Enhancing Defect-Induced Dipole Polarization Strategy of SiC@MoO3 Nanocomposite Towards Electromagnetic Wave Absorption
Corresponding Author: Meng Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 273
Abstract
Defect engineering in transition metal oxides semiconductors (TMOs) is attracting considerable interest due to its potential to enhance conductivity by intentionally introducing defects that modulate the electronic structures of the materials. However, achieving a comprehensive understanding of the relationship between micro-structures and electromagnetic wave absorption capabilities remains elusive, posing a substantial challenge to the advancement of TMOs absorbers. The current research describes a process for the deposition of a MoO3 layer onto SiC nanowires, achieved via electro-deposition followed by high-temperature calcination. Subsequently, intentional creation of oxygen vacancies within the MoO3 layer was carried out, facilitating the precise adjustment of electromagnetic properties to enhance the microwave absorption performance of the material. Remarkably, the SiC@MO-t4 sample exhibited an excellent minimum reflection loss of − 50.49 dB at a matching thickness of 1.27 mm. Furthermore, the SiC@MO-t6 sample exhibited an effective absorption bandwidth of 8.72 GHz with a thickness of 2.81 mm, comprehensively covering the entire Ku band. These results not only highlight the pivotal role of defect engineering in the nuanced adjustment of electromagnetic properties but also provide valuable insight for the application of defect engineering methods in broadening the spectrum of electromagnetic wave absor ption effectiveness. SiC@MO-t samples with varying concentrations of oxygen vacancies were prepared through in-situ etching of the SiC@MoO3 nanocomposite. The presence of oxygen vacancies plays a crucial role in adjusting the band gap and local electron distribution, which in turn enhances conductivity loss and induced polarization loss capacity. This finding reveals a novel strategy for improving the absorption properties of electromagnetic waves through defect engineering.
Highlights:
1 Oxygen-vacancy-rich SiC@MoO3 nanocomposite with strong reflection loss (− 50.49 dB at 1.27 mm thickness) and broadband absorption band (8.72 GHz at 2.68 mm thickness) were constructed via in situ etching strategy.
2 The presence of oxygen vacancy leads to an increased conductive loss and defect-induced dipole polarization, which plays significant role in attenuating the incident electromagnetic wave.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Qu, G. Xu, Y. Liu, M. He, R. Xing et al., Multi-scale design of metal–organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202402923
- Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32, 2204499 (2022). https://doi.org/10.1002/adfm.202204499
- Y. Guo, K. Ruan, G. Wang, J. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
- Z. Gao, D. Lan, X. Ren, Z. Jia, G. Wu, Manipulating cellulose-based dual-network coordination for enhanced electromagnetic wave absorption in magnetic porous carbon nanocomposites. Compos. Commun. 48, 101922 (2024). https://doi.org/10.1016/j.coco.2024.101922
- Z. Hao, J. Zhou, S. Lin, D. Lan, H. Li et al., Customized heterostructure of transition metal carbides as high-efficiency and anti-corrosion electromagnetic absorbers. Carbon 228, 119323 (2024). https://doi.org/10.1016/j.carbon.2024.119323
- L. Yuan, W. Zhao, Y. Miao, C. Wang, A. Cui et al., Constructing core-shell carbon fiber/polypyrrole/CoFe2O4 nanocomposite with optimized conductive loss and polarization loss toward efficient electromagnetic absorption. Adv. Compos. Hybrid Mater. 7, 70 (2024). https://doi.org/10.1007/s42114-024-00864-z
- Z. Jia, J. Liu, Z. Gao, C. Zhang, G. Wu, Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405523
- J. Wen, D. Lan, Y. Wang, L. Ren, A. Feng et al., Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment. Int. J. Miner. Metall. Mater. 31, 1701–1712 (2024). https://doi.org/10.1007/s12613-024-2881-0
- C. Li, D. Li, S. Zhang, L. Ma, L. Zhang et al., Interface engineering of titanium nitride nanotube composites for excellent microwave absorption at elevated temperature. Nano-Micro Lett. 16, 168 (2024). https://doi.org/10.1007/s40820-024-01381-w
- C.A.F. Nason, A.P.V. Saroja, Y. Lu, R. Wei, Y. Han et al., Layered potassium titanium niobate/reduced graphene oxide nanocomposite as a potassium-ion battery anode. Nano-Micro Lett. 16, 1 (2024). https://doi.org/10.1007/s40820-023-01222-2
