An Equivalent Substitute Strategy for Constructing 3D Ordered Porous Carbon Foams and Their Electromagnetic Attenuation Mechanism
Corresponding Author: Zhenjiang Li
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 157
Abstract
Three-dimensional (3D) ordered porous carbon is generally believed to be a promising electromagnetic wave (EMW) absorbing material. However, most research works targeted performance improvement of 3D ordered porous carbon, and the specific attenuation mechanism is still ambiguous. Therefore, in this work, a novel ultra-light egg-derived porous carbon foam (EDCF) structure has been successfully constructed by a simple carbonization combined with the silica microsphere template-etching process. Based on an equivalent substitute strategy, the influence of pore volume and specific surface area on the electromagnetic parameters and EMW absorption properties of the EDCF products was confirmed respectively by adjusting the addition content and diameter of silica microspheres. As a primary attenuation mode, the dielectric loss originates from the comprehensive effect of conduction loss and polarization loss in S-band and C band, and the value is dominated by polarization loss in X band and Ku band, which is obviously greater than that of conduction loss. Furthermore, in all samples, the largest effective absorption bandwidth of EDCF-3 is 7.12 GHz under the thickness of 2.13 mm with the filling content of approximately 5 wt%, covering the whole Ku band. Meanwhile, the EDCF-7 sample with optimized pore volume and specific surface area achieves minimum reflection loss (RLmin) of − 58.08 dB at 16.86 GHz while the thickness is 1.27 mm. The outstanding research results not only provide a novel insight into enhancement of EMW absorption properties but also clarify the dominant dissipation mechanism for the porous carbon-based absorber from the perspective of objective experiments.
Highlights:
1 Three-dimensional ordered porous carbon foam with abundant hetero-atoms is successfully prepared through employing silica microspheres template.
2 The pore volume and specific surface area are effectively adjusted by an equivalent substitute strategy to investigate their influence on electromagnetic wave absorption performances.
3 The attenuation mechanism of electromagnetic wave is clarified according to the contribution of conduction loss and polarization loss on dielectric loss.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.J. Zeng, X.Y. Cheng, R.H. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028
- X.X. Sun, M.L. Yang, S. Yang, S.S. Wang, W.L. Yin et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15(43), 1902974 (2019). https://doi.org/10.1002/smll.201902974
- P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
- Z.R. Zi, M.Y. Kong, B.W. Yu, Y.Z. Ma, J.Y. Pan et al., Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 127, 153–163 (2022). https://doi.org/10.1016/j.jmst.2022.04.005
- Z.H. Wu, Z.Z. Meng, C. Yao, Y. Deng, G.L. Zhang et al., Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption. Mater. Chem. Phys. 275, 125246 (2022). https://doi.org/10.1016/j.matchemphys.2021.125246
- D.D. Zhi, T. Li, J.Z. Li, H.S. Ren, F.B. Meng, A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos. Part B Eng. 211, 108642 (2021). https://doi.org/10.1016/j.compositesb.2021.108642
- L.B. Zhao, Y.Y. Guo, Y.X. Xie, T.T. Cheng, A.L. Meng et al., Construction of SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption. Appl. Surf. Sci. 592, 153324 (2022). https://doi.org/10.1016/j.apsusc.2022.153324
