luna, C. Hahn, D. Higgins, S.A. Jaffer, T.F. Jaramillo et al., What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364(6438), 350 (2019). https://doi.org/10.1126/science.aav3506
J.B. Greenblatt, D.J. Miller, J.W. Ager, F.A. Houle, I.D. Sharp, The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products. Joule 2(3), 381–420 (2018). https://doi.org/10.1016/j.joule.2018.01.014
O.S. Bushuyev, P.D. Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2(5), 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
T. Zheng, C. Liu, C. Guo, M. Zhang, X. Li et al., Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 16(12), 1386–1393 (2021). https://doi.org/10.1038/s41565-021-00974-5
C. Xia, P. Zhu, Q. Jiang, Y. Pan, W. Liang et al., Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4(9), 776–785 (2019). https://doi.org/10.1038/s41560-019-0451-x
X. Wang, Z. Wang, F.P. García de Arquer, C.-T. Dinh, A. Ozden et al., Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5(6), 478–486 (2020). https://doi.org/10.1038/s41560-020-0607-8
Y.Y. Birdja, E. Pérez-Gallent, M.C. Figueiredo, A.J. Göttle, F. Calle-Vallejo et al., Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4(9), 732–745 (2019). https://doi.org/10.1038/s41560-019-0450-y
J. Li, H. Zeng, X. Dong, Y. Ding, S. Hu et al., Selective CO2 electrolysis to co using isolated antimony alloyed copper. Nat. Commun. 14(1), 340 (2023). https://doi.org/10.1038/s41467-023-35960-z
L. Fan, C. Xia, F.Q. Yang, J. Wang, H.T. Wang et al., Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 6(8), 17 (2020). https://doi.org/10.1126/sciadv.aay3111
Y. Li, G. Shi, T. Chen, L. Zhu, D. Yu et al., Simultaneous increase of conductivity, active sites and structural strain by nitrogen injection for high-yield CO2 electro-hydrogenation to liquid fuel. Appl. Catal. B Environ. 305, 121080 (2022). https://doi.org/10.1016/j.apcatb.2022.121080
R. Yu, C. Qiu, Z. Lin, H. Liu, J. Gao et al., CeOx promoted electrocatalytic CO2 reduction to formate by assisting in the critical hydrogenation step. ACS Mater. Lett. 4(9), 1749–1755 (2022). https://doi.org/10.1021/acsmaterialslett.2c00512
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13(1), 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13(1), 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43(2), 631–675 (2014). https://doi.org/10.1039/c3cs60323g
C. Liu, M. Zhang, J. Li, W. Xue, T. Zheng et al., Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling. Angew. Chem. Int. Ed. 61(3), e202113498 (2022). https://doi.org/10.1002/anie.202113498
T. Tang, Z. Wang, J. Guan, Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom m-n-c materials. Adv. Funct. Mater. 32(19), 2111504 (2022). https://doi.org/10.1002/adfm.202111504
J. Zhu, Y. Wang, A. Zhi, Z. Chen, L. Shi et al., Cation-deficiency-dependent CO2 electroreduction over copper-based ruddlesden-popper perovskite oxides. Angew. Chem. Int. Ed. 61(3), e202111670 (2022). https://doi.org/10.1002/anie.202111670
T. Ahmad, S. Liu, M. Sajid, K. Li, M. Ali et al., Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: a review. Nano Res. Energy 1, 9120021 (2022). https://doi.org/10.26599/nre.2022.9120021
J. Chen, L. Wang, Effects of the catalyst dynamic changes and influence of the reaction environment on the performance of electrochemical CO2 reduction. Adv. Mater. 34(25), e2103900 (2022). https://doi.org/10.1002/adma.202103900
B. Zhang, B. Zhang, Y. Jiang, T. Ma, H. Pan et al., Single-atom electrocatalysts for multi-electron reduction of CO2. Small 17(36), e2101443 (2021). https://doi.org/10.1002/smll.202101443
S. Abednatanzi, P.G. Derakhshandeh, H. Depauw, F.X. Coudert, H. Vrielinck et al., Mixed-metal metal-organic frameworks. Chem. Soc. Rev. 48(9), 2535–2565 (2019). https://doi.org/10.1039/c8cs00337h
G. Huang, L. Yang, Q. Yin, Z.B. Fang, X.J. Hu et al., A comparison of two isoreticular metal-organic frameworks with cationic and neutral skeletons: stability, mechanism, and catalytic activity. Angew. Chem. Int. Ed. 59(11), 4385–4390 (2020). https://doi.org/10.1002/anie.201916649
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444 (2013). https://doi.org/10.1126/science.1230444
U. Khan, A. Nairan, J. Gao, Q. Zhang, Current progress in 2D metal-organic frameworks for electrocatalysis. Small Struct (2022). https://doi.org/10.1002/sstr.202200109
Y. Wu, Y. Li, J. Gao, Q. Zhang, Recent advances in vacancy engineering of metal-organic frameworks and their derivatives for electrocatalysis. SusMat. 1(1), 66–87 (2021). https://doi.org/10.1002/sus2.3
