Quasi-Solid-State Ion-Conducting Arrays Composite Electrolytes with Fast Ion Transport Vertical-Aligned Interfaces for All-Weather Practical Lithium-Metal Batteries
Corresponding Author: Shujiang Ding
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 210
Abstract
The rapid improvement in the gel polymer electrolytes (GPEs) with high ionic conductivity brought it closer to practical applications in solid-state Li-metal batteries. The combination of solvent and polymer enables quasi-liquid fast ion transport in the GPEs. However, different ion transport capacity between solvent and polymer will cause local nonuniform Li+ distribution, leading to severe dendrite growth. In addition, the poor thermal stability of the solvent also limits the operating-temperature window of the electrolytes. Optimizing the ion transport environment and enhancing the thermal stability are two major challenges that hinder the application of GPEs. Here, a strategy by introducing ion-conducting arrays (ICA) is created by vertical-aligned montmorillonite into GPE. Rapid ion transport on the ICA was demonstrated by 6Li solid-state nuclear magnetic resonance and synchrotron X-ray diffraction, combined with computer simulations to visualize the transport process. Compared with conventional randomly dispersed fillers, ICA provides continuous interfaces to regulate the ion transport environment and enhances the tolerance of GPEs to extreme temperatures. Therefore, GPE/ICA exhibits high room-temperature ionic conductivity (1.08 mS cm−1) and long-term stable Li deposition/stripping cycles (> 1000 h). As a final proof, Li||GPE/ICA||LiFePO4 cells exhibit excellent cycle performance at wide temperature range (from 0 to 60 °C), which shows a promising path toward all-weather practical solid-state batteries.
Highlights:
1 The composite gel electrolyte with low tortuosity ion-conducting arrays (GPE/ICAs) exhibiting high room-temperature ionic conductivity (1.08 mS cm−1) was successfully prepared by directionally growing ice crystals and in-situ polymerization.
2 The stable and rapid Li+ migration through ICAs in the GPE is proved by 6Li solid-state nuclear magnetic resonance and synchrotron radiation X-ray diffraction combined with computer simulations.
3 Li/LiFePO4 full cells using GPE/ICAs exhibit excellent cycle performance and high-capacity retention at wide temperature (0–60 °C), which has the potential towards all-weather practical solid-state batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2016). https://doi.org/10.1038/nmat4834
- S. Randau, D.A. Weber, O. Kötz, R. Koerver, P. Braun et al., Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5(3), 259–270 (2020). https://doi.org/10.1038/s41560-020-0565-1
- L. Zhou, T.T. Zuo, C.Y. Kwok, S.Y. Kim, A. Assoud et al., High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022). https://doi.org/10.1038/s41560-021-00952-0
- R.S. Chen, Q.H. Li, X.Q. Yu, L.Q. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120(14), 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
- L. Zeng, L. Jia, X. Liu, C. Zhang, A novel silicon/phosphorus co-flame retardant polymer electrolyte for high-safety all-solid-state lithium ion batteries. Polymers 12(12), 2937–2946 (2020). https://doi.org/10.3390/polym12122937
- Y. Wang, C.J. Zanelotti, X. Wang, R. Kerr, L. Jin et al., Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20(9), 1255–1263 (2021). https://doi.org/10.1038/s41563-021-00995-4
- J. Wang, B. Ge, H. Li, M. Yang, J. Wang et al., Challenges and progresses of lithium-metal batteries. Chem. Eng. J. 420, 129739 (2021). https://doi.org/10.1016/j.cej.2021.129739
- N. Meng, F. Lian, G. Cui, Macromolecular design of lithium conductive polymer as electrolyte for solid-state lithium batteries. Small 17(3), 205762 (2021). https://doi.org/10.1002/smll.202005762
- X.Z. Chen, W.J. He, L.X. Ding, S.Q. Wang, H.H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 12(3), 938–944 (2019). https://doi.org/10.1039/c8ee02617c