- S. Wu, H. Hou, X. Xue, Quad-band microwave absorbers based on MoO3−x@MWCNT with tunable morphologies for multifunctional multiband absorption. Carbon 201, 1160–1173 (2023). https://doi.org/10.1016/j.carbon.2022.10.012
- X. Su, J. Wang, T. Liu, Y. Zhang, Y. Liu et al., Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202403397
- Y. Yin, X. Zeng, L. Xia, G. Xiong, H. Zhang et al., MoO3-MoC/Co@NC coupled heterostructures with strong connections and abundant interfaces for electromagnetic wave absorption. Colloids Surf. A Physicochem. Eng. Aspects 668, 131427 (2023). https://doi.org/10.1016/j.colsurfa.2023.131427
- J.-B. Cheng, Y.-Q. Wang, A.-N. Zhang, H.-B. Zhao, Y.-Z. Wang, Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption. Carbon 183, 205–215 (2021). https://doi.org/10.1016/j.carbon.2021.07.019
- C.-Q. Li, X. Shen, R.-C. Ding, G.-S. Wang, Controllable synthesis of one-dimensional MoO3/MoS2 hybrid composites with their enhanced efficient electromagnetic wave absorption properties. ChemPlusChem 84, 226–232 (2019). https://doi.org/10.1002/cplu.201800599
- H. Wang, H. Ma, Enhancing the microwave absorbing properties of molybdenum dioxide by designing a double-layered structure. Mater. Res. Bull. 122, 110692 (2020). https://doi.org/10.1016/j.materresbull.2019.110692
- B. Zhan, Y. Hao, X. Qi, Y. Qu, J. Ding et al., Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties. Nano Res. 17, 927–938 (2024). https://doi.org/10.1007/s12274-023-6236-7
- X. Wu, J. Huang, H. Gu, S. Chen, N. Li et al., Ni doping in MnO2/MXene (Ti3C2Tx) composites to modulate the oxygen vacancies for boosting microwave absorption. ACS Appl. Electron. Mater. 4, 3694–3706 (2022). https://doi.org/10.1021/acsaelm.2c00654
- C. Gong, J. Ding, C. Wang, Y. Zhang, Y. Guo et al., Defect-induced dipole polarization engineering of electromagnetic wave absorbers: insights and perspectives. Compos. Part B Eng. 252, 110479 (2023). https://doi.org/10.1016/j.compositesb.2022.110479
- M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 8, 2004640 (2021). https://doi.org/10.1002/advs.202004640
- Z. Su, S. Yi, W. Zhang, X. Xu, Y. Zhang et al., Ultrafine vacancy-rich Nb2O5 semiconductors confined in carbon nanosheets boost dielectric polarization for high-attenuation microwave absorption. Nano-Micro Lett. 15, 183 (2023). https://doi.org/10.1007/s40820-023-01151-0
- M. Habibi, A. Habibi-Yangjeh, Y. Akinay, A. Khataee, Oxygen vacancy-rich CeO2 decorated with Cu3BiS3 nanops: outstanding visible-light photocatalytic performance towards tetracycline degradation. Chemosphere 340, 139828 (2023). https://doi.org/10.1016/j.chemosphere.2023.139828
- M. Zhang, Z. Li, T. Wang, S. Ding, G. Qiu et al., High yield synthesis of SiC nanowires and their mechanical performances as the reinforcement candidates in Al2O3 ceramic composite. J. Alloys Compd. 780, 690–696 (2019). https://doi.org/10.1016/j.jallcom.2018.11.254
- M. Zhang, J. Zhao, Z. Li, S. Ding, Y. Wang et al., Ultralong SiC/SiO2 nanowires: simple gram-scale production and their effective blue-violet photoluminescence and microwave absorption properties. ACS Sustainable Chem. Eng. 6, 3596–3603 (2018). https://doi.org/10.1021/acssuschemeng.7b03908
- J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
- Y. Guo, M. Zhang, T. Cheng, Y. Xie, L. Zhao et al., Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanops. Nano Res. 16, 9591–9601 (2023). https://doi.org/10.1007/s12274-023-5776-x
- W. Zhao, M. Zhang, Y. Miao, C. Wang, A. Cui et al., Structural design and controllable preparation of SiCNWs@Fe3O4@NC nanocomposites for electromagnetic wave absorption. Int. J. Miner. Metall. Mater. (2024). https://doi.org/10.1007/s12613-024-2911-y
- Y. Qin, C. Ni, X. Xie, J. Zhang, B. Wang et al., Multiple reflection and scattering effects of the lotus seedpod-based activated carbon decorated with Co3O4 microwave absorbent. J. Colloid Interface Sci. 602, 344–354 (2021). https://doi.org/10.1016/j.jcis.2021.06.048
- Z. Li, X. Wang, H. Ling, H. Lin, T. Wang et al., Electromagnetic wave absorption properties of SiC@SiO2 nanops fabricated by a catalyst-free precursor pyrolysis method. J. Alloys Compd. 830, 154643 (2020). https://doi.org/10.1016/j.jallcom.2020.154643
- M. Zhang, Z. Li, T. Wang, S. Ding, G. Song et al., Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites. Chem. Eng. J. 362, 619–627 (2019). https://doi.org/10.1016/j.cej.2019.01.039