R. Dong, P. Han, H. Arora, M. Ballabio, M. Karakusn et al., High-mobility band-like charge transport in a semiconducting two-dimensional metal-organic framework. Nat. Mater. 17(11), 1027–1032 (2018). https://doi.org/10.1038/s41563-018-0189-z
J. Gao, X. Qian, R.B. Lin, R. Krishna, H. Wu et al., Mixed metal-organic framework with multiple binding sites for efficient C2H2/CO2 separation. Angew. Chem. Int. Ed. 59(11), 4396–4400 (2020). https://doi.org/10.1002/anie.202000323
Y. Cui, J. Zhang, H. He, G. Qian, Photonic functional metal-organic frameworks. Chem. Soc. Rev. 47(15), 5740–5785 (2018). https://doi.org/10.1039/c7cs00879a
H.B. Wu, X.W. Lou, Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci. Adv. 3(12), 16 (2017). https://doi.org/10.1126/sciadv.aap9252
J. Liang, Z. Liang, R. Zou, Y. Zhao, Heterogeneous catalysis in zeolites, mesoporous silica, and metal-organic frameworks. Adv. Mater. 29(30), 1701139 (2017). https://doi.org/10.1002/adma.201701139
M. Du, Q. Li, Y. Zhao, C.-S. Liu, H. Pang, A review of electrochemical energy storage behaviors based on pristine metal-organic frameworks and their composites. Coordin. Chem. Rev. 416, 213341 (2020). https://doi.org/10.1016/j.ccr.2020.213341
S.S.A. Shah, T. Najam, M.K. Aslam, M. Ashfaq, M.M. Rahman et al., Recent advances on oxygen reduction electrocatalysis: correlating the characteristic properties of metal organic frameworks and the derived nanomaterials. Appl. Catal. B Environ. 268(5), 118570 (2020). https://doi.org/10.1016/j.apcatb.2019.118570
H. Zhang, J. Nai, L. Yu, X.W. Lou, Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 1(1), 77–107 (2017). https://doi.org/10.1016/j.joule.2017.08.008
F.-Y. Yi, R. Zhang, H. Wang, L.-F. Chen, L. Han et al., Metal-organic frameworks and their composites: synthesis and electrochemical applications. Small Methods 1, 1700187 (2017). https://doi.org/10.1002/smtd.201700187
B.Y. Guan, X.Y. Yu, H.B. Wu, X.W.D. Lou, Complex nanostructures from materials based on metal-organic frameworks for electrochemical energy storage and conversion. Adv. Mater. 29(47), 1703614 (2017). https://doi.org/10.1002/adma.201703614
J.W. Maina, C. Pozo-Gonzalo, J.A. Schütz, J. Wang, L.F. Dumée, Tuning CO2 conversion product selectivity of metal organic frameworks derived hybrid carbon photoelectrocatalytic reactors. Carbon 148, 80–90 (2019). https://doi.org/10.1016/j.carbon.2019.03.043
J.-K. Sun, Q. Xu, Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ. Sci. 7(7), 2071–2100 (2014). https://doi.org/10.1039/c4ee00517a
X. Cao, C. Tan, M. Sindoro, H. Zhang, Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. Chem. Soc. Rev. 46(10), 2660–2677 (2017). https://doi.org/10.1039/c6cs00426a
J. Liu, D. Zhu, C. Guo, A. Vasileff, S.Z. Qiao, Design strategies toward advanced mof-derived electrocatalysts for energy-conversion reactions. Adv. Energy Mater. 7(23), 1700518 (2017). https://doi.org/10.1002/aenm.201700518
X.F. Lu, Y. Fang, D. Luan, X.W.D. Lou, Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: a mini review. Nano Lett. 21(4), 1555–1565 (2021). https://doi.org/10.1021/acs.nanolett.0c04898
R. Yan, T. Ma, M. Cheng, X. Tao, Z. Yang et al., Metal-organic-framework-derived nanostructures as multifaceted electrodes in metal-sulfur batteries. Adv. Mater. 33(27), e2008784 (2021). https://doi.org/10.1002/adma.202008784
S. Sanati, R. Abazari, J. Albero, A. Morsali, H. Garcia et al., Metal-organic framework derived bimetallic materials for electrochemical energy storage. Angew. Chem. Int. Ed. 60(20), 11048–11067 (2021). https://doi.org/10.1002/anie.202010093
Z. Liang, T. Qiu, S. Gao, R. Zhong, R. Zou, Multi-scale design of metal–organic framework-derived materials for energy electrocatalysis. Adv. Energy Mater. 12(4), 2003410 (2021). https://doi.org/10.1002/aenm.202003410
L. Li, X.D. Li, Y.F. Sun, Y. Xie, Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 51(4), 1234–1252 (2022). https://doi.org/10.1039/d1cs00893e
R. Kortlever, J. Shen, K.J. Schouten, F. Calle-Vallejo, M.T. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6(20), 4073–4082 (2015). https://doi.org/10.1021/acs.jpclett.5b01559
M.T.M. Koper, Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J. Electroanal. Chem. 660(2), 254–260 (2011). https://doi.org/10.1016/j.jelechem.2010.10.004
A.D. Handoko, F. Wei, B.S. Jenndy, Z.W. She. Yeo, Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1(12), 922–934 (2018). https://doi.org/10.1038/s41929-018-0182-6
S. Nitopi, E. Bertheussen, S.B. Scott, X. Liu, A.K. Engstfeld et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119(12), 7610–7672 (2019). https://doi.org/10.1021/acs.chemrev.8b00705
E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38(1), 89–99 (2009). https://doi.org/10.1039/b804323j
