Effectively Modulating Oxygen Vacancies in Flower-Like δ-MnO2 Nanostructures for Large Capacity and High-Rate Zinc-Ion Storage
Corresponding Author: Jian Zhao
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 219
Abstract
In recent years, manganese-based oxides as an advanced class of cathode materials for zinc-ion batteries (ZIBs) have attracted a great deal of attentions from numerous researchers. However, their slow reaction kinetics, limited active sites and poor electrical conductivity inevitably give rise to the severe performance degradation. To solve these problems, herein, we introduce abundant oxygen vacancies into the flower-like δ-MnO2 nanostructure and effectively modulate the vacancy defects to reach the optimal level (δ-MnO2−x−2.0). The smart design intrinsically tunes the electronic structure, guarantees ion chemisorption–desorption equilibrium and increases the electroactive sites, which not only effectively accelerates charge transfer rate during reaction processes, but also endows more redox reactions, as verified by first-principle calculations. These merits can help the fabricated δ-MnO2−x−2.0 cathode to present a large specific capacity of 551.8 mAh g−1 at 0.5 A g−1, high-rate capability of 262.2 mAh g−1 at 10 A g−1 and an excellent cycle lifespan (83% of capacity retention after 1500 cycles), which is far superior to those of the other metal compound cathodes. In addition, the charge/discharge mechanism of the δ-MnO2−x−2.0 cathode has also been elaborated through ex situ techniques. This work opens up a new pathway for constructing the next-generation high-performance ZIBs cathode materials.
Highlights:
1 The flower-like δ-MnO2 nanostructures with controlled oxygen vacancies as an extraordinary ZIBs cathode are innovatively developed.
2 The cathode can present large capacity and high-rate zinc-ion storage.
3 DFT analysis substantially unveils the effects of various vacancy concentrations on their electrochemical performances.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Zhang, S. Li, L. Xu, R. Momen, W. Deng et al., High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv. Energy Mater. 12, 2200665 (2022). https://doi.org/10.1002/aenm.202200665
- Y. Huang, Q. Lu, D. Wu, Y. Jiang, Z. Liu et al., Flexible Mxene films for batteries and beyond. Carbon Energy 4(4), 598–620 (2022). https://doi.org/10.1002/cey2.200
- D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
- C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6, 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
- N. Wang, Z. Guo, Z. Ni, J. Xu, X. Qiu et al., Molecular tailoring of an N/P-type phenothiazine organic scaffold for zinc batteries. Angew. Chem. Int. Ed. 60, 20826–20832 (2021). https://doi.org/10.1002/anie.202106238
- L. Yan, Y. Zhang, Z. Ni, Y. Zhang, J. Xu et al., Chemically self-charging aqueous zinc-organic battery. J. Am. Chem. Soc. 143, 15369–15377 (2021). https://doi.org/10.1021/jacs.1c06936
- H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11, 2003994 (2021). https://doi.org/10.1002/aenm.202003994
- B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12, 3288–3304 (2019). https://doi.org/10.1039/C9EE02526J
- Y. Tang, J. Li, C.L. Xu, M. Liu, B. Xiao et al., Electrode/electrolyte interfacial engineering for aqueous Zn-ion batteries. Carbon Neutralization 2(2), 186–212 (2023). https://doi.org/10.1002/cnl2.54
- Q. Zong, Y. Wu, C. Liu, Q. Wang, Y. Zhuang et al., Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Mater. 52, 250–283 (2022). https://doi.org/10.1016/j.ensm.2022.08.007
- M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14, 3796–3839 (2021). https://doi.org/10.1039/D1EE00030F
- W. Zhang, S. Liang, G. Fang, Y. Yang, J. Zhou, Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 11(1), 69 (2019). https://doi.org/10.1007/s40820-019-0300-2
- L. Blanc, D. Kundu, L. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13(1), 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
- Z. Liu, Q. Yang, D. Wang, G. Liang, Y. Zhu et al., A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau. Adv. Energy Mater. 9(46), 1902473 (2019). https://doi.org/10.1002/aenm.201902473