- G. Qi, J. Zhang, L. Chen, B. Wang, J. Cheng, Binder-free MoN nanofibers catalysts for flexible 2-electron oxalate-based Li-CO2 batteries with high energy efficiency. Adv. Funct. Mater. 32, 2112501 (2022). https://doi.org/10.1002/adfm.202112501
- N. Kumar, R. Kumar, Efficient adsorption of methylene blue on hybrid structural phase of MoO3 nanostructures. Mater. Chem. Phys. 275, 125211 (2022). https://doi.org/10.1016/j.matchemphys.2021.125211
- J. Xiao, X. Qi, L. Wang, T. Jing, J.-L. Yang et al., Anion regulating endows core@shell structured hollow carbon spheres@MoSxSe2−x with tunable and boosted microwave absorption performance. Nano Res. 16, 5756–5766 (2023). https://doi.org/10.1007/s12274-023-5433-4
- S. Xie, D. Cao, Y. She, H. Wang, J.-W. Shi et al., Atomic layer deposition of TiO2 shells on MoO3 nanobelts allowing enhanced lithium storage performance. Chem. Commun. 54, 7782–7785 (2018). https://doi.org/10.1039/c8cc04282a
- K. Anu, A. Yadav, K.K. Gaur, Haldar, Effect of oxygen vacancies, lattice distortions and secondary phase on the structural, optical, dielectric and ferroelectric properties in Cd-doped Bi2Ti2O7 nanops. Mater. Res. Bull. 141, 111373 (2021). https://doi.org/10.1016/j.materresbull.2021.111373
- A. Meng, M. Zhang, W. Gao, S. Sun, Z. Li, Large-scale synthesis of β-SiC nanochains and their Raman/photoluminescence properties. Nanoscale Res. Lett. 6, 34 (2011). https://doi.org/10.1007/s11671-010-9787-7
- A. Hermawan, N.L.W. Septiani, A. Taufik, B.Y. Suyatman et al., Advanced strategies to improve performances of molybdenum-based gas sensors. Nano Micro Lett. 13, 207 (2021). https://doi.org/10.1007/s40820-021-00724-1
- Y. Pan, B. Xiong, Z. Li, Y. Wu, C. Yan et al., In situ constructed oxygen-vacancy-rich MoO3−x/porous g-C3N4 heterojunction for synergistically enhanced photocatalytic H2 evolution. RSC Adv. 11, 31219–31225 (2021). https://doi.org/10.1039/D1RA05620D
- S. Shin, J. Yoon, E. Kim, W.-S. Yoon, H. Shin, High capacity and reversibility of oxygen-vacancy-controlled MoO3 on Cu in Li-ion batteries: unveiling storage mechanism in binder-free MoO3−x anodes. Energy Technol. 8, 1901502 (2020). https://doi.org/10.1002/ente.201901502
- Y. Feng, Z. Zhong, S. Chen, K. Liu, Z. Meng, Improved catalytic performance toward selective oxidation of benzyl alcohols originated from new open-framework copper molybdovanadate with a unique V/Mo ratio. Chem. Eur. J. 29, e202302051 (2023). https://doi.org/10.1002/chem.202302051
- J. Huang, Z. Deng, S. Bi, X. Wen, S. Zeng, Recyclable endogenous H2S activation of self-assembled nanoprobe with controllable biodegradation for synergistically enhanced colon cancer-specific therapy. Adv. Sci. 9, e2203902 (2022). https://doi.org/10.1002/advs.202203902
- Z. Wang, R. Lin, Y. Huo, H. Li, L. Wang, Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion. Adv. Funct. Mater. 32, 2109503 (2022). https://doi.org/10.1002/adfm.202109503
- H. Zhang, L. Zhu, Y. Shen, M. Wu, T. Tian et al., Tuning the oxygen vacancies and mass transfer of porous conductive ceramic supported IrOx catalyst via polyether-derived composite oxide pyrolysis: toward a highly efficient oxygen evolution reaction catalyst for water electrolysis. Adv. Compos. Hybrid Mater. 7, 46 (2024). https://doi.org/10.1007/s42114-024-00862-1
- X. Sun, M. Yang, S. Yang, S. Wang, W. Yin et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15, 1902974 (2019). https://doi.org/10.1002/smll.201902974
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
- C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
- Q. Su, Y. He, D. Liu, D. Li, L. Xia et al., Facile fabrication of graphene/g-C3N4 for electromagnetic wave absorption. Nano Res. 17, 1687–1698 (2024). https://doi.org/10.1007/s12274-023-6231-z
- R.D. Kumar, S. Karuppuchamy, Facile synthesis of honeycomb structured SnO/SnO2 nanocomposites by microwave irradiation method. J. Mater. Sci. Mater. Electron. 26, 6439–6443 (2015). https://doi.org/10.1007/s10854-015-3234-6
- J. Peng, J. Guo, S. Lv, X. Jiang, Novel ZnFe2O4@MnO2@MXene composites with ultrathin thickness and excellent electromagnetic absorption performance. Compos. Commun. 35, 101316 (2022). https://doi.org/10.1016/j.coco.2022.101316
- J. Ge, L. Liu, Y. Cui, R. Li, F. Meng et al., Optimizing the electromagnetic wave absorption performances of designed Fe3O4@SiO2@MnO2 hybrids. Ceram. Int. 46, 15325–15332 (2020). https://doi.org/10.1016/j.ceramint.2020.03.074