J. Wu, Y. Huang, W. Ye, Y. Li, CO2 reduction: from the electrochemical to photochemical approach. Adv. Sci. 4(11), 1700194 (2017). https://doi.org/10.1002/advs.201700194
J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 7(7), 4822–4827 (2017). https://doi.org/10.1021/acscatal.7b00687
S. Zhang, P. Kang, T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 136(5), 1734–1737 (2014). https://doi.org/10.1021/ja4113885
Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3(4), 560–587 (2017). https://doi.org/10.1016/j.chempr.2017.09.009
B. Schmid, C. Reller, S. Neubauer, M. Fleischer, R. Dorta et al., Reactivity of copper electrodes towards functional groups and small molecules in the context of CO2 electro-reductions. Catalysts 7(5), 161 (2017). https://doi.org/10.3390/catal7050161
A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Norskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3(9), 1311–1315 (2010). https://doi.org/10.1039/c0ee00071j
S. Li, H. Duan, J. Yu, C. Qiu, R. Yu et al., Cu vacancy induced product switching from formate to Co for CO2 reduction on copper sulfide. ACS Catal. 12(15), 9074–9082 (2022). https://doi.org/10.1021/acscatal.2c01750
A.J. Garza, A.T. Bell, M. Head-Gordon, Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catal. 8(2), 1490–1499 (2018). https://doi.org/10.1021/acscatal.7b03477
K.J. Schouten, Z. Qin, E.P. Gallent, M.T. Koper, Two pathways for the formation of ethylene in co reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134(24), 9864–9867 (2012). https://doi.org/10.1021/ja302668n
X. Nie, M.R. Esopi, M.J. Janik, A. Asthagiri, Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 52(9), 2459–2462 (2013). https://doi.org/10.1002/anie.201208320
Y. Hori, R. Takahashi, Y. Yoshinami, A. Murata, Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101(36), 7075–7081 (1997). https://doi.org/10.1021/jp970284i
S. Ma, M. Sadakiyo, R. Luo, M. Heima, M. Yamauchi et al., One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016). https://doi.org/10.1016/j.jpowsour.2015.09.124
F. Calle-Vallejo, M.T. Koper, Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52(28), 7282–7285 (2013). https://doi.org/10.1002/anie.201301470
K.J.P. Schouten, Y. Kwon, C.J.M. van der Ham, Z. Qin, M.T.M. Koper, A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2(10), 1902–1909 (2011). https://doi.org/10.1039/c1sc00277e
J.H. Montoya, C. Shi, K. Chan, J.K. Norskov, Theoretical insights into a co dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6(11), 2032–2037 (2015). https://doi.org/10.1021/acs.jpclett.5b00722
J.D. Goodpaster, A.T. Bell, M. Head-Gordon, Identification of possible pathways for c-c bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7(8), 1471–1477 (2016). https://doi.org/10.1021/acs.jpclett.6b00358
T. Burdyny, W.A. Smith, CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12(5), 1442–1453 (2019). https://doi.org/10.1039/c8ee03134g
M.R. Singh, E.L. Clark, A.T. Bell, Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17(29), 18924–18936 (2015). https://doi.org/10.1039/c5cp03283k
Y. Wang, P. Han, X. Lv, L. Zhang, G. Zheng, Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2(12), 2551–2582 (2018). https://doi.org/10.1016/j.joule.2018.09.021
Y. Yang, F. Li, Reactor design for electrochemical CO2 conversion toward large-scale applications. Curr. Opin. Green Sust. 27, 100419 (2021). https://doi.org/10.1016/j.cogsc.2020.100419
L.C. Weng, A.T. Bell, A.Z. Weber, Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20(25), 16973–16984 (2018). https://doi.org/10.1039/c8cp01319e
C. Chen, J.F.K. Kotyk, S.W. Sheehan, Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4(11), 2571–2586 (2018). https://doi.org/10.1016/j.chempr.2018.08.019
D. Wakerley, S. Lamaison, J. Wicks, A. Clemens, J. Feaster et al., Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7(2), 130–143 (2022). https://doi.org/10.1038/s41560-021-00973-9
Z. Xing, L. Hu, D.S. Ripatti, X. Hu, X. Feng, Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 12(1), 136 (2021). https://doi.org/10.1038/s41467-020-20397-5
F.P.G. de Arquer, C.T. Dinh, A. Ozden, J. Wicks, C. McCallum et al., CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2. Science 367(6478), 661–666 (2020). https://doi.org/10.1126/science.aay4217
R. Chen, H.Y. Su, D. Liu, R. Huang, X. Meng et al., Highly selective production of ethylene by the electroreduction of carbon monoxide. Angew. Chem. Int. Ed. 59(1), 154–160 (2020). https://doi.org/10.1002/anie.201910662
S. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu et al., Insights into the low overpotential electroreduction of CO2 to co on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3(1), 193–198 (2017). https://doi.org/10.1021/acsenergylett.7b01096