- F.Y. Hu, X.H. Wang, S. Bao, L.M. Song, S. Zhang et al., Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni ps of different morphologies. Chem. Eng. J. 440, 135855 (2022). https://doi.org/10.1016/j.cej.2022.135855
- J.B. Cheng, Y.Q. Wang, A.N. Zhang, H.B. Zhao, Y.Z. Wang, Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption. Carbon 183, 205–215 (2021). https://doi.org/10.1016/j.carbon.2021.07.019
- M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, X.W. He et al., Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11(3), 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0
- Z.J. Li, H. Lin, Y.X. Xie, L.B. Zhao, Y.Y. Guo et al., Monodispersed Co@C nanops anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 124, 182–192 (2022). https://doi.org/10.1016/j.jmst.2022.03.004
- D.W. Xu, S. Yang, P. Chen, Q. Yu, X.H. Xiong et al., Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis. Carbon 146, 301–312 (2019). https://doi.org/10.1016/j.carbon.2019.02.005
- M. Zhang, H.L. Ling, S.Q. Ding, Y.X. Xie, T.T. Cheng et al., Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanops towards excellent lightweight microwave absorber. Carbon 174, 248–259 (2021). https://doi.org/10.1016/j.carbon.2020.12.005
- H. Du, Q.P. Zhang, B. Zhao, F. Marken, Q.C. Gao et al., Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. J. Adv. Ceram. 10(5), 1042–1051 (2021). https://doi.org/10.1007/s40145-021-0487-9
- H.T. Guan, Q.Y. Wang, X.F. Wu, J. Pang, Z.Y. Jiang et al., Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B Eng. 207, 108562 (2021). https://doi.org/10.1016/j.compositesb.2020.108562
- W.D. Zhang, X. Zhang, Q. Zhu, Y. Zheng, L.F. Liott et al., High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber. J. Colloid Interface Sci. 586, 457–468 (2021). https://doi.org/10.1016/j.jcis.2020.10.109
- H.G. Zhamg, Z.R. Jia, A.L. Feng, Z.H. Zhou, C.H. Zhang et al., Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber. Compos. Commun. 19, 42–50 (2020). https://doi.org/10.1016/j.coco.2020.02.010
- Z.C. Wang, R.B. Wei, J.W. Gu, H. Liu, C.T. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
- M. Zhang, H. Lin, S.Q. Ding, T. Wang, Z.J. Li et al., Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber. Compos. Part B Eng. 179, 107525 (2019). https://doi.org/10.1016/j.compositesb.2019.107525
- M.L. Cheng, W.L. Ren, H.X. Li, X.G. Liu, S. Bandaru et al., Multiscale collaborative coupling of wood-derived porous carbon modified by three-dimensional conductive magnetic networks for electromagnetic interference shielding. Compos. Part B Eng. 224, 109169 (2021). https://doi.org/10.1016/j.compositesb.2021.109169
- X.M. Huang, X.H. Liu, Z.R. Jia, B.B. Wang, X.M. Wu et al., Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid Mater. 4(4), 1398–1412 (2021). https://doi.org/10.1007/s42114-021-00304-2
- H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- R. Shu, G. Zhang, C. Zhang, Y. Wu, J. Zhang, Nitrogen-doping-regulated electromagnetic wave absorption properties of ultralight three-dimensional porous reduced graphene oxide aerogels. Adv. Electron. Mater. 7(2), 2001001 (2020). https://doi.org/10.1002/aelm.202001001
- X.J. Zhu, Y.Y. Dong, Z. Xiang, L. Cai, F. Pan et al., Morphology-controllable synthesis of polyurethane-derived highly cross-linked 3D networks for multifunctional and efficient electromagnetic wave absorption. Carbon 182, 254–264 (2021). https://doi.org/10.1016/j.carbon.2021.06.028
- M.A. Aslam, W. Ding, S. Rehman, A. Hassan, Y. Bian et al., Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance. Appl. Surf. Sci. 543, 148785 (2021). https://doi.org/10.1016/j.apsusc.2020.148785