- A. Xie, X. Lin, C. Zhang, S. Cheng, W. Dong et al., Oxygen vacancy mediated polymerization of pyrrole on MoO3 to construct dielectric nanocomposites for electromagnetic waves absorption application. J. Alloys Compd. 938, 168523 (2023). https://doi.org/10.1016/j.jallcom.2022.168523
- H. Wu, J. Liu, H. Liang, D. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020). https://doi.org/10.1016/j.cej.2020.124743
- F. Hu, F. Zhang, X. Wang, Y. Li, H. Wang et al., Ultrabroad band microwave absorption from hierarchical MoO3/TiO2/Mo2TiC2Tx hybrids via annealing treatment. J. Adv. Ceram. 11, 1466–1478 (2022). https://doi.org/10.1007/s40145-022-0624-0
- D. Tan, Q. Wang, M. Li, L. Song, F. Zhang et al., Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 492, 152245 (2024). https://doi.org/10.1016/j.cej.2024.152245
- Y. Cao, A.M. Mohamed, M. Mousavi, Y. Akinay, Poly(pyrrole-co-styrene sulfonate)-encapsulated MWCNT/Fe–Ni alloy/NiFe2O4 nanocomposites for microwave absorption. Mater. Chem. Phys. 259, 124169 (2021). https://doi.org/10.1016/j.matchemphys.2020.124169
- J. Zhou, D. Liu, Y. Xiong, Y. Akinay, A novel approach to prepare polyaniline/Polypyrrole@Cu-BTC/NH2-MIL-101(Fe) MOFs for electromagnetic wave absorption. Ceram. Int. 46, 19758–19766 (2020). https://doi.org/10.1016/j.ceramint.2020.05.006
- H. Niu, P. Liu, F. Qin, X. Liu, Y. Akinay, PEDOT coated Cu-BTC metal-organic frameworks decorated with Fe3O4 nanops and their enhanced electromagnetic wave absorption. Mater. Chem. Phys. 253, 123458 (2020). https://doi.org/10.1016/j.matchemphys.2020.123458
- L. Wang, Z. Ma, H. Qiu, Y. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14, 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- H. Pang, Y. Duan, L. Huang, L. Song, J. Liu et al., Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos. Part B Eng. 224, 109173 (2021). https://doi.org/10.1016/j.compositesb.2021.109173
- L. Yao, W. Yang, S. Zhou, H. Mei, L. Cheng et al., Design paradigm for strong-lightweight perfect microwave absorbers: the case of 3D printed gyroid shellular SiOC-based metamaterials. Carbon 196, 961–971 (2022). https://doi.org/10.1016/j.carbon.2022.06.004
- K. Inzani, T. Grande, F. Vullum-Bruer, S.M. Selbach, A van der waals density functional study of MoO3 and its oxygen vacancies. J. Phys. Chem. C 120, 8959–8968 (2016). https://doi.org/10.1021/acs.jpcc.6b00585
- L. Xiang, A.K. Darboe, Z. Luo, X. Qi, J.-J. Shao et al., Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: a combined composition modulation and interface engineering strategy for microwave absorption. Adv. Compos. Hybrid Mater. 6, 215 (2023). https://doi.org/10.1007/s42114-023-00793-3
- T. Hou, J. Wang, T. Zheng, Y. Liu, G. Wu et al., Anion exchange of metal ps on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption. Small 19, 2303463 (2023). https://doi.org/10.1002/smll.202303463
- M. Zhang, H. Ling, T. Wang, Y. Jiang, G. Song et al., An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 14, 157 (2022). https://doi.org/10.1007/s40820-022-00900-x
- X. Yang, L. Xuan, W. Men, X. Wu, D. Lan et al., Carbonyl iron/glass fiber cloth composites: achieving multi-spectrum stealth in a wide temperature range. Chem. Eng. J. 491, 151862 (2024). https://doi.org/10.1016/j.cej.2024.151862
- B. Quan, X. Liang, G. Xu, Y. Cheng, Y. Zhang et al., A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation. New J. Chem. 41, 1259–1266 (2017). https://doi.org/10.1039/C6NJ03052A
- S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee et al., Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale 5, 9238–9246 (2013). https://doi.org/10.1039/C3NR02678G
- X. Zhang, X.-L. Tian, Y. Qin, J. Qiao, F. Pan et al., Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 17, 12510–12518 (2023). https://doi.org/10.1021/acsnano.3c02170
- L. Song, F. Zhang, Y. Chen, L. Guan, Y. Zhu et al., Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 14, 152 (2022). https://doi.org/10.1007/s40820-022-00905-6
- Y. He, Q. Su, D. Liu, L. Xia, X. Huang et al., Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem. Eng. J. 491, 152041 (2024). https://doi.org/10.1016/j.cej.2024.152041
- J. Gao, L. Zhou, J. Liang, Z. Wang, Y. Wu et al., Optical emission spectroscopy diagnosis of energetic Ar ions in synthesis of SiC polytypes by DC arc discharge plasma. Nano Res. 11, 1470–1481 (2018). https://doi.org/10.1007/s12274-017-1764-3
- N. Wu, B. Zhao, Y. Lian, S. Liu, Y. Xian et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 226, 119215 (2024). https://doi.org/10.1016/j.carbon.2024.119215