T.-T. Zhuang, Z.-Q. Liang, A. Seifitokaldani, Y. Li, P.D. Luna et al., Steering post-c–c coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1(6), 421–428 (2018). https://doi.org/10.1038/s41929-018-0084-7
S.S. Bhargava, F. Proietto, D. Azmoodeh, E.R. Cofell, D.A. Henckel et al., System design rules for intensifying the electrochemical reduction of CO2 to Co on Ag nanops. ChemElectroChem 7(9), 2001–2011 (2020). https://doi.org/10.1002/celc.202000089
F.-Y. Gao, R.-C. Bao, M.-R. Gao, S.-H. Yu, Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers. J. Mater. Chem. A 8(31), 15458–15478 (2020). https://doi.org/10.1039/d0ta03525d
N.T. Nesbitt, T. Burdyny, H. Simonson, D. Salvatore, D. Bohra et al., Liquid–solid boundaries dominate activity of CO2 reduction on gas-diffusion electrodes. ACS Catal. 10(23), 14093–14106 (2020). https://doi.org/10.1021/acscatal.0c03319
Z. Yin, H. Peng, X. Wei, H. Zhou, J. Gong et al., An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 12(8), 2455–2462 (2019). https://doi.org/10.1039/c9ee01204d
B. Endrődi, E. Kecsenovity, A. Samu, T. Halmágyi, S. Rojas-Carbonell et al., High carbonate ion conductance of a robust piperion membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13(11), 4098–4105 (2020). https://doi.org/10.1039/d0ee02589e
C.M. Gabardo, C.P. O’Brien, J.P. Edwards, C. McCallum, Y. Xu et al., Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3(11), 2777–2791 (2019). https://doi.org/10.1016/j.joule.2019.07.021
L. Ge, H. Rabiee, M. Li, S. Subramanian, Y. Zheng et al., Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 8(3), 663–692 (2022). https://doi.org/10.1016/j.chempr.2021.12.002
A. Gawel, T. Jaster, D. Siegmund, J. Holzmann, H. Lohmann et al., Electrochemical CO2 reduction—the macroscopic world of electrode design, reactor concepts & economic aspects. iScience 25(4), 104011 (2022). https://doi.org/10.1016/j.isci.2022.104011
L.-C. Weng, A.T. Bell, A.Z. Weber, Towards membrane-electrode assembly systems for CO2 reduction: A modeling study. Energy Environ. Sci. 12(6), 1950–1968 (2019). https://doi.org/10.1039/c9ee00909d
R. Hinogami, S. Yotsuhashi, M. Deguchi, Y. Zenitani, H. Hashiba et al., Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem. Lett. 1(4), H17–H19 (2012). https://doi.org/10.1149/2.001204eel
R.S. Kumar, S.S. Kumar, M.A. Kulandainathan, Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem. Commun. 25, 70–73 (2012). https://doi.org/10.1016/j.elecom.2012.09.018
M.C.O. Monteiro, M.F. Philips, K.J.P. Schouten, M.T.M. Koper, Efficiency and selectivity of CO2 reduction to co on gold gas diffusion electrodes in acidic media. Nat. Commun. 12(1), 4943 (2021). https://doi.org/10.1038/s41467-021-24936-6
S. Verma, B. Kim, H.R. Jhong, S. Ma, P.J. Kenis, A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9(15), 1972–1979 (2016). https://doi.org/10.1002/cssc.201600394
M. Jouny, W. Luc, F. Jiao, General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57(6), 2165–2177 (2018). https://doi.org/10.1021/acs.iecr.7b03514
N. Kornienko, Y. Zhao, C.S. Kley, C. Zhu, D. Kim et al., Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137(44), 14129–14135 (2015). https://doi.org/10.1021/jacs.5b08212
B.-X. Dong, S.-L. Qian, F.-Y. Bu, Y.-C. Wu, L.-G. Feng et al., Electrochemical reduction of CO2 to co by a heterogeneous catalyst of fe–porphyrin-based metal–organic framework. ACS Appl. Energy Mater. 1(9), 4662–4669 (2018). https://doi.org/10.1021/acsaem.8b00797
M.-D. Zhang, D.-H. Si, J.-D. Yi, Q. Yin, Y.-B. Huang et al., Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction. Sci. China Chem. 64(8), 1332–1339 (2021). https://doi.org/10.1007/s11426-021-1022-3
J.D. Yi, D.H. Si, R. Xie, Q. Yin, M.D. Zhang et al., Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem. Int. Ed. 60(31), 17108–17114 (2021). https://doi.org/10.1002/anie.202104564
L. Majidi, A. Ahmadiparidari, N. Shan, S.N. Misal, K. Kumar et al., 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials. Adv. Mater. 33(10), e2004393 (2021). https://doi.org/10.1002/adma.202004393
H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge et al., Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 11(1), 1409 (2020). https://doi.org/10.1038/s41467-020-15141-y
S. Dou, J. Song, S. Xi, Y. Du, J. Wang et al., Boosting electrochemical CO2 reduction on metal-organic frameworks via ligand doping. Angew. Chem. Int. Ed. 58(12), 4041–4045 (2019). https://doi.org/10.1002/anie.201814711