- K.E. Madsen, K.L. Bassett, K. Ta, B.A. Sforzo, K.E. Matusik et al., Direct observation of interfacial mechanical failure in thiophosphate solid electrolytes with operando X-ray tomography. Adv. Mater. Interfaces 7(19), 2000751 (2020). https://doi.org/10.1002/admi.202000751
- X.L. Cheng, J. Pan, Y. Zhao, M. Liao, H.S. Peng, Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8(7), 1702184 (2018). https://doi.org/10.1002/aenm.201702184
- M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601(7892), 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
- M. Zhu, J.X. Wu, Y. Wang, M.M. Song, L. Long et al., Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37, 126–142 (2019). https://doi.org/10.1016/j.jechem.2018.12.013
- G. Zhou, X. Lin, J. Liu, J. Yu, J. Wu et al., In situ formation of poly(butyl acrylate)-based non-flammable elastic quasi-solid electrolyte for dendrite-free flexible lithium metal batteries with long cycle life for wearable devices. Energy Storage Mater. 34, 629–639 (2021). https://doi.org/10.1016/j.ensm.2020.10.012
- F. Fu, W. Lu, Y. Zheng, K. Chen, C. Sun et al., Regulating lithium deposition via bifunctional regular-random cross-linking network solid polymer electrolyte for Li metal batteries. J. Power Sources 484, 229186 (2021). https://doi.org/10.1016/j.jpowsour.2020.229186
- S.J. Xu, Z.H. Sun, C.G. Sun, F. Li, K. Chen et al., Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 30(51), 2007172 (2020). https://doi.org/10.1002/adfm.202007172
- X. He, Y.X. Ni, Y.P. Hou, Y. Lu, S. Jin et al., Insights into the ionic conduction mechanism of quasi-solid polymer electrolytes through multispectral characterization. Angew. Chem. Int. Ed. 60(42), 22672–22677 (2021). https://doi.org/10.1002/anie.202107648
- J. Yu, J. Liu, X. Lin, H.M. Law, G. Zhou et al., A solid-like dual-salt polymer electrolyte for Li-metal batteries capable of stable operation over an extended temperature range. Energy Storage Mater. 37, 609–618 (2021). https://doi.org/10.1016/j.ensm.2021.02.045
- C.H. Krause, A.J. Butzelaar, D. Diddens, D. Dong, P. Theato et al., Quasi-solid single ion conducting polymer electrolyte membrane containing novel fluorinated poly(arylene ether sulfonimide) for lithium metal batteries. J. Power Sources 484, 229267 (2021). https://doi.org/10.1016/j.jpowsour.2020.229267
- L. Dong, X. Zeng, J. Fu, L. Chen, J. Zhou et al., Cross-linked ionic copolymer solid electrolytes with loose coordination-assisted lithium transport for lithium batteries. Chem. Eng. J. 423, 130209 (2021). https://doi.org/10.1016/j.cej.2021.130209
- L. Yu, S. Guo, Y. Lu, Y. Li, X. Lan et al., Highly tough, Li-metal compatible organic–inorganic double-network solvate ionogel. Adv. Energy Mater. 9(22), 1900257 (2019). https://doi.org/10.1002/aenm.201900257
- N. Chen, Y. Xing, L. Wang, F. Liu, L. Li et al., “Tai chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery. Nano Energy 47, 35–42 (2018). https://doi.org/10.1016/j.nanoen.2018.02.036
- S.H. Kim, J.H. Kim, S.J. Cho, S.Y. Lee, All-solid-state printed bipolar Li-S batteries. Adv. Energy Mater. 9(40), 1901841 (2019). https://doi.org/10.1002/aenm.201901841
- B. Chen, Z. Huang, X.T. Chen, Y.R. Zhao, Q. Xu et al., A new composite solid electrolyte PEO/Li10GeP2S12/Sn for all-solid-state lithium battery. Electrochim. Acta 210, 905–914 (2016). https://doi.org/10.1016/j.electacta.2016.06.025
- D. Xu, J. Su, J. Jin, C. Sun, Y. Ruan et al., In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 as initiator and ion-conductive filler. Adv. Energy Mater. 9(25), 1900611 (2019). https://doi.org/10.1002/aenm.201900611
- Q.P. Guo, Y. Han, H. Wang, S.Z. Xiong, W.W. Sun et al., Flame retardant and stable Li1.5Al0.5Ge1.5(PO4)3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries. J. Phys. Chem. C 122(19), 10334–10342 (2018). https://doi.org/10.1021/acs.jpcc.8b02693