- H. Si, Y. Zhang, Y. Liu, Z. Jiang, C. Li et al., Structural design in reduced graphene oxide (RGO) metacomposites for enhanced microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 206, 211–220 (2025). https://doi.org/10.1016/j.jmst.2024.04.011
- Q. Liang, Z. Li, J. Xu, Y. Duan, Z. Yang et al., A 4D-printed electromagnetic cloaking and illusion function convertible metasurface. Adv. Mater. Technol. 8, 2202020 (2023). https://doi.org/10.1002/admt.202202020
- W. Huang, M. Song, S. Wang, B. Wang, J. Ma et al., Dual-step redox engineering of 2D CoNi-alloy embedded B, N-doped carbon layers toward tunable electromagnetic wave absorption and light-weight infrared stealth heat insulation devices. Adv. Mater. (2024). https://doi.org/10.1002/adma.202403322
- X. Li, H. Zhou, J. Zhang, X. Zhang, M. Li et al., Construction of shell-like carbon superstructures through anisotropically oriented self-assembly for distinct electromagnetic wave absorption. J. Mater. Chem. A 12, 4057–4066 (2024). https://doi.org/10.1039/D3TA06822F
References
N. Qu, G. Xu, Y. Liu, M. He, R. Xing et al., Multi-scale design of metal–organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202402923
Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32, 2204499 (2022). https://doi.org/10.1002/adfm.202204499
Y. Guo, K. Ruan, G. Wang, J. Gu, Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption. Sci. Bull. 68, 1195–1212 (2023). https://doi.org/10.1016/j.scib.2023.04.036
Z. Gao, D. Lan, X. Ren, Z. Jia, G. Wu, Manipulating cellulose-based dual-network coordination for enhanced electromagnetic wave absorption in magnetic porous carbon nanocomposites. Compos. Commun. 48, 101922 (2024). https://doi.org/10.1016/j.coco.2024.101922
Z. Hao, J. Zhou, S. Lin, D. Lan, H. Li et al., Customized heterostructure of transition metal carbides as high-efficiency and anti-corrosion electromagnetic absorbers. Carbon 228, 119323 (2024). https://doi.org/10.1016/j.carbon.2024.119323
L. Yuan, W. Zhao, Y. Miao, C. Wang, A. Cui et al., Constructing core-shell carbon fiber/polypyrrole/CoFe2O4 nanocomposite with optimized conductive loss and polarization loss toward efficient electromagnetic absorption. Adv. Compos. Hybrid Mater. 7, 70 (2024). https://doi.org/10.1007/s42114-024-00864-z
Z. Jia, J. Liu, Z. Gao, C. Zhang, G. Wu, Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202405523
J. Wen, D. Lan, Y. Wang, L. Ren, A. Feng et al., Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment. Int. J. Miner. Metall. Mater. 31, 1701–1712 (2024). https://doi.org/10.1007/s12613-024-2881-0
C. Li, D. Li, S. Zhang, L. Ma, L. Zhang et al., Interface engineering of titanium nitride nanotube composites for excellent microwave absorption at elevated temperature. Nano-Micro Lett. 16, 168 (2024). https://doi.org/10.1007/s40820-024-01381-w
C.A.F. Nason, A.P.V. Saroja, Y. Lu, R. Wei, Y. Han et al., Layered potassium titanium niobate/reduced graphene oxide nanocomposite as a potassium-ion battery anode. Nano-Micro Lett. 16, 1 (2024). https://doi.org/10.1007/s40820-023-01222-2
S. Wu, H. Hou, X. Xue, Quad-band microwave absorbers based on MoO3−x@MWCNT with tunable morphologies for multifunctional multiband absorption. Carbon 201, 1160–1173 (2023). https://doi.org/10.1016/j.carbon.2022.10.012
X. Su, J. Wang, T. Liu, Y. Zhang, Y. Liu et al., Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202403397
Y. Yin, X. Zeng, L. Xia, G. Xiong, H. Zhang et al., MoO3-MoC/Co@NC coupled heterostructures with strong connections and abundant interfaces for electromagnetic wave absorption. Colloids Surf. A Physicochem. Eng. Aspects 668, 131427 (2023). https://doi.org/10.1016/j.colsurfa.2023.131427
J.-B. Cheng, Y.-Q. Wang, A.-N. Zhang, H.-B. Zhao, Y.-Z. Wang, Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption. Carbon 183, 205–215 (2021). https://doi.org/10.1016/j.carbon.2021.07.019
C.-Q. Li, X. Shen, R.-C. Ding, G.-S. Wang, Controllable synthesis of one-dimensional MoO3/MoS2 hybrid composites with their enhanced efficient electromagnetic wave absorption properties. ChemPlusChem 84, 226–232 (2019). https://doi.org/10.1002/cplu.201800599
H. Wang, H. Ma, Enhancing the microwave absorbing properties of molybdenum dioxide by designing a double-layered structure. Mater. Res. Bull. 122, 110692 (2020). https://doi.org/10.1016/j.materresbull.2019.110692
B. Zhan, Y. Hao, X. Qi, Y. Qu, J. Ding et al., Multifunctional cellular carbon foams derived from chitosan toward self-cleaning, thermal insulation, and highly efficient microwave absorption properties. Nano Res. 17, 927–938 (2024). https://doi.org/10.1007/s12274-023-6236-7