Q. Huang, Q. Li, J. Liu, Y.R. Wang, R. Wang et al., Disclosing CO2 activation mechanism by hydroxyl-induced crystalline structure transformation in electrocatalytic process. Matter 1(6), 1656–1668 (2019). https://doi.org/10.1016/j.matt.2019.07.003
T.A. Al-Attas, N.N. Marei, X. Yong, N.G. Yasri, V. Thangadurai et al., Ligand-engineered metal-organic frameworks for electrochemical reduction of carbon dioxide to carbon monoxide. ACS Catal. 11(12), 7350–7357 (2021). https://doi.org/10.1021/acscatal.1c01506
Z. Xin, Y.-R. Wang, Y. Chen, W.-L. Li, L.-Z. Dong et al., Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano Energy 67, 104233 (2020). https://doi.org/10.1016/j.nanoen.2019.104233
Z. Xin, J. Liu, X. Wang, K. Shen, Z. Yuan et al., Implanting polypyrrole in metal-porphyrin MOFs: enhanced electrocatalytic performance for CO2RR. ACS Appl. Mater. Interfaces 13(46), 54959–54966 (2021). https://doi.org/10.1021/acsami.1c15187
Y.N. Gong, L. Jiao, Y.Y. Qian, C.Y. Pan, L.R. Zheng et al., Regulating the coordination environment of mof-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. 59(7), 2705–2709 (2020). https://doi.org/10.1002/anie.201914977
Z. Chen, X. Zhang, W. Liu, M. Jiao, K. Mou et al., Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level. Energy Environ. Sci. 14(4), 2349–2356 (2021). https://doi.org/10.1039/d0ee04052e
L. Lin, H. Li, C. Yan, H. Li, R. Si et al., Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31(41), e1903470 (2019). https://doi.org/10.1002/adma.201903470
J. Han, P. An, S. Liu, X. Zhang, D. Wang et al., Reordering d orbital energies of single-site catalysts for CO2 electroreduction. Angew. Chem. Int. Ed. 58(36), 12711–12716 (2019). https://doi.org/10.1002/anie.201907399
L. Ye, X. Chen, Y. Gao, X. Ding, J. Hou et al., Ultrathin two-dimensional metal–organic framework nanosheets for efficient electrochemical CO2 reduction. J. Energy Chem. 57, 627–631 (2021). https://doi.org/10.1016/j.jechem.2020.09.021
T. Yan, P. Wang, Z.H. Xu, W.Y. Sun, Copper(ii) frameworks with varied active site distribution for modulating selectivity of carbon dioxide electroreduction. ACS Appl. Mater. Interfaces 14(11), 13645–13652 (2022). https://doi.org/10.1021/acsami.2c00487
Y. Guo, W. Shi, H. Yang, Q. He, Z. Zeng et al., Cooperative stabilization of the [pyridinium-CO2-CO] adduct on a metal-organic layer enhances electrocatalytic CO2 reduction. J. Am. Chem. Soc. 141(44), 17875–17883 (2019). https://doi.org/10.1021/jacs.9b09227
Y. Lu, H. Zhong, J. Li, A.M. Dominic, Y. Hu et al., Sp-carbon incorporated conductive metal-organic framework as photocathode for photoelectrochemical hydrogen generation. Angew. Chem. Int. Ed. 61(39), e202208163 (2022). https://doi.org/10.1002/anie.202208163
H. Zhong, K.H. Ly, M. Wang, Y. Krupskaya, X. Han et al., A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58(31), 10677–10682 (2019). https://doi.org/10.1002/anie.201907002
M. Wang, R. Dong, X. Feng, Two-dimensional conjugated metal-organic frameworks (2d C-MOFs): Chemistry and function for moftronics. Chem. Soc. Rev. 50(4), 2764–2793 (2021). https://doi.org/10.1039/d0cs01160f
Z. Guo, G. Chen, C. Cometto, B. Ma, H. Zhao et al., Selectivity control of co versus HCOO− production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites. Nat. Catal. 2(9), 801–808 (2019). https://doi.org/10.1038/s41929-019-0331-6
D. Mellmann, P. Sponholz, H. Junge, M. Beller, Formic acid as a hydrogen storage material-development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 45(14), 3954–3988 (2016). https://doi.org/10.1039/c5cs00618j
L. Calzadiaz-Ramirez, A.S. Meyer, Formate dehydrogenases for CO2 utilization. Curr. Opin. Biotech. 73, 95–100 (2022). https://doi.org/10.1016/j.copbio.2021.07.011
Y. Zhou, S. Liu, Y. Gu, G.H. Wen, J. Ma et al., In(iii) metal-organic framework incorporated with enzyme-mimicking nickel bis(dithiolene) ligand for highly selective CO2 electroreduction. J. Am. Chem. Soc. 143(35), 14071–14076 (2021). https://doi.org/10.1021/jacs.1c06797
Z.H. Zhu, B.H. Zhao, S.L. Hou, X.L. Jiang, Z.L. Liang et al., A facile strategy for constructing a carbon-p-modified metal-organic framework for enhancing the efficiency of CO2 electroreduction into formate. Angew. Chem. Int. Ed. 60(43), 23394–23402 (2021). https://doi.org/10.1002/anie.202110387
C. Qiu, K. Qian, J. Yu, M. Sun, S. Cao et al., Mof-transformed In2O3-x@C nanocorn electrocatalyst for efficient CO2 reduction to HCOOH. Nano-Micro Lett. 14(1), 167 (2022). https://doi.org/10.1007/s40820-022-00913-6
W. Geng, W. Chen, G. Li, X. Dong, Y. Song et al., Induced CO2 electroreduction to formic acid on metal-organic frameworks via node doping. ChemSusChem 13(16), 4035–4040 (2020). https://doi.org/10.1002/cssc.202001310