- X. Zhao, L. Mao, Q. Cheng, F. Liao, G. Yang et al., Interlayer engineering of preintercalated layered oxides as cathode for emerging multivalent metal-ion batteries: zinc and beyond. Energy Storage Mater. 38, 397–437 (2021). https://doi.org/10.1016/j.ensm.2021.03.005
- X. Zhao, X. Liang, Y. Li, Q. Chen, M.H. Chen, Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 42, 533–569 (2021). https://doi.org/10.1016/j.ensm.2021.07.044
- Y. Cui, Z. Zhuang, Z. Xie, R. Cao, Q. Hao et al., High-energy and long-lived Zn-MnO2 battery enabled by a hydrophobic-ion-conducting membrane. ACS Nano 16(12), 20730–20738 (2022). https://doi.org/10.1021/acsnano.2c07792
- D. Wang, L. Wang, G. Liang, H. Li, Z. Liu et al., A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 13, 10643–10652 (2019). https://doi.org/10.1021/acsnano.9b04916
- L. Wang, S. Guan, Y. Weng, S.-M. Xu, H. Lu et al., Highly efficient vacancy-driven photothermal therapy mediated by ultrathin MnO2 nanosheets. ACS Appl. Mater. Interfaces 11, 6267–6275 (2019). https://doi.org/10.1021/acsami.8b20639
- Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8, 1801445 (2018). https://doi.org/10.1002/aenm.201801445
- Z. Cao, H. Zhang, B. Song, D. Xiong, S. Tao et al., Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv. Funct. Mater. 33(28), 2300339 (2023). https://doi.org/10.1002/adfm.202300339
- C. Liu, L. Deng, X. Li, T. Wu, W. Zhang et al., Metal–organic frameworks for solid-state electrolytes: a mini review. Electrochem. Commun. 150, 107491 (2023). https://doi.org/10.1016/j.elecom.2023.107491
- W. Li, K. Wang, S. Cheng, K. Jiang, An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater. 9, 1900993 (2019). https://doi.org/10.1002/aenm.201900993
- K.W. Nam, H. Kim, J.H. Choi, J. Choi, Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 12, 1999–2009 (2019). https://doi.org/10.1039/C9EE00718K
- X. Xiao, X. Duan, Z. Song, X. Deng, W. Deng et al., High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv. Funct. Mater. 32(18), 2110476 (2022). https://doi.org/10.1002/adfm.202110476
- J. Jiang, T. Xu, J. Lu, L. Sun, Z. Ni, Defect engineering in 2D materials: precise manipulation and improved functionalities. Research 2019, 4641739 (2019). https://doi.org/10.3413/2019/4641739
- C. Xie, D. Yan, W. Chen, Y. Zou, R. Chen et al., Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater. Today 31, 47–68 (2019). https://doi.org/10.1016/j.mattod.2019.05.021
- J. Zhao, H. Cheng, Z. Zhang, Y. Liu, J. Song et al., The semicoherent interface and vacancy engineering for constructing Ni (Co) Se2@ Co (Ni) Se2 heterojunction as ultrahigh-rate battery-type supercapacitor cathode. Adv. Funct. Mater. 32, 2202063 (2022). https://doi.org/10.1002/adfm.202202063
- Y. Zheng, Z. Yao, Z. Shadike, M. Lei, J. Liu et al., Defect-concentration-mediated T-Nb2O5 anodes for durable and fast-charging Li-ion batteries. Adv. Funct. Mater. 32, 2107060 (2022). https://doi.org/10.1002/adfm.202107060
- D. Xiong, L. Yang, Z. Cao, F. Li, W. Deng et al., In situ construction of high-density solid electrolyte interphase from MOFs for advanced Zn metal anodes. Adv. Funct. Mater. 33(29), 2301530 (2023). https://doi.org/10.1002/adfm.202301530
- C. Liu, B. Wang, L. Xu, K. Zou, W. Deng et al., Novel nonstoichiometric niobium oxide anode material with rich oxygen vacancies for advanced lithium-ion capacitors. ACS Appl. Mater. Interfaces 15(4), 5387–5398 (2023). https://doi.org/10.1021/acsami.2c22206
- Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, 1905923 (2020). https://doi.org/10.1002/adma.201905923
- X. Zhang, H. Wei, B. Ren, J. Jiang, G. Qu et al., Unlocking high-performance ammonium-ion batteries: activation of in-layer channels for enhanced ion storage and migration. Adv. Mater. (2023). https://doi.org/10.1002/adma.202304209
- X. Deng, K. Zou, R. Momen, P. Cai, J. Chen et al., High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 66(18), 1858–1868 (2021). https://doi.org/10.1016/j.scib.2021.04.042