- W.J. Hyun, C.M. Thomas, N.S. Luu, M.C. Hersam, Layered heterostructure ionogel electrolytes for high-performance solid-state lithium-ion batteries. Adv. Mater. 33(13), 2007864 (2021). https://doi.org/10.1002/adma.202007864
- T.K. Lee, R. Andersson, N.A. Dzulkurnain, G. Hernandez, J. Mindemark et al., Polyester-ZrO2 nanocomposite electrolytes with high Li transference numbers for ambient temperature all-solid-state lithium batteries. Batteries Supercaps 4(4), 653–662 (2020). https://doi.org/10.1002/batt.202000254
- L. Chen, W. Li, L.Z. Fan, C.W. Nan, Q. Zhang, Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Funct. Mater. 29(28), 1901047 (2019). https://doi.org/10.1002/adfm.201901047
- Y. Wang, X. Li, Y. Qin, D. Zhang, Z. Song et al., Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries. Nano Energy 90, 106490 (2021). https://doi.org/10.1016/j.nanoen.2021.106490
- Y.M. Jeon, S. Kim, M. Lee, W.B. Lee, J.H. Park, Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation. Adv. Energy Mater. 10(47), 2003114 (2020). https://doi.org/10.1002/aenm.202003114
- W. Zha, W. Li, Y. Ruan, J. Wang, Z. Wen, In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries. Energy Storage Mater. 36, 171–178 (2021). https://doi.org/10.1016/j.ensm.2020.12.028
- H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal et al., A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanops for lithium batteries. Nano Lett. 17(5), 3182–3187 (2017). https://doi.org/10.1021/acs.nanolett.7b00715
- X. Wang, H.W. Zhai, B.Y. Qie, Q. Cheng, A.J. Li et al., Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanop/polymer composite electrolyte. Nano Energy 60, 205–212 (2019). https://doi.org/10.1016/j.nanoen.2019.03.051
- J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14(7), 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
- J. Dai, K. Fu, Y. Gong, J. Song, C. Chen et al., Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater. Lett. 1(3), 354–361 (2019). https://doi.org/10.1021/acsmaterialslett.9b00189
- M.K. Wang, S.J. Dong, Enhanced electrochemical properties of nanocomposite polymer electrolyte based on copolymer with exfoliated clays. J. Power Sources 170(2), 425–432 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.031
- W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2(5), 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
- Y.Y. Yan, J.W. Ju, S.M. Dong, Y.T. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8(9), 2003887 (2021). https://doi.org/10.1002/advs.202003887
- T. Chen, T. Liu, T. Ding, B. Pang, L. Wang et al., Surface oxygen injection in tin disulfide nanosheets for efficient CO2 electroreduction to formate and syngas. Nano-Micro Lett. 13, 189 (2021). https://doi.org/10.1007/s40820-021-00703-6
- W. Hua, S. Wang, K. Wang, A. Missyul, Q. Fu et al., Li+/Na+ ion exchange in layered Na2/3(Ni0.25Mn0.75)O2: a simple and fast way to synthesize O3/O2-type layered oxides. Chem. Mater. 33(14), 5606–5617 (2021). https://doi.org/10.1021/acs.chemmater.1c00962
References
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2016). https://doi.org/10.1038/nmat4834
S. Randau, D.A. Weber, O. Kötz, R. Koerver, P. Braun et al., Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5(3), 259–270 (2020). https://doi.org/10.1038/s41560-020-0565-1
L. Zhou, T.T. Zuo, C.Y. Kwok, S.Y. Kim, A. Assoud et al., High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nat. Energy 7, 83–93 (2022). https://doi.org/10.1038/s41560-021-00952-0
R.S. Chen, Q.H. Li, X.Q. Yu, L.Q. Chen, H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120(14), 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268
L. Zeng, L. Jia, X. Liu, C. Zhang, A novel silicon/phosphorus co-flame retardant polymer electrolyte for high-safety all-solid-state lithium ion batteries. Polymers 12(12), 2937–2946 (2020). https://doi.org/10.3390/polym12122937
Y. Wang, C.J. Zanelotti, X. Wang, R. Kerr, L. Jin et al., Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20(9), 1255–1263 (2021). https://doi.org/10.1038/s41563-021-00995-4