X. Wu, J. Huang, H. Gu, S. Chen, N. Li et al., Ni doping in MnO2/MXene (Ti3C2Tx) composites to modulate the oxygen vacancies for boosting microwave absorption. ACS Appl. Electron. Mater. 4, 3694–3706 (2022). https://doi.org/10.1021/acsaelm.2c00654
C. Gong, J. Ding, C. Wang, Y. Zhang, Y. Guo et al., Defect-induced dipole polarization engineering of electromagnetic wave absorbers: insights and perspectives. Compos. Part B Eng. 252, 110479 (2023). https://doi.org/10.1016/j.compositesb.2022.110479
M. Qin, L. Zhang, X. Zhao, H. Wu, Defect induced polarization loss in multi-shelled spinel hollow spheres for electromagnetic wave absorption application. Adv. Sci. 8, 2004640 (2021). https://doi.org/10.1002/advs.202004640
Z. Su, S. Yi, W. Zhang, X. Xu, Y. Zhang et al., Ultrafine vacancy-rich Nb2O5 semiconductors confined in carbon nanosheets boost dielectric polarization for high-attenuation microwave absorption. Nano-Micro Lett. 15, 183 (2023). https://doi.org/10.1007/s40820-023-01151-0
M. Habibi, A. Habibi-Yangjeh, Y. Akinay, A. Khataee, Oxygen vacancy-rich CeO2 decorated with Cu3BiS3 nanops: outstanding visible-light photocatalytic performance towards tetracycline degradation. Chemosphere 340, 139828 (2023). https://doi.org/10.1016/j.chemosphere.2023.139828
M. Zhang, Z. Li, T. Wang, S. Ding, G. Qiu et al., High yield synthesis of SiC nanowires and their mechanical performances as the reinforcement candidates in Al2O3 ceramic composite. J. Alloys Compd. 780, 690–696 (2019). https://doi.org/10.1016/j.jallcom.2018.11.254
M. Zhang, J. Zhao, Z. Li, S. Ding, Y. Wang et al., Ultralong SiC/SiO2 nanowires: simple gram-scale production and their effective blue-violet photoluminescence and microwave absorption properties. ACS Sustainable Chem. Eng. 6, 3596–3603 (2018). https://doi.org/10.1021/acssuschemeng.7b03908
J. Xiao, B. Zhan, M. He, X. Qi, X. Gong et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316722
Y. Guo, M. Zhang, T. Cheng, Y. Xie, L. Zhao et al., Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanops. Nano Res. 16, 9591–9601 (2023). https://doi.org/10.1007/s12274-023-5776-x
W. Zhao, M. Zhang, Y. Miao, C. Wang, A. Cui et al., Structural design and controllable preparation of SiCNWs@Fe3O4@NC nanocomposites for electromagnetic wave absorption. Int. J. Miner. Metall. Mater. (2024). https://doi.org/10.1007/s12613-024-2911-y
Y. Qin, C. Ni, X. Xie, J. Zhang, B. Wang et al., Multiple reflection and scattering effects of the lotus seedpod-based activated carbon decorated with Co3O4 microwave absorbent. J. Colloid Interface Sci. 602, 344–354 (2021). https://doi.org/10.1016/j.jcis.2021.06.048
Z. Li, X. Wang, H. Ling, H. Lin, T. Wang et al., Electromagnetic wave absorption properties of SiC@SiO2 nanops fabricated by a catalyst-free precursor pyrolysis method. J. Alloys Compd. 830, 154643 (2020). https://doi.org/10.1016/j.jallcom.2020.154643
M. Zhang, Z. Li, T. Wang, S. Ding, G. Song et al., Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites. Chem. Eng. J. 362, 619–627 (2019). https://doi.org/10.1016/j.cej.2019.01.039
G. Qi, J. Zhang, L. Chen, B. Wang, J. Cheng, Binder-free MoN nanofibers catalysts for flexible 2-electron oxalate-based Li-CO2 batteries with high energy efficiency. Adv. Funct. Mater. 32, 2112501 (2022). https://doi.org/10.1002/adfm.202112501
N. Kumar, R. Kumar, Efficient adsorption of methylene blue on hybrid structural phase of MoO3 nanostructures. Mater. Chem. Phys. 275, 125211 (2022). https://doi.org/10.1016/j.matchemphys.2021.125211
J. Xiao, X. Qi, L. Wang, T. Jing, J.-L. Yang et al., Anion regulating endows core@shell structured hollow carbon spheres@MoSxSe2−x with tunable and boosted microwave absorption performance. Nano Res. 16, 5756–5766 (2023). https://doi.org/10.1007/s12274-023-5433-4
S. Xie, D. Cao, Y. She, H. Wang, J.-W. Shi et al., Atomic layer deposition of TiO2 shells on MoO3 nanobelts allowing enhanced lithium storage performance. Chem. Commun. 54, 7782–7785 (2018). https://doi.org/10.1039/c8cc04282a
K. Anu, A. Yadav, K.K. Gaur, Haldar, Effect of oxygen vacancies, lattice distortions and secondary phase on the structural, optical, dielectric and ferroelectric properties in Cd-doped Bi2Ti2O7 nanops. Mater. Res. Bull. 141, 111373 (2021). https://doi.org/10.1016/j.materresbull.2021.111373
A. Meng, M. Zhang, W. Gao, S. Sun, Z. Li, Large-scale synthesis of β-SiC nanochains and their Raman/photoluminescence properties. Nanoscale Res. Lett. 6, 34 (2011). https://doi.org/10.1007/s11671-010-9787-7