- Y. Zhang, Z. Ding, C.W. Foster, C.E. Banks, X. Qiu et al., Oxygen vacancies evoked blue TiO2 (B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 27, 1700856 (2017). https://doi.org/10.1002/adfm.201700856
- Y. Li, J. Qian, M. Zhang, S. Wang, Z. Wang et al., Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv. Mater. 32, 2005802 (2020). https://doi.org/10.1002/adma.202005802
- W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng et al., P-doped NiTe2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 34, 2106370 (2022). https://doi.org/10.1002/adma.202106370
- J. Zhao, H. Cheng, Z. Zhang, Y. Liu, J. Song et al., The semicoherent interface and vacancy engineering for constructing Ni(Co)Se2@Co(Ni)Se2 heterojunction as ultrahigh-rate battery-type supercapacitor cathode. Adv. Funct. Mater. 32, 2202063 (2022). https://doi.org/10.1002/adfm.202202063
- M.S. Chae, A. Chakraborty, S. Kunnikuruvan, R. Attias, S. Maddukuri et al., Vacancy-driven high rate capabilities in calcium-doped Na0.4MnO2 cathodes for aqueous sodium-ion batteries. Adv. Energy Mater. 10, 2002077–2002116 (2020). https://doi.org/10.1002/aenm.202002077
- Y. Fu, X. Gao, D. Zha, J. Zhu, X. Ouyang et al., Yolk-shell-structured MnO2 microspheres with oxygen vacancies for high-performance supercapacitors. J. Mater. Chem. A 6, 1601–1611 (2018). https://doi.org/10.1039/c7ta10058b
- T. Xiong, Z. Yu, H. Wu, Y. Du, Q. Xie et al., Defect engineering of oxygen- deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9(14), 1803815 (2019). https://doi.org/10.1002/aenm.201803815
- G. Cui, Y. Zeng, J. Wu, Y. Guo, X. Gu et al., Synthesis of Nitrogen-doped KMn8O16 with oxygen vacancy for stable zinc-ion batteries. Adv. Sci. 9(10), e2106067 (2022). https://doi.org/10.1002/advs.202106067
- E.G. Özdemir, Z. Merdan, Half-metal calculations of CoZrGe half-heusler compound by using generalized gradient approximation (GGA) and modified becke-johnson (mBJ) methods. Mater. Res. Express 6, 116124 (2019). https://doi.org/10.1088/2053-1591/ab502b
- Y.J. Hao, L. Zhang, X.R. Chen, Y.H. Li, H.L. He, Phase transition and elastic constants of zirconium from first-principles calculations. J. Phys. Condens. Matter. 20, 235230 (2008). https://doi.org/10.1088/0953-8984/20/23/235230
- M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip et al., First-principles simulation: Ideas, illustrations and the castep code. J. Phys. Condens. Matter. 14, 2717 (2002). https://doi.org/10.1088/0953-8984/14/11/301
- J. Yang, X. Xiao, P. Chen, K. Zhu, K. Cheng et al., Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy 58, 455–465 (2019). https://doi.org/10.1016/j.nanoen.2019.01.071
- Y. Zhang, P. Chen, Q. Wang, Q. Wang, K. Zhu et al., High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure. Adv. Energy Mater. 11, 2101712 (2021). https://doi.org/10.1002/aenm.202101712
- J. Zhang, T. He, W. Zhang, J. Sheng, I.S. Amiinu et al., Na-Mn-O nanocrystals as a high capacity and long life anode material for Li-ion batteries. Adv. Energy Mater. 7, 1602092 (2017). https://doi.org/10.1002/aenm.201602092
- X.Z. Zhai, J. Qu, S.M. Hao, Y.Q. Jing, W. Chang et al., Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries. Nano-Micro Lett. 12, 56 (2020). https://doi.org/10.1007/s40820-020-0397-3
- M. Sun, W. Li, B. Zhang, G. Cheng, B. Lan et al., Enhanced catalytic performance by oxygen vacancy and active interface originated from facile reduction of OMS-2. Chem. Eng. J. 331, 626–635 (2018). https://doi.org/10.1016/j.cej.2017.09.028
- Q. Zhao, L. Fu, D. Jiang, J. Ouyang, Y. Hu et al., Nanoclay-modulated oxygen vacancies of metal oxide. Chem. Commun. 2, 11 (2019). https://doi.org/10.1038/s42004-019-0112-9
- J. Wang, J.G. Wang, H. Liu, Z. You, Z. Li et al., A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries. Adv. Funct. Mater. 31, 2007397 (2021). https://doi.org/10.1002/adfm.202007397
- G. Li, C. Fu, J. Wu, J. Rao, S.C. Liou et al., Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution. Appl. Catal. B 254, 1–6 (2019). https://doi.org/10.1016/j.apcatb.2019.04.080
- S. Wang, L. Li, W. He, Y. Shao, Y. Li et al., Oxygen vacancy modulation of bimetallic oxynitride anodes toward advanced Li-ion capacitors. Adv. Funct. Mater. 30, 2000350 (2020). https://doi.org/10.1002/adfm.202000350