- D. Zhao, Q. Zhao, L. Feng, X.Y. Yuan, Y. Liu et al., Honey-comb carbon nanostructure derived from peach gum to yield high microwave absorption. J. Mater. Sci. Mater. Electron. 32(21), 25829–25839 (2020). https://doi.org/10.1007/s10854-020-04804-7
- Z. Xiang, C. Huang, Y.M. Song, B.W. Deng, X. Zhang et al., Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption. Carbon 167, 364–377 (2020). https://doi.org/10.1016/j.carbon.2020.06.015
- P.B. Liu, S. Gao, C. Chen, F.T. Zhou, Z.Y. Meng et al., Vacancies-engineered and heteroatoms-regulated N-doped porous carbon aerogel for ultrahigh microwave absorption. Carbon 169, 276–287 (2020). https://doi.org/10.1016/j.carbon.2020.07.063
- W.B. Deng, T.H. Li, H. Li, X. Liu, A.L. Dang et al., Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior. J. Colloid Interface Sci. 618, 129–140 (2022). https://doi.org/10.1016/j.jcis.2022.03.071
- H.L. Lv, Y.H. Guo, Z.H. Yang, T.C. Guo, H.J. Wu et al., Doping strategy to boost the electromagnetic wave attenuation ability of hollow carbon spheres at elevated temperatures. ACS Sustain. Chem. Eng. 6(2), 1539–1544 (2018). https://doi.org/10.1021/acssuschemeng.7b03857
- H.L. Zhu, Y.F. Liu, J. Chen, X. Li, L.H. Gao et al., A one-step ultrasonic spray pyrolysis approach to large-scale synthesis of silica microspheres. Silicon 12(7), 1667–1672 (2020). https://doi.org/10.1007/s12633-019-00261-y
- N. Roosz, M. Euvrard, B. Lakard, L. Viau, A straightforward procedure for the synthesis of silica@polyaniline core-shell nanops. Colloids Surf. A Physicochem. Eng. Asp. 573, 237–245 (2019). https://doi.org/10.1016/j.colsurfa.2019.04.036
- Z.J. Li, H. Lin, S.Q. Ding, H.L. Ling, T. Wang et al., Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 167, 148–159 (2020). https://doi.org/10.1016/j.carbon.2020.05.070
- X. Zhang, J. Cheng, Z. Xiang, L. Cai, L. Wang, A hierarchical Co@mesoporous C/macroporous C sheet composite derived from bimetallic MOF and oroxylum indicum for enhanced microwave absorption. Carbon 187, 477–487 (2022). https://doi.org/10.1016/j.carbon.2021.11.044
- X.C. Di, Y. Wang, Z. Lu, R.R. Cheng, L.Q. Yang et al., Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption. Carbon 179, 566–578 (2021). https://doi.org/10.1016/j.carbon.2021.04.050
- X.A. Li, W.Q. Dong, C. Zhang, W.C. Guo, C.S. Wang et al., Leaf-like Fe/C composite assembled by iron veins interpenetrated into amorphous carbon lamina for high-performance microwave absorption. Compos. Part A Appl. Sci. Manuf. 140, 106202 (2021). https://doi.org/10.1016/j.compositesa.2020.106202
- J.Q. Tao, J.T. Zhou, Z.J. Yao, Z.B. Jiao, B. Wei et al., Multi-shell hollow porous carbon nanops with excellent microwave absorption properties. Carbon 172, 542–555 (2021). https://doi.org/10.1016/j.carbon.2020.10.062
- M.F. Zhou, X.F. Xu, G.P. Wan, P.P. Mou, S.J. Teng et al., Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4521-1
- X.J. Zhu, Y.Y. Dong, F. Pan, Z. Xiang, Z.C. Liu et al., Covalent organic framework-derived hollow core-shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption. Compos. Commun. 25, 100731 (2021). https://doi.org/10.1016/j.coco.2021.100731
- M. Rouhani, F.C.N. Hong, Y.R. Jeng, In-situ thermal stability analysis of amorphous carbon films with different sp3 content. Carbon 130, 401–409 (2018). https://doi.org/10.1016/j.carbon.2018.01.034
- D. Geng, S. Zhang, Y.T. Jiang, Z.M. Jiang, M.J. Shi et al., 3D interconnected porous carbon derived from spontaneous merging of the nano-sized ZIF-8 polyhedrons for high-mass-loading supercapacitor electrodes. J. Mater. Chem. A 10(4), 2027–2034 (2022). https://doi.org/10.1039/D1TA09501C