A. Hermawan, N.L.W. Septiani, A. Taufik, B.Y. Suyatman et al., Advanced strategies to improve performances of molybdenum-based gas sensors. Nano Micro Lett. 13, 207 (2021). https://doi.org/10.1007/s40820-021-00724-1
Y. Pan, B. Xiong, Z. Li, Y. Wu, C. Yan et al., In situ constructed oxygen-vacancy-rich MoO3−x/porous g-C3N4 heterojunction for synergistically enhanced photocatalytic H2 evolution. RSC Adv. 11, 31219–31225 (2021). https://doi.org/10.1039/D1RA05620D
S. Shin, J. Yoon, E. Kim, W.-S. Yoon, H. Shin, High capacity and reversibility of oxygen-vacancy-controlled MoO3 on Cu in Li-ion batteries: unveiling storage mechanism in binder-free MoO3−x anodes. Energy Technol. 8, 1901502 (2020). https://doi.org/10.1002/ente.201901502
Y. Feng, Z. Zhong, S. Chen, K. Liu, Z. Meng, Improved catalytic performance toward selective oxidation of benzyl alcohols originated from new open-framework copper molybdovanadate with a unique V/Mo ratio. Chem. Eur. J. 29, e202302051 (2023). https://doi.org/10.1002/chem.202302051
J. Huang, Z. Deng, S. Bi, X. Wen, S. Zeng, Recyclable endogenous H2S activation of self-assembled nanoprobe with controllable biodegradation for synergistically enhanced colon cancer-specific therapy. Adv. Sci. 9, e2203902 (2022). https://doi.org/10.1002/advs.202203902
Z. Wang, R. Lin, Y. Huo, H. Li, L. Wang, Formation, detection, and function of oxygen vacancy in metal oxides for solar energy conversion. Adv. Funct. Mater. 32, 2109503 (2022). https://doi.org/10.1002/adfm.202109503
H. Zhang, L. Zhu, Y. Shen, M. Wu, T. Tian et al., Tuning the oxygen vacancies and mass transfer of porous conductive ceramic supported IrOx catalyst via polyether-derived composite oxide pyrolysis: toward a highly efficient oxygen evolution reaction catalyst for water electrolysis. Adv. Compos. Hybrid Mater. 7, 46 (2024). https://doi.org/10.1007/s42114-024-00862-1
X. Sun, M. Yang, S. Yang, S. Wang, W. Yin et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15, 1902974 (2019). https://doi.org/10.1002/smll.201902974
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
Q. Su, Y. He, D. Liu, D. Li, L. Xia et al., Facile fabrication of graphene/g-C3N4 for electromagnetic wave absorption. Nano Res. 17, 1687–1698 (2024). https://doi.org/10.1007/s12274-023-6231-z
R.D. Kumar, S. Karuppuchamy, Facile synthesis of honeycomb structured SnO/SnO2 nanocomposites by microwave irradiation method. J. Mater. Sci. Mater. Electron. 26, 6439–6443 (2015). https://doi.org/10.1007/s10854-015-3234-6
J. Peng, J. Guo, S. Lv, X. Jiang, Novel ZnFe2O4@MnO2@MXene composites with ultrathin thickness and excellent electromagnetic absorption performance. Compos. Commun. 35, 101316 (2022). https://doi.org/10.1016/j.coco.2022.101316
J. Ge, L. Liu, Y. Cui, R. Li, F. Meng et al., Optimizing the electromagnetic wave absorption performances of designed Fe3O4@SiO2@MnO2 hybrids. Ceram. Int. 46, 15325–15332 (2020). https://doi.org/10.1016/j.ceramint.2020.03.074
A. Xie, X. Lin, C. Zhang, S. Cheng, W. Dong et al., Oxygen vacancy mediated polymerization of pyrrole on MoO3 to construct dielectric nanocomposites for electromagnetic waves absorption application. J. Alloys Compd. 938, 168523 (2023). https://doi.org/10.1016/j.jallcom.2022.168523
H. Wu, J. Liu, H. Liang, D. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020). https://doi.org/10.1016/j.cej.2020.124743
F. Hu, F. Zhang, X. Wang, Y. Li, H. Wang et al., Ultrabroad band microwave absorption from hierarchical MoO3/TiO2/Mo2TiC2Tx hybrids via annealing treatment. J. Adv. Ceram. 11, 1466–1478 (2022). https://doi.org/10.1007/s40145-022-0624-0
D. Tan, Q. Wang, M. Li, L. Song, F. Zhang et al., Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 492, 152245 (2024). https://doi.org/10.1016/j.cej.2024.152245
Y. Cao, A.M. Mohamed, M. Mousavi, Y. Akinay, Poly(pyrrole-co-styrene sulfonate)-encapsulated MWCNT/Fe–Ni alloy/NiFe2O4 nanocomposites for microwave absorption. Mater. Chem. Phys. 259, 124169 (2021). https://doi.org/10.1016/j.matchemphys.2020.124169
J. Zhou, D. Liu, Y. Xiong, Y. Akinay, A novel approach to prepare polyaniline/Polypyrrole@Cu-BTC/NH2-MIL-101(Fe) MOFs for electromagnetic wave absorption. Ceram. Int. 46, 19758–19766 (2020). https://doi.org/10.1016/j.ceramint.2020.05.006
H. Niu, P. Liu, F. Qin, X. Liu, Y. Akinay, PEDOT coated Cu-BTC metal-organic frameworks decorated with Fe3O4 nanops and their enhanced electromagnetic wave absorption. Mater. Chem. Phys. 253, 123458 (2020). https://doi.org/10.1016/j.matchemphys.2020.123458