- L. Zhuang, Y. Jia, H. Liu, X. Wang, R. Hocking et al., Defect-induced Pt-Co-Se coordinated sites with highly asymmetrical electronic distribution for boosting oxygen-involving electrocatalysis. Adv. Mater. 31, 1805581 (2019). https://doi.org/10.1002/adma.201805581
- K.W. Nam, M.G. Kim, K. Kim, In situ Mn K-edge X-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors. J. Phys. Chem. C 111, 749–758 (2007). https://doi.org/10.1021/jp063130o
- C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du et al., Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 30, 1705509 (2018). https://doi.org/10.1002/adma.201705509
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 1–7 (2016). https://doi.org/10.1038/nenergy.2016.39
- J. Ge, L. Fan, A. Rao, J. Zhou, B. Lu, Surface-substituted prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 5, 225–234 (2022). https://doi.org/10.1038/s41893-021-00810-7
- G. Liang, X. Qin, J. Zou, L. Luo, Y. Wang et al., Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon 127, 424–431 (2018). https://doi.org/10.1016/j.carbon.2017.11.013
- J. Huang, W. Zhuo, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
- H. Tang, W. Chen, N. Li, Z. Hu, L. Xiao et al., Layered MnO2 nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage. Energy Storage Mater. 48, 335–343 (2022). https://doi.org/10.1016/j.ensm.2022.03.042
- N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
- C. Wang, Y. Zeng, X. Xiao, S. Wu, G. Zhong et al., γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J. Energy Chem. 43, 182–187 (2020). https://doi.org/10.1016/j.jechem.2019.08.011
- Z. Liu, Y. Liu, Y. Zhang, X. Liu, D. Yan et al., Selection of Cu2+ for intercalation from the electronegativity perspective: improving the cycle stability and rate performance of δ-MnO2 cathode material for aqueous zinc-ion batteries. Sci. China Mater. 66, 531–540 (2023). https://doi.org/10.1007/s40843-022-2179-7
- J. Zhou, Z. Jiang, S. Niu, S. Zhu, J. Zhou et al., Self-standing hierarchical P/CNTs@rGo with unprecedented capacity and stability for lithium and sodium storage. Chem 4, 372–385 (2018). https://doi.org/10.1016/j.chempr.2018.01.006
- P. Zuo, G. Cheng, L. Wang, Y. Ma, C. Du et al., Ascorbic acid-assisted solvothermal synthesis of LiMn0.9Fe0.1PO4/C nanoplatelets with enhanced electrochemical performance for lithium ion batteries. J. Power Sources 243, 872–879 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.101
- D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
- X. Wang, B. Xi, X. Ma, Z. Feng, S. Xiong, Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate. Nano Lett. 20, 2899–2906 (2020). https://doi.org/10.1021/acs.nanolett.0c00732
- S. Liu, H. Zhu, B. Zhang, G. Li, C. Li, Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32, 2001113 (2020). https://doi.org/10.1002/adma.202001113
- C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019). https://doi.org/10.1039/C9EE00956F
- X. Yang, W. Deng, M. Chen, Y. Wang, C.F. Sun, Mass-producible, quasi-zero-strain, lattice-water-rich inorganic open-frameworks for ultrafast-charging and long-cycling zinc-ion batteries. Adv. Mater. 32, 2003592 (2020). https://doi.org/10.1002/adma.202003592
- H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
- T. Zhang, Y. Tang, G. Fang, C. Zhang, H. Zhang et al., Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte. Adv. Funct. Mater. 30, 2002711 (2020). https://doi.org/10.1002/adfm.202002711
- H. Chen, C. Dai, F. Xiao, Q. Yang, S. Cai et al., Reunderstanding the reaction mechanism of aqueous ZnMn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide. Adv. Mater. 34, 2109092 (2022). https://doi.org/10.1002/adma.202109092
- G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang et al., Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29, 1808375 (2019). https://doi.org/10.1002/adfm.201808375
- V. Soundharrajan, B. Sambandam, S. Kim, V. Mathew, J. Jo et al., Aqueous magnesium zinc hybrid battery: an advanced high-voltage and high-energy MgMn2O4 cathode. ACS Energy Lett. 3, 1998–2004 (2018). https://doi.org/10.1021/acsenergylett.8b01105