Y. Deng, S. Wang, Y. Huang, X. Li, Structural reconstruction of Sn-based metal-organic frameworks for efficient electrochemical CO2 reduction to formate. Chin. J. Chem. Eng. 43, 353–359 (2022). https://doi.org/10.1016/j.cjche.2022.03.006
J.X. Wu, X.R. Zhu, T. Liang, X.D. Zhang, S.Z. Hou et al., Sn(101) derived from metal-organic frameworks for efficient electrocatalytic reduction of CO2. Inorg. Chem. 60(13), 9653–9659 (2021). https://doi.org/10.1021/acs.inorgchem.1c00946
X. Zhang, Y. Zhang, Q. Li, X. Zhou, Q. Li et al., Highly efficient and durable aqueous electrocatalytic reduction of CO2 to HCOOH with a novel bismuth-MOF: experimental and dft studies. J. Mater. Chem. A 8(19), 9776–9787 (2020). https://doi.org/10.1039/d0ta00384k
F. Li, G.H. Gu, C. Choi, P. Kolla, S. Hong et al., Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Appl. Catal. B Environ. 277, 119241 (2020). https://doi.org/10.1016/j.apcatb.2020.119241
J. Yang, X. Wang, Y. Qu, X. Wang, H. Huo et al., Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 10(36), 2001709 (2020). https://doi.org/10.1002/aenm.202001709
P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou et al., Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem. Int. Ed. 59(27), 10807–10813 (2020). https://doi.org/10.1002/anie.202000657
Y. Ying, B. Khezri, J. Kosina, M. Pumera, Reconstructed bismuth-based metal-organic framework nanofibers for selective CO2-to-formate conversion: Morphology engineering. ChemSusChem 14(16), 3402–3412 (2021). https://doi.org/10.1002/cssc.202101122
Q. Wang, X. Yang, H. Zang, F. Chen, C. Wang et al., Metal-organic framework-derived biin bimetallic oxide nanops embedded in carbon networks for efficient electrochemical reduction of CO2 to formate. Inorg. Chem. 61(30), 12003–12011 (2022). https://doi.org/10.1021/acs.inorgchem.2c01961
C. Cao, D.D. Ma, J.F. Gu, X. Xie, G. Zeng et al., Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. Int. Ed. 59(35), 15014–15020 (2020). https://doi.org/10.1002/anie.202005577
W.-W. Yuan, J.-X. Wu, X.-D. Zhang, S.-Z. Hou, M. Xu et al., In situ transformation of bismuth metal-organic frameworks for efficient selective electroreduction of CO2 to formate. J. Mater. Chem. A 8(46), 24486–24492 (2020). https://doi.org/10.1039/d0ta08092f
D. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao et al., The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem. Int. Ed. 60(33), 18178–18184 (2021). https://doi.org/10.1002/anie.202104747
Q. Zhu, D. Yang, H. Liu, X. Sun, C. Chen et al., Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction. Angew. Chem. Int. Ed. 59(23), 8896–8901 (2020). https://doi.org/10.1002/anie.202001216
K. Yao, H. Wang, X. Yang, Y. Huang, C. Kou et al., Metal-organic framework derived dual-metal sites for electroreduction of carbon dioxide to HCOOH. Appl. Catal. B Environ. 311, 121377 (2022). https://doi.org/10.1016/j.apcatb.2022.1213
P. Lamagni, M. Miola, J. Catalano, M.S. Hvid, M.A.H. Mamakhel et al., Restructuring metal-organic frameworks to nanoscale bismuth electrocatalysts for highly active and selective CO2 reduction to formate. Adv. Funct. Mater. 30(16), 1910408 (2020). https://doi.org/10.1002/adfm.201910408
Y.X. Duan, K.H. Liu, Q. Zhang, J.M. Yan, Q. Jiang, Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst. Small Methods 4(5), 1900846 (2020). https://doi.org/10.1002/smtd.201900846
H.Q. Fu, J. Liu, N.M. Bedford, Y. Wang, J. Wright et al., Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 14(1), 121 (2022). https://doi.org/10.1007/s40820-022-00862-0
D. Wu, R. Feng, C. Xu, P.-F. Sui, J. Zhang et al., Regulating the electron localization of metallic bismuth for boosting CO2 electroreduction. Nano-Micro Lett. 14(1), 38 (2021). https://doi.org/10.1007/s40820-021-00772-7
M. Qi, J. Park, R.S. Landon, J. Kim, Y. Liu et al., Continuous and flexible renewable-power-to-methane via liquid CO2 energy storage: revisiting the techno-economic potential. Renew. Sust. Energy Rev. 153, 111732 (2022). https://doi.org/10.1016/j.rser.2021.111732
X. Liu, H. Yang, J. He, H. Liu, L. Song et al., Highly active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4. Small 14(16), e1704049 (2018). https://doi.org/10.1002/smll.201704049
X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu et al., Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4(8), 690–699 (2019). https://doi.org/10.1038/s41560-019-0431-1
M.K. Kim, H.J. Kim, H. Lim, Y. Kwon, H.M. Jeong, Metal-organic framework-mediated strategy for enhanced methane production on copper nanops in electrochemical CO2 reduction. Electrochim. Acta 306, 28–34 (2019). https://doi.org/10.1016/j.electacta.2019.03.101