L. Wang, Z. Ma, H. Qiu, Y. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14, 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co-C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C band. Adv. Funct. Mater. 34, 2313544 (2024). https://doi.org/10.1002/adfm.202313544
H. Pang, Y. Duan, L. Huang, L. Song, J. Liu et al., Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos. Part B Eng. 224, 109173 (2021). https://doi.org/10.1016/j.compositesb.2021.109173
L. Yao, W. Yang, S. Zhou, H. Mei, L. Cheng et al., Design paradigm for strong-lightweight perfect microwave absorbers: the case of 3D printed gyroid shellular SiOC-based metamaterials. Carbon 196, 961–971 (2022). https://doi.org/10.1016/j.carbon.2022.06.004
K. Inzani, T. Grande, F. Vullum-Bruer, S.M. Selbach, A van der waals density functional study of MoO3 and its oxygen vacancies. J. Phys. Chem. C 120, 8959–8968 (2016). https://doi.org/10.1021/acs.jpcc.6b00585
L. Xiang, A.K. Darboe, Z. Luo, X. Qi, J.-J. Shao et al., Constructing two-dimensional/two-dimensional reduced graphene oxide/MoX2 (X = Se and S) van der Waals heterojunctions: a combined composition modulation and interface engineering strategy for microwave absorption. Adv. Compos. Hybrid Mater. 6, 215 (2023). https://doi.org/10.1007/s42114-023-00793-3
T. Hou, J. Wang, T. Zheng, Y. Liu, G. Wu et al., Anion exchange of metal ps on carbon-based skeletons for promoting dielectric equilibrium and high-efficiency electromagnetic wave absorption. Small 19, 2303463 (2023). https://doi.org/10.1002/smll.202303463
M. Zhang, H. Ling, T. Wang, Y. Jiang, G. Song et al., An equivalent substitute strategy for constructing 3D ordered porous carbon foams and their electromagnetic attenuation mechanism. Nano-Micro Lett. 14, 157 (2022). https://doi.org/10.1007/s40820-022-00900-x
X. Yang, L. Xuan, W. Men, X. Wu, D. Lan et al., Carbonyl iron/glass fiber cloth composites: achieving multi-spectrum stealth in a wide temperature range. Chem. Eng. J. 491, 151862 (2024). https://doi.org/10.1016/j.cej.2024.151862
B. Quan, X. Liang, G. Xu, Y. Cheng, Y. Zhang et al., A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation. New J. Chem. 41, 1259–1266 (2017). https://doi.org/10.1039/C6NJ03052A
S.A. Ansari, M.M. Khan, S. Kalathil, A. Nisar, J. Lee et al., Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale 5, 9238–9246 (2013). https://doi.org/10.1039/C3NR02678G
X. Zhang, X.-L. Tian, Y. Qin, J. Qiao, F. Pan et al., Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano 17, 12510–12518 (2023). https://doi.org/10.1021/acsnano.3c02170
L. Song, F. Zhang, Y. Chen, L. Guan, Y. Zhu et al., Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption. Nano-Micro Lett. 14, 152 (2022). https://doi.org/10.1007/s40820-022-00905-6
Y. He, Q. Su, D. Liu, L. Xia, X. Huang et al., Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance. Chem. Eng. J. 491, 152041 (2024). https://doi.org/10.1016/j.cej.2024.152041
J. Gao, L. Zhou, J. Liang, Z. Wang, Y. Wu et al., Optical emission spectroscopy diagnosis of energetic Ar ions in synthesis of SiC polytypes by DC arc discharge plasma. Nano Res. 11, 1470–1481 (2018). https://doi.org/10.1007/s12274-017-1764-3
N. Wu, B. Zhao, Y. Lian, S. Liu, Y. Xian et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation. Carbon 226, 119215 (2024). https://doi.org/10.1016/j.carbon.2024.119215
H. Si, Y. Zhang, Y. Liu, Z. Jiang, C. Li et al., Structural design in reduced graphene oxide (RGO) metacomposites for enhanced microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 206, 211–220 (2025). https://doi.org/10.1016/j.jmst.2024.04.011
Q. Liang, Z. Li, J. Xu, Y. Duan, Z. Yang et al., A 4D-printed electromagnetic cloaking and illusion function convertible metasurface. Adv. Mater. Technol. 8, 2202020 (2023). https://doi.org/10.1002/admt.202202020
W. Huang, M. Song, S. Wang, B. Wang, J. Ma et al., Dual-step redox engineering of 2D CoNi-alloy embedded B, N-doped carbon layers toward tunable electromagnetic wave absorption and light-weight infrared stealth heat insulation devices. Adv. Mater. (2024). https://doi.org/10.1002/adma.202403322
X. Li, H. Zhou, J. Zhang, X. Zhang, M. Li et al., Construction of shell-like carbon superstructures through anisotropically oriented self-assembly for distinct electromagnetic wave absorption. J. Mater. Chem. A 12, 4057–4066 (2024). https://doi.org/10.1039/D3TA06822F