- X. Zhu, Z. Cao, W. Wang, H. Li, J. Dong et al., Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTx Mxene. ACS Nano 15, 2971–2983 (2021). https://doi.org/10.1021/acsnano.0c09205
- F. Jing, Y. Liu, Y. Shang, C. Lv, L. Xu et al., Dual ions intercalation drives high-performance aqueous Zn-ion storage on birnessite-type manganese oxides cathode. Energy Storage Mater. 49, 164–171 (2022). https://doi.org/10.1016/j.ensm.2022.04.008
References
H. Zhang, S. Li, L. Xu, R. Momen, W. Deng et al., High-yield carbon dots interlayer for ultra-stable zinc batteries. Adv. Energy Mater. 12, 2200665 (2022). https://doi.org/10.1002/aenm.202200665
Y. Huang, Q. Lu, D. Wu, Y. Jiang, Z. Liu et al., Flexible Mxene films for batteries and beyond. Carbon Energy 4(4), 598–620 (2022). https://doi.org/10.1002/cey2.200
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L. Nazar, A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016). https://doi.org/10.1038/nenergy.2016.119
C. Liu, X. Xie, B. Lu, J. Zhou, S. Liang, Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6, 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684
N. Wang, Z. Guo, Z. Ni, J. Xu, X. Qiu et al., Molecular tailoring of an N/P-type phenothiazine organic scaffold for zinc batteries. Angew. Chem. Int. Ed. 60, 20826–20832 (2021). https://doi.org/10.1002/anie.202106238
L. Yan, Y. Zhang, Z. Ni, Y. Zhang, J. Xu et al., Chemically self-charging aqueous zinc-organic battery. J. Am. Chem. Soc. 143, 15369–15377 (2021). https://doi.org/10.1021/jacs.1c06936
H. Tang, J. Yao, Y. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: a review. Adv. Energy Mater. 11, 2003994 (2021). https://doi.org/10.1002/aenm.202003994
B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12, 3288–3304 (2019). https://doi.org/10.1039/C9EE02526J
Y. Tang, J. Li, C.L. Xu, M. Liu, B. Xiao et al., Electrode/electrolyte interfacial engineering for aqueous Zn-ion batteries. Carbon Neutralization 2(2), 186–212 (2023). https://doi.org/10.1002/cnl2.54
Q. Zong, Y. Wu, C. Liu, Q. Wang, Y. Zhuang et al., Tailoring layered transition metal compounds for high-performance aqueous zinc-ion batteries. Energy Storage Mater. 52, 250–283 (2022). https://doi.org/10.1016/j.ensm.2022.08.007
M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14, 3796–3839 (2021). https://doi.org/10.1039/D1EE00030F
W. Zhang, S. Liang, G. Fang, Y. Yang, J. Zhou, Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro Lett. 11(1), 69 (2019). https://doi.org/10.1007/s40820-019-0300-2
L. Blanc, D. Kundu, L. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4, 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13(1), 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
Z. Liu, Q. Yang, D. Wang, G. Liang, Y. Zhu et al., A flexible solid-state aqueous zinc hybrid battery with flat and high-voltage discharge plateau. Adv. Energy Mater. 9(46), 1902473 (2019). https://doi.org/10.1002/aenm.201902473
X. Zhao, L. Mao, Q. Cheng, F. Liao, G. Yang et al., Interlayer engineering of preintercalated layered oxides as cathode for emerging multivalent metal-ion batteries: zinc and beyond. Energy Storage Mater. 38, 397–437 (2021). https://doi.org/10.1016/j.ensm.2021.03.005
X. Zhao, X. Liang, Y. Li, Q. Chen, M.H. Chen, Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 42, 533–569 (2021). https://doi.org/10.1016/j.ensm.2021.07.044
Y. Cui, Z. Zhuang, Z. Xie, R. Cao, Q. Hao et al., High-energy and long-lived Zn-MnO2 battery enabled by a hydrophobic-ion-conducting membrane. ACS Nano 16(12), 20730–20738 (2022). https://doi.org/10.1021/acsnano.2c07792
D. Wang, L. Wang, G. Liang, H. Li, Z. Liu et al., A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano 13, 10643–10652 (2019). https://doi.org/10.1021/acsnano.9b04916
L. Wang, S. Guan, Y. Weng, S.-M. Xu, H. Lu et al., Highly efficient vacancy-driven photothermal therapy mediated by ultrathin MnO2 nanosheets. ACS Appl. Mater. Interfaces 11, 6267–6275 (2019). https://doi.org/10.1021/acsami.8b20639
Y. Fu, Q. Wei, G. Zhang, X. Wang, J. Zhang et al., High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 8, 1801445 (2018). https://doi.org/10.1002/aenm.201801445