J. Wang, B. Ge, H. Li, M. Yang, J. Wang et al., Challenges and progresses of lithium-metal batteries. Chem. Eng. J. 420, 129739 (2021). https://doi.org/10.1016/j.cej.2021.129739
N. Meng, F. Lian, G. Cui, Macromolecular design of lithium conductive polymer as electrolyte for solid-state lithium batteries. Small 17(3), 205762 (2021). https://doi.org/10.1002/smll.202005762
X.Z. Chen, W.J. He, L.X. Ding, S.Q. Wang, H.H. Wang, Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ. Sci. 12(3), 938–944 (2019). https://doi.org/10.1039/c8ee02617c
K.E. Madsen, K.L. Bassett, K. Ta, B.A. Sforzo, K.E. Matusik et al., Direct observation of interfacial mechanical failure in thiophosphate solid electrolytes with operando X-ray tomography. Adv. Mater. Interfaces 7(19), 2000751 (2020). https://doi.org/10.1002/admi.202000751
X.L. Cheng, J. Pan, Y. Zhao, M. Liao, H.S. Peng, Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8(7), 1702184 (2018). https://doi.org/10.1002/aenm.201702184
M.J. Lee, J. Han, K. Lee, Y.J. Lee, B.G. Kim et al., Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601(7892), 217–222 (2022). https://doi.org/10.1038/s41586-021-04209-4
M. Zhu, J.X. Wu, Y. Wang, M.M. Song, L. Long et al., Recent advances in gel polymer electrolyte for high-performance lithium batteries. J. Energy Chem. 37, 126–142 (2019). https://doi.org/10.1016/j.jechem.2018.12.013
G. Zhou, X. Lin, J. Liu, J. Yu, J. Wu et al., In situ formation of poly(butyl acrylate)-based non-flammable elastic quasi-solid electrolyte for dendrite-free flexible lithium metal batteries with long cycle life for wearable devices. Energy Storage Mater. 34, 629–639 (2021). https://doi.org/10.1016/j.ensm.2020.10.012
F. Fu, W. Lu, Y. Zheng, K. Chen, C. Sun et al., Regulating lithium deposition via bifunctional regular-random cross-linking network solid polymer electrolyte for Li metal batteries. J. Power Sources 484, 229186 (2021). https://doi.org/10.1016/j.jpowsour.2020.229186
S.J. Xu, Z.H. Sun, C.G. Sun, F. Li, K. Chen et al., Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 30(51), 2007172 (2020). https://doi.org/10.1002/adfm.202007172
X. He, Y.X. Ni, Y.P. Hou, Y. Lu, S. Jin et al., Insights into the ionic conduction mechanism of quasi-solid polymer electrolytes through multispectral characterization. Angew. Chem. Int. Ed. 60(42), 22672–22677 (2021). https://doi.org/10.1002/anie.202107648
J. Yu, J. Liu, X. Lin, H.M. Law, G. Zhou et al., A solid-like dual-salt polymer electrolyte for Li-metal batteries capable of stable operation over an extended temperature range. Energy Storage Mater. 37, 609–618 (2021). https://doi.org/10.1016/j.ensm.2021.02.045
C.H. Krause, A.J. Butzelaar, D. Diddens, D. Dong, P. Theato et al., Quasi-solid single ion conducting polymer electrolyte membrane containing novel fluorinated poly(arylene ether sulfonimide) for lithium metal batteries. J. Power Sources 484, 229267 (2021). https://doi.org/10.1016/j.jpowsour.2020.229267
L. Dong, X. Zeng, J. Fu, L. Chen, J. Zhou et al., Cross-linked ionic copolymer solid electrolytes with loose coordination-assisted lithium transport for lithium batteries. Chem. Eng. J. 423, 130209 (2021). https://doi.org/10.1016/j.cej.2021.130209
L. Yu, S. Guo, Y. Lu, Y. Li, X. Lan et al., Highly tough, Li-metal compatible organic–inorganic double-network solvate ionogel. Adv. Energy Mater. 9(22), 1900257 (2019). https://doi.org/10.1002/aenm.201900257
N. Chen, Y. Xing, L. Wang, F. Liu, L. Li et al., “Tai chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery. Nano Energy 47, 35–42 (2018). https://doi.org/10.1016/j.nanoen.2018.02.036
S.H. Kim, J.H. Kim, S.J. Cho, S.Y. Lee, All-solid-state printed bipolar Li-S batteries. Adv. Energy Mater. 9(40), 1901841 (2019). https://doi.org/10.1002/aenm.201901841
B. Chen, Z. Huang, X.T. Chen, Y.R. Zhao, Q. Xu et al., A new composite solid electrolyte PEO/Li10GeP2S12/Sn for all-solid-state lithium battery. Electrochim. Acta 210, 905–914 (2016). https://doi.org/10.1016/j.electacta.2016.06.025