F. Yang, A. Chen, P.L. Deng, Y. Zhou, Z. Shahid et al., Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper-organic frameworks. Chem. Sci. 10(34), 7975–7981 (2019). https://doi.org/10.1039/c9sc02605c
X. Tan, C. Yu, C. Zhao, H. Huang, X. Yao et al., Restructuring of Cu2O to Cu2O@Cu-metal-organic frameworks for selective electrochemical reduction of CO2. ACS Appl. Mater. Interfaces 11(10), 9904–9910 (2019). https://doi.org/10.1021/acsami.8b19111
J.D. Yi, R. Xie, Z.L. Xie, G.L. Chai, T.F. Liu et al., Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem. Int. Ed. 59(52), 23641–23648 (2020). https://doi.org/10.1002/anie.202010601
H.-L. Zhu, J.-R. Huang, X.-W. Zhang, C. Wang, N.-Y. Huang et al., Highly efficient electroconversion of CO2 into CH4 by a metal-organic framework with trigonal pyramidal Cu(1)N3 active sites. ACS Catal. 11(18), 11786–11792 (2021). https://doi.org/10.1021/acscatal.1c02980
L. Zhang, X.X. Li, Z.L. Lang, Y. Liu, J. Liu et al., Enhanced cuprophilic interactions in crystalline catalysts facilitate the highly selective electroreduction of CO2 to CH4. J. Am. Chem. Soc. 143(10), 3808–3816 (2021). https://doi.org/10.1021/jacs.0c11450
Y. Zhang, L.Z. Dong, S. Li, X. Huang, J.N. Chang et al., Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nat. Commun. 12(1), 6390 (2021). https://doi.org/10.1038/s41467-021-26724-8
Y. Liu, S. Li, L. Dai, J. Li, J. Lv et al., The synthesis of hexaazatrinaphthylene-based 2d conjugated copper metal-organic framework for highly selective and stable electroreduction of CO2 to methane. Angew. Chem. Int. Ed. 60(30), 16409–16415 (2021). https://doi.org/10.1002/anie.202105966
Y. Zhang, Q. Zhou, Z.F. Qiu, X.Y. Zhang, J.Q. Chen et al., Tailoring coordination microenvironment of Cu(1) in metal-organic frameworks for enhancing electroreduction of CO2 to CH4. Adv. Funct. Mater. 32(36), 2203677 (2022). https://doi.org/10.1002/adfm.202203677
Y. Fang, J.C. Flake, Electrochemical reduction of CO2 at functionalized Au electrodes. J. Am. Chem. Soc. 139(9), 3399–3405 (2017). https://doi.org/10.1021/jacs.6b11023
M.S. Xie, B.Y. Xia, Y. Li, Y. Yan, Y. Yang et al., Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9(5), 1687–1695 (2016). https://doi.org/10.1039/c5ee03694a
S. Ahn, K. Klyukin, R.J. Wakeham, J.A. Rudd, A.R. Lewis et al., Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 8(5), 4132–4142 (2018). https://doi.org/10.1021/acscatal.7b04347
Y. Qiu, H. Zhong, W. Xu, T. Zhang, X. Li et al., Tuning the electrocatalytic properties of a Cu electrode with organic additives containing amine group for CO2 reduction. J. Mater. Chem. A 7(10), 5453–5462 (2019). https://doi.org/10.1039/c9ta00039a
N.J. Firet, W.A. Smith, Probing the reaction mechanism of CO2 electroreduction over ag films via operando infrared spectroscopy. ACS Catal. 7(1), 606–612 (2016). https://doi.org/10.1021/acscatal.6b02382
E. Perez-Gallent, M.C. Figueiredo, F. Calle-Vallejo, M.T. Koper, Spectroscopic observation of a hydrogenated co dimer intermediate during co reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56(13), 3621–3624 (2017). https://doi.org/10.1002/anie.201700580
S. Zhu, T. Li, W.-B. Cai, M. Shao, CO2 electrochemical reduction as probed through infrared spectroscopy. ACS Energy Lett. 4(3), 682–689 (2019). https://doi.org/10.1021/acsenergylett.8b02525
Y. Pei, H. Zhong, F. Jin, A brief review of electrocatalytic reduction of CO2 materials, reaction conditions, and devices. Energy Sci. Eng. 9(7), 1012–1032 (2021). https://doi.org/10.1002/ese3.935
S. Zivkovic, M. Veljkovic, Environmental impacts the of production and use of biodiesel. Environ. Sci. Pollut. Res. 25(1), 191–199 (2018). https://doi.org/10.1007/s11356-017-0649-z
L. Bilgili, Comparative assessment of alternative marine fuels in life cycle perspective. Renew. Sust. Energy Rev. 144, 110985 (2021). https://doi.org/10.1016/j.rser.2021.110985
I.U. Din, M.S. Shaharun, M.A. Alotaibi, A.I. Alharthi, A. Naeem, Recent developments on heterogeneous catalytic CO2 reduction to methanol. J. CO2 Util. 34, 20–33 (2019). https://doi.org/10.1016/j.jcou.2019.05.036
K. Zhao, Y. Liu, X. Quan, S. Chen, H. Yu, CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework. ACS Appl. Mater. Interfaces 9(6), 5302–5311 (2017). https://doi.org/10.1021/acsami.6b15402
X. Yang, J. Cheng, X. Yang, Y. Xu, W. Sun et al., MOF-derived Cu@Cu2O heterogeneous electrocatalyst with moderate intermediates adsorption for highly selective reduction of CO2 to methanol. Chem. Eng. J. 431, 2203677 (2022). https://doi.org/10.1016/j.cej.2021.2203677