Z. Cao, H. Zhang, B. Song, D. Xiong, S. Tao et al., Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv. Funct. Mater. 33(28), 2300339 (2023). https://doi.org/10.1002/adfm.202300339
C. Liu, L. Deng, X. Li, T. Wu, W. Zhang et al., Metal–organic frameworks for solid-state electrolytes: a mini review. Electrochem. Commun. 150, 107491 (2023). https://doi.org/10.1016/j.elecom.2023.107491
W. Li, K. Wang, S. Cheng, K. Jiang, An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery. Adv. Energy Mater. 9, 1900993 (2019). https://doi.org/10.1002/aenm.201900993
K.W. Nam, H. Kim, J.H. Choi, J. Choi, Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 12, 1999–2009 (2019). https://doi.org/10.1039/C9EE00718K
X. Xiao, X. Duan, Z. Song, X. Deng, W. Deng et al., High-throughput production of cheap mineral-based heterostructures for high power sodium ion capacitors. Adv. Funct. Mater. 32(18), 2110476 (2022). https://doi.org/10.1002/adfm.202110476
J. Jiang, T. Xu, J. Lu, L. Sun, Z. Ni, Defect engineering in 2D materials: precise manipulation and improved functionalities. Research 2019, 4641739 (2019). https://doi.org/10.3413/2019/4641739
C. Xie, D. Yan, W. Chen, Y. Zou, R. Chen et al., Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater. Today 31, 47–68 (2019). https://doi.org/10.1016/j.mattod.2019.05.021
J. Zhao, H. Cheng, Z. Zhang, Y. Liu, J. Song et al., The semicoherent interface and vacancy engineering for constructing Ni (Co) Se2@ Co (Ni) Se2 heterojunction as ultrahigh-rate battery-type supercapacitor cathode. Adv. Funct. Mater. 32, 2202063 (2022). https://doi.org/10.1002/adfm.202202063
Y. Zheng, Z. Yao, Z. Shadike, M. Lei, J. Liu et al., Defect-concentration-mediated T-Nb2O5 anodes for durable and fast-charging Li-ion batteries. Adv. Funct. Mater. 32, 2107060 (2022). https://doi.org/10.1002/adfm.202107060
D. Xiong, L. Yang, Z. Cao, F. Li, W. Deng et al., In situ construction of high-density solid electrolyte interphase from MOFs for advanced Zn metal anodes. Adv. Funct. Mater. 33(29), 2301530 (2023). https://doi.org/10.1002/adfm.202301530
C. Liu, B. Wang, L. Xu, K. Zou, W. Deng et al., Novel nonstoichiometric niobium oxide anode material with rich oxygen vacancies for advanced lithium-ion capacitors. ACS Appl. Mater. Interfaces 15(4), 5387–5398 (2023). https://doi.org/10.1021/acsami.2c22206
Y. Zhang, L. Tao, C. Xie, D. Wang, Y. Zou et al., Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 32, 1905923 (2020). https://doi.org/10.1002/adma.201905923
X. Zhang, H. Wei, B. Ren, J. Jiang, G. Qu et al., Unlocking high-performance ammonium-ion batteries: activation of in-layer channels for enhanced ion storage and migration. Adv. Mater. (2023). https://doi.org/10.1002/adma.202304209
X. Deng, K. Zou, R. Momen, P. Cai, J. Chen et al., High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors. Sci. Bull. 66(18), 1858–1868 (2021). https://doi.org/10.1016/j.scib.2021.04.042
Y. Zhang, Z. Ding, C.W. Foster, C.E. Banks, X. Qiu et al., Oxygen vacancies evoked blue TiO2 (B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv. Funct. Mater. 27, 1700856 (2017). https://doi.org/10.1002/adfm.201700856
Y. Li, J. Qian, M. Zhang, S. Wang, Z. Wang et al., Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv. Mater. 32, 2005802 (2020). https://doi.org/10.1002/adma.202005802
W. Yao, C. Tian, C. Yang, J. Xu, Y. Meng et al., P-doped NiTe2 with Te-vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 34, 2106370 (2022). https://doi.org/10.1002/adma.202106370
J. Zhao, H. Cheng, Z. Zhang, Y. Liu, J. Song et al., The semicoherent interface and vacancy engineering for constructing Ni(Co)Se2@Co(Ni)Se2 heterojunction as ultrahigh-rate battery-type supercapacitor cathode. Adv. Funct. Mater. 32, 2202063 (2022). https://doi.org/10.1002/adfm.202202063
M.S. Chae, A. Chakraborty, S. Kunnikuruvan, R. Attias, S. Maddukuri et al., Vacancy-driven high rate capabilities in calcium-doped Na0.4MnO2 cathodes for aqueous sodium-ion batteries. Adv. Energy Mater. 10, 2002077–2002116 (2020). https://doi.org/10.1002/aenm.202002077