- Y.L. Zhou, N. Wang, X.H. Qu, F.R. Huang, Y.P. Duan et al., Arc-discharge synthesis of nitrogen-doped C embedded TiCN nanocubes with tunable dielectric/magnetic properties for electromagnetic absorbing applications. Nanoscale 11(42), 19994–20005 (2019). https://doi.org/10.1039/C9NR07111C
- V. Dokmai, R. Methaapanon, V. Pavarajarn, Corrosion of amorphous alumina in deionized water under mild condition. Appl. Surf. Sci. 499, 143906 (2020). https://doi.org/10.1016/j.apsusc.2019.143906
- S. Rai, R. Bhujel, J. Biswas, U. Deka, B.P. Swain, Dark and photocurrent response of porous Si/GO-PANI and Si/rGO-PANI heterojunctions for photovoltaics applications. Mater. Today 39, 1848–1851 (2021). https://doi.org/10.1016/j.matpr.2020.07.373
- G. Veber, C.S. Diercks, C. Rogers, W.S. Perkins, J. Ciston et al., Reticular growth of graphene nanoribbon 2D covalent organic frameworks. Chem 6(5), 1125–1133 (2020). https://doi.org/10.1016/j.chempr.2020.01.022
- A. Saral, P. Sudha, S. Muthu, B.R. Rajaraman, S. Selvakumari et al., Quantum mechanical, spectroscopic vibrational analysis, NBO, HOMO-LUMO, and molecular docking studies on 2-Chloroquinoline-3-Carboxamide. Mater. Today 50, 2655–2664 (2022). https://doi.org/10.1016/j.matpr.2020.07.595
- C.Z. Wu, B. Wang, N. Wu, C. Han, X.S. Zhang et al., Molecular-scale understanding on the structure evolution from melamine diborate supramolecule to boron nitride fibers. Ceram. Int. 46(1), 1083–1090 (2020). https://doi.org/10.1016/j.ceramint.2019.09.075
- Q.Q. Li, Y.H. Zhao, X.H. Li, L. Wang, X. Li et al., MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance. Small 16(42), 2003905 (2020). https://doi.org/10.1002/smll.202003905
- T.T. Yu, J.F. Qiu, J. Liao, X.Y. Wang, W. Chen et al., Topological transformation strategy for layered double hydroxide@carbon nanofibers as highly efficient electromagnetic wave absorber. J. Alloys Compd. 867, 159046 (2021). https://doi.org/10.1016/j.jallcom.2021.159046
- L.Q. Jin, P.S. Yi, L. Wan, J.S. Hou, P. Chen et al., Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chem. Eng. J. 427, 130940 (2022). https://doi.org/10.1016/j.cej.2021.130940
- F. Wang, W.H. Gu, J.B. Chen, Y. Wu, M. Zhou et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 15(4), 3720–3728 (2022). https://doi.org/10.1007/s12274-021-3955-1
- F. Wu, Z.H. Liu, J.Q. Wang, T. Shah, P. Liu et al., Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 422, 130591 (2022). https://doi.org/10.1016/j.cej.2021.130591
- J.J. Qian, B. Du, M. Cai, C. He, X. Wang et al., Preparation of SiC nanowire/carbon fiber composites with enhanced electromagnetic wave absorption performance. Adv. Eng. Mater. 23(10), 2100434 (2021). https://doi.org/10.1002/adem.202100434
- J.H. Luo, M.N. Feng, Z.Y. Dai, C.Y. Jiang, W. Yao et al., MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4411-6
- A. Babajanyan, T. Abrahamyan, H. Haroyan, B. Minasyan, T. Yezekyan et al., Microwave response phase control of a graphite microstrip. Carbon 193, 151–156 (2022). https://doi.org/10.1016/j.carbon.2022.03.020
- C.C. Dey, S. Sadhukhan, A. Mitra, M. Dalal, A. Shaw et al., Magnetic energy morphing, capacitive concept for Ni0.3Zn0.4Ca0.3Fe2O4 nanops embedded in graphene oxide matrix, and studies of wideband tunable microwave absorption. ACS Appl. Mater. 13(39), 46967–46979 (2021). https://doi.org/10.1021/acsami.1c10241
- M. Zhang, J.H. Zhang, H. Lin, T. Wang, S.Q. Ding et al., Designable synthesis of reduced graphene oxide modified using CoFe2O4 nanospheres with tunable enhanced microwave absorption performances between the whole X and Ku bands. Compos. Part B Eng. 190, 107902 (2020). https://doi.org/10.1016/j.compositesb.2020.107902