D. Xu, J. Su, J. Jin, C. Sun, Y. Ruan et al., In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 as initiator and ion-conductive filler. Adv. Energy Mater. 9(25), 1900611 (2019). https://doi.org/10.1002/aenm.201900611
Q.P. Guo, Y. Han, H. Wang, S.Z. Xiong, W.W. Sun et al., Flame retardant and stable Li1.5Al0.5Ge1.5(PO4)3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries. J. Phys. Chem. C 122(19), 10334–10342 (2018). https://doi.org/10.1021/acs.jpcc.8b02693
W.J. Hyun, C.M. Thomas, N.S. Luu, M.C. Hersam, Layered heterostructure ionogel electrolytes for high-performance solid-state lithium-ion batteries. Adv. Mater. 33(13), 2007864 (2021). https://doi.org/10.1002/adma.202007864
T.K. Lee, R. Andersson, N.A. Dzulkurnain, G. Hernandez, J. Mindemark et al., Polyester-ZrO2 nanocomposite electrolytes with high Li transference numbers for ambient temperature all-solid-state lithium batteries. Batteries Supercaps 4(4), 653–662 (2020). https://doi.org/10.1002/batt.202000254
L. Chen, W. Li, L.Z. Fan, C.W. Nan, Q. Zhang, Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Funct. Mater. 29(28), 1901047 (2019). https://doi.org/10.1002/adfm.201901047
Y. Wang, X. Li, Y. Qin, D. Zhang, Z. Song et al., Local electric field effect of montmorillonite in solid polymer electrolytes for lithium metal batteries. Nano Energy 90, 106490 (2021). https://doi.org/10.1016/j.nanoen.2021.106490
Y.M. Jeon, S. Kim, M. Lee, W.B. Lee, J.H. Park, Polymer-clay nanocomposite solid-state electrolyte with selective cation transport boosting and retarded lithium dendrite formation. Adv. Energy Mater. 10(47), 2003114 (2020). https://doi.org/10.1002/aenm.202003114
W. Zha, W. Li, Y. Ruan, J. Wang, Z. Wen, In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries. Energy Storage Mater. 36, 171–178 (2021). https://doi.org/10.1016/j.ensm.2020.12.028
H. Zhai, P. Xu, M. Ning, Q. Cheng, J. Mandal et al., A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanops for lithium batteries. Nano Lett. 17(5), 3182–3187 (2017). https://doi.org/10.1021/acs.nanolett.7b00715
X. Wang, H.W. Zhai, B.Y. Qie, Q. Cheng, A.J. Li et al., Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanop/polymer composite electrolyte. Nano Energy 60, 205–212 (2019). https://doi.org/10.1016/j.nanoen.2019.03.051
J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu et al., Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14(7), 705–711 (2019). https://doi.org/10.1038/s41565-019-0465-3
J. Dai, K. Fu, Y. Gong, J. Song, C. Chen et al., Flexible solid-state electrolyte with aligned nanostructures derived from wood. ACS Mater. Lett. 1(3), 354–361 (2019). https://doi.org/10.1021/acsmaterialslett.9b00189
M.K. Wang, S.J. Dong, Enhanced electrochemical properties of nanocomposite polymer electrolyte based on copolymer with exfoliated clays. J. Power Sources 170(2), 425–432 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.031
W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang et al., Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2(5), 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
Y.Y. Yan, J.W. Ju, S.M. Dong, Y.T. Wang, L. Huang et al., In situ polymerization permeated three-dimensional Li+-percolated porous oxide ceramic framework boosting all solid-state lithium metal battery. Adv. Sci. 8(9), 2003887 (2021). https://doi.org/10.1002/advs.202003887
T. Chen, T. Liu, T. Ding, B. Pang, L. Wang et al., Surface oxygen injection in tin disulfide nanosheets for efficient CO2 electroreduction to formate and syngas. Nano-Micro Lett. 13, 189 (2021). https://doi.org/10.1007/s40820-021-00703-6
W. Hua, S. Wang, K. Wang, A. Missyul, Q. Fu et al., Li+/Na+ ion exchange in layered Na2/3(Ni0.25Mn0.75)O2: a simple and fast way to synthesize O3/O2-type layered oxides. Chem. Mater. 33(14), 5606–5617 (2021). https://doi.org/10.1021/acs.chemmater.1c00962