S. Payra, S. Shenoy, C. Chakraborty, K. Tarafder, S. Roy, Structure-sensitive electrocatalytic reduction of CO2 to methanol over carbon-supported intermetallic PtZn nano-alloys. ACS Appl. Mater. Interfaces 12(17), 19402–19414 (2020). https://doi.org/10.1021/acsami.0c00521
H. Yang, Y. Wu, G. Li, Q. Lin, Q. Hu et al., Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 141(32), 12717–12723 (2019). https://doi.org/10.1021/jacs.9b04907
J. Liu, D. Yang, Y. Zhou, G. Zhang, G. Xing et al., Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 60(26), 14473–14479 (2021). https://doi.org/10.1002/anie.202103398
L. Zaza, K. Rossi, R. Buonsanti, Well-defined copper-based nanocatalysts for selective electrochemical reduction of CO2 to C2 products. ACS Energy Lett. 7(4), 1284–1291 (2022). https://doi.org/10.1021/acsenergylett.2c00035
Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec et al., Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141(19), 7646–7659 (2019). https://doi.org/10.1021/jacs.9b02124
W. Pei, S. Zhou, J. Zhao, X. Xu, Y. Du et al., Immobilized trimeric metal clusters: a family of the smallest catalysts for selective CO2 reduction toward multi-carbon products. Nano Energy 76, 105049 (2020). https://doi.org/10.1016/j.nanoen.2020.105049
A.R. Woldu, Z. Huang, P. Zhao, L. Hu, D. Astruc, Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coordin. Chem. Rev. 454, 214340 (2022). https://doi.org/10.1016/j.ccr.2021.214340
Y. Zhang, K. Li, M. Chen, J. Wang, J. Liu et al., Cu/Cu2O nanops supported on vertically ZIF-l-coated nitrogen-doped graphene nanosheets for electroreduction of CO2 to ethanol. ACS Appl. Nano Mater. 3(1), 257–263 (2019). https://doi.org/10.1021/acsanm.9b01935
Z.H. Zhao, K. Zheng, N.Y. Huang, H.L. Zhu, J.R. Huang et al., A Cu(111)@metal-organic framework as a tandem catalyst for highly selective CO2 electroreduction to C2H4. Chem. Commun. 57(95), 12764–12767 (2021). https://doi.org/10.1039/d1cc05376k
Y. Han, S. Zhu, S. Xu, X. Niu, Z. Xu et al., Understanding structure-activity relationship on metal-organic-framework-derived catalyst for CO2 electroreduction to C2 products. ChemElectroChem 8(16), 3174–3180 (2021). https://doi.org/10.1002/celc.202100942
H. Huo, J. Wang, Q. Fan, Y. Hu, J. Yang, Cu-MOFs derived porous Cu nanoribbons with strengthened electric field for selective CO2 electroreduction to C2+ fuels. Adv. Energy Mater. 11(42), 2102447 (2021). https://doi.org/10.1002/aenm.202102447
X.F. Qiu, H.L. Zhu, J.R. Huang, P.Q. Liao, X.M. Chen, Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J. Am. Chem. Soc. 143(19), 7242–7246 (2021). https://doi.org/10.1021/jacs.1c01466
C.F. Wen, M. Zhou, P.F. Liu, Y. Liu, X. Wu et al., Highly ethylene-selective electrocatalytic CO2 reduction enabled by isolated Cu-S motifs in metal-organic framework based precatalysts. Angew. Chem. Int. Ed. 61(2), e202111700 (2022). https://doi.org/10.1002/anie.202111700
X. Xie, X. Zhang, M. Xie, L. Xiong, H. Sun et al., Au-activated N motifs in non-coherent cupric porphyrin metal organic frameworks for promoting and stabilizing ethylene production. Nat. Commun. 13(1), 63 (2022). https://doi.org/10.1038/s41467-021-27768-6
D. Karapinar, N.T. Huan, N.R. Sahraie, J.K. Li, D. Wakerley et al., Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: Selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem. Int. Ed. 58(42), 15098–15103 (2019). https://doi.org/10.1002/anie.201907994
K. Zhao, X. Nie, H. Wang, S. Chen, X. Quan et al., Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 11(1), 2455 (2020). https://doi.org/10.1038/s41467-020-16381-8
Y. Yang, L. Ohnoutek, S. Ajmal, X. Zheng, Y. Feng et al., “Hot edges” in an inverse opal structure enable efficient CO2 electrochemical reduction and sensitive in situ raman characterization. J. Mater. Chem. A 7(19), 11836–11846 (2019). https://doi.org/10.1039/c9ta02288k
G. Iijima, T. Inomata, H. Yamaguchi, M. Ito, H. Masuda, Role of a hydroxide layer on Cu electrodes in electrochemical CO2 reduction. ACS Catal. 9(7), 6305–6319 (2019). https://doi.org/10.1021/acscatal.9b00896
Y. Liu, H. Jiang, Z. Hou, Hidden mechanism behind the roughness-enhanced selectivity of carbon monoxide electrocatalytic reduction. Angew. Chem. Int. Ed. 60(20), 11133–11137 (2021). https://doi.org/10.1002/anie.202016332
C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360(6390), 783–787 (2018). https://doi.org/10.1126/science.aas9100
L. Fan, C. Xia, P. Zhu, Y. Lu, H. Wang, Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11(1), 3633 (2020). https://doi.org/10.1038/s41467-020-17403-1
T. Zheng, M. Zhang, L. Wu, S. Guo, X. Liu et al., Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5(5), 388–396 (2022). https://doi.org/10.1038/s41929-022-00775-6