Y. Fu, X. Gao, D. Zha, J. Zhu, X. Ouyang et al., Yolk-shell-structured MnO2 microspheres with oxygen vacancies for high-performance supercapacitors. J. Mater. Chem. A 6, 1601–1611 (2018). https://doi.org/10.1039/c7ta10058b
T. Xiong, Z. Yu, H. Wu, Y. Du, Q. Xie et al., Defect engineering of oxygen- deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 9(14), 1803815 (2019). https://doi.org/10.1002/aenm.201803815
G. Cui, Y. Zeng, J. Wu, Y. Guo, X. Gu et al., Synthesis of Nitrogen-doped KMn8O16 with oxygen vacancy for stable zinc-ion batteries. Adv. Sci. 9(10), e2106067 (2022). https://doi.org/10.1002/advs.202106067
E.G. Özdemir, Z. Merdan, Half-metal calculations of CoZrGe half-heusler compound by using generalized gradient approximation (GGA) and modified becke-johnson (mBJ) methods. Mater. Res. Express 6, 116124 (2019). https://doi.org/10.1088/2053-1591/ab502b
Y.J. Hao, L. Zhang, X.R. Chen, Y.H. Li, H.L. He, Phase transition and elastic constants of zirconium from first-principles calculations. J. Phys. Condens. Matter. 20, 235230 (2008). https://doi.org/10.1088/0953-8984/20/23/235230
M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip et al., First-principles simulation: Ideas, illustrations and the castep code. J. Phys. Condens. Matter. 14, 2717 (2002). https://doi.org/10.1088/0953-8984/14/11/301
J. Yang, X. Xiao, P. Chen, K. Zhu, K. Cheng et al., Creating oxygen-vacancies in MoO3-x nanobelts toward high volumetric energy-density asymmetric supercapacitors with long lifespan. Nano Energy 58, 455–465 (2019). https://doi.org/10.1016/j.nanoen.2019.01.071
Y. Zhang, P. Chen, Q. Wang, Q. Wang, K. Zhu et al., High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure. Adv. Energy Mater. 11, 2101712 (2021). https://doi.org/10.1002/aenm.202101712
J. Zhang, T. He, W. Zhang, J. Sheng, I.S. Amiinu et al., Na-Mn-O nanocrystals as a high capacity and long life anode material for Li-ion batteries. Adv. Energy Mater. 7, 1602092 (2017). https://doi.org/10.1002/aenm.201602092
X.Z. Zhai, J. Qu, S.M. Hao, Y.Q. Jing, W. Chang et al., Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries. Nano-Micro Lett. 12, 56 (2020). https://doi.org/10.1007/s40820-020-0397-3
M. Sun, W. Li, B. Zhang, G. Cheng, B. Lan et al., Enhanced catalytic performance by oxygen vacancy and active interface originated from facile reduction of OMS-2. Chem. Eng. J. 331, 626–635 (2018). https://doi.org/10.1016/j.cej.2017.09.028
Q. Zhao, L. Fu, D. Jiang, J. Ouyang, Y. Hu et al., Nanoclay-modulated oxygen vacancies of metal oxide. Chem. Commun. 2, 11 (2019). https://doi.org/10.1038/s42004-019-0112-9
J. Wang, J.G. Wang, H. Liu, Z. You, Z. Li et al., A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries. Adv. Funct. Mater. 31, 2007397 (2021). https://doi.org/10.1002/adfm.202007397
G. Li, C. Fu, J. Wu, J. Rao, S.C. Liou et al., Synergistically creating sulfur vacancies in semimetal-supported amorphous MoS2 for efficient hydrogen evolution. Appl. Catal. B 254, 1–6 (2019). https://doi.org/10.1016/j.apcatb.2019.04.080
S. Wang, L. Li, W. He, Y. Shao, Y. Li et al., Oxygen vacancy modulation of bimetallic oxynitride anodes toward advanced Li-ion capacitors. Adv. Funct. Mater. 30, 2000350 (2020). https://doi.org/10.1002/adfm.202000350
L. Zhuang, Y. Jia, H. Liu, X. Wang, R. Hocking et al., Defect-induced Pt-Co-Se coordinated sites with highly asymmetrical electronic distribution for boosting oxygen-involving electrocatalysis. Adv. Mater. 31, 1805581 (2019). https://doi.org/10.1002/adma.201805581
K.W. Nam, M.G. Kim, K. Kim, In situ Mn K-edge X-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors. J. Phys. Chem. C 111, 749–758 (2007). https://doi.org/10.1021/jp063130o
C. Tan, Z. Luo, A. Chaturvedi, Y. Cai, Y. Du et al., Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 30, 1705509 (2018). https://doi.org/10.1002/adma.201705509
H. Pan, Y. Shao, P. Yan, Y. Cheng, K. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 1–7 (2016). https://doi.org/10.1038/nenergy.2016.39
J. Ge, L. Fan, A. Rao, J. Zhou, B. Lu, Surface-substituted prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 5, 225–234 (2022). https://doi.org/10.1038/s41893-021-00810-7
G. Liang, X. Qin, J. Zou, L. Luo, Y. Wang et al., Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon 127, 424–431 (2018). https://doi.org/10.1016/j.carbon.2017.11.013
J. Huang, W. Zhuo, M. Hou, X. Dong, Y. Liu et al., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 9, 2906 (2018). https://doi.org/10.1038/s41467-018-04949-4
H. Tang, W. Chen, N. Li, Z. Hu, L. Xiao et al., Layered MnO2 nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage. Energy Storage Mater. 48, 335–343 (2022). https://doi.org/10.1016/j.ensm.2022.03.042
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long et al., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 8, 405 (2017). https://doi.org/10.1038/s41467-017-00467-x
C. Wang, Y. Zeng, X. Xiao, S. Wu, G. Zhong et al., γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J. Energy Chem. 43, 182–187 (2020). https://doi.org/10.1016/j.jechem.2019.08.011
Z. Liu, Y. Liu, Y. Zhang, X. Liu, D. Yan et al., Selection of Cu2+ for intercalation from the electronegativity perspective: improving the cycle stability and rate performance of δ-MnO2 cathode material for aqueous zinc-ion batteries. Sci. China Mater. 66, 531–540 (2023). https://doi.org/10.1007/s40843-022-2179-7
J. Zhou, Z. Jiang, S. Niu, S. Zhu, J. Zhou et al., Self-standing hierarchical P/CNTs@rGo with unprecedented capacity and stability for lithium and sodium storage. Chem 4, 372–385 (2018). https://doi.org/10.1016/j.chempr.2018.01.006
P. Zuo, G. Cheng, L. Wang, Y. Ma, C. Du et al., Ascorbic acid-assisted solvothermal synthesis of LiMn0.9Fe0.1PO4/C nanoplatelets with enhanced electrochemical performance for lithium ion batteries. J. Power Sources 243, 872–879 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.101
D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10, 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566
X. Wang, B. Xi, X. Ma, Z. Feng, S. Xiong, Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate. Nano Lett. 20, 2899–2906 (2020). https://doi.org/10.1021/acs.nanolett.0c00732
S. Liu, H. Zhu, B. Zhang, G. Li, C. Li, Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv. Mater. 32, 2001113 (2020). https://doi.org/10.1002/adma.202001113
C. Liu, Z. Neale, J. Zheng, X. Jia, J. Huang et al., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 12, 2273–2285 (2019). https://doi.org/10.1039/C9EE00956F
X. Yang, W. Deng, M. Chen, Y. Wang, C.F. Sun, Mass-producible, quasi-zero-strain, lattice-water-rich inorganic open-frameworks for ultrafast-charging and long-cycling zinc-ion batteries. Adv. Mater. 32, 2003592 (2020). https://doi.org/10.1002/adma.202003592
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han et al., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016). https://doi.org/10.1038/nenergy.2016.39
T. Zhang, Y. Tang, G. Fang, C. Zhang, H. Zhang et al., Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte. Adv. Funct. Mater. 30, 2002711 (2020). https://doi.org/10.1002/adfm.202002711
H. Chen, C. Dai, F. Xiao, Q. Yang, S. Cai et al., Reunderstanding the reaction mechanism of aqueous ZnMn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide. Adv. Mater. 34, 2109092 (2022). https://doi.org/10.1002/adma.202109092
G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang et al., Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv. Funct. Mater. 29, 1808375 (2019). https://doi.org/10.1002/adfm.201808375
V. Soundharrajan, B. Sambandam, S. Kim, V. Mathew, J. Jo et al., Aqueous magnesium zinc hybrid battery: an advanced high-voltage and high-energy MgMn2O4 cathode. ACS Energy Lett. 3, 1998–2004 (2018). https://doi.org/10.1021/acsenergylett.8b01105
X. Zhu, Z. Cao, W. Wang, H. Li, J. Dong et al., Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTx Mxene. ACS Nano 15, 2971–2983 (2021). https://doi.org/10.1021/acsnano.0c09205
F. Jing, Y. Liu, Y. Shang, C. Lv, L. Xu et al., Dual ions intercalation drives high-performance aqueous Zn-ion storage on birnessite-type manganese oxides cathode. Energy Storage Mater. 49, 164–171 (2022). https://doi.org/10.1016/j.ensm.2022.04.008