- Q. Chang, H.S. Liang, B. Shi, X.L. Li, Y.T. Zhang et al., Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance. J. Colloid Interface Sci. 588, 336–345 (2021). https://doi.org/10.1016/j.jcis.2020.12.099
- R.Y. Tan, F.K. Zhou, P. Chen, B.S. Zhang, J.T. Zhou, PANI/FeCo@C composite microspheres with broadband microwave absorption performance. Compos. Sci. Technol. 218, 109143 (2022). https://doi.org/10.1016/j.compscitech.2021.109143
- J.W. Ge, Y. Cui, J.X. Qian, L. Liu, F.D. Meng et al., Morphology-controlled CoNi/C hybrids with bifunctions of efficient anti-corrosion and microwave absorption. J. Mater. Sci. Technol. 102, 24–35 (2022). https://doi.org/10.1016/j.jmst.2021.07.003
- F. Wu, K. Yang, Q. Li, T. Shah, M. Ahmad et al., Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption. Carbon 173, 918–931 (2021). https://doi.org/10.1016/j.carbon.2020.11.088
- R.D. Guo, D. Su, F. Chen, Y.Z. Cheng, X. Wang et al., Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption. ACS Appl. Mater. 14(2), 3084–3094 (2022). https://doi.org/10.1021/acsami.1c21272
- M. Qin, L.M. Zhang, H.J. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9(10), 2105553 (2022). https://doi.org/10.1002/advs.202105553
- M. Qin, L.M. Zhang, X.R. Zhao, H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 31(30), 2103436 (2021). https://doi.org/10.1002/adfm.202103436
- T.G. Zhu, Y. Sun, Y.J. Wang, H.N. Xing, Y. Zong et al., Controllable synthesis of MOF-derived FexNi1-x@ C composites with dielectric-magnetic synergy toward optimized impedance matching and outstanding microwave absorption. J. Mater. Sci. 56(1), 592–606 (2021). https://doi.org/10.1007/s10853-020-05307-w
- J.Q. Tao, J.T. Zhou, Z.J. Yao, Z.B. Jiao, B. Wei et al., Multi-shell hollow porous carbon nanops with excellent microwave absorption properties. Carbon 172, 542–555 (2021). https://doi.org/10.1016/j.carbon.2020.10.062
- C. Zhang, X.A. Li, Y.N. Shi, H.J. Wu, Y.F. Shen et al., Structure engineering of graphene nanocages toward high-performance microwave absorption applications. Adv. Opt. Mater. 10(2), 2101904 (2022). https://doi.org/10.1002/adom.202101904
- X.J. Zhou, J.W. Wen, Z.N. Wang, X.H. Ma, H.J. Wu, Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol. 115, 148–155 (2022). https://doi.org/10.1016/j.jmst.2021.11.029
- M. Zhang, Z.J. Li, T. Wang, S.Q. Ding, G.Y. Song et al., Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites. Chem. Eng. J. 362, 619–627 (2019). https://doi.org/10.1016/j.cej.2019.01.039
- J.L. Liu, L.M. Zhang, H.J. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm.202200544
- F. Pan, L. Cai, Y.Y. Shi, Y.Y. Dong, X.J. Zhu et al., Phase engineering reinforced multiple loss network in apple tree-like liquid metal/Ni-Ni3P/N-doped carbon fiber composites for high-performance microwave absorption. Chem. Eng. J. 435, 135009 (2022). https://doi.org/10.1016/j.cej.2022.135009
- C.B. Liang, Z.J. Gu, Y.L. Zhang, Z.L. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
- X.G. Huang, M. Qiao, X.C. Lu, Y.F. Li, Y.B. Ma et al., Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 14(11), 4006–4013 (2021). https://doi.org/10.1007/s12274-021-3327-x
- X.C. Zhang, Y.A. Shi, J. Xu, Q.Y. Ouyang, X. Zhang et al., Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption. Nano-Micro Lett. 14, 27 (2022). https://doi.org/10.1007/s40820-021-00773-6
- X. Zhang, L. Cai, Z. Xiang, W. Lu, Hollow CuS microflowers anchored porous carbon composites as lightweight and broadband microwave absorber with flame-retardant and thermal stealth functions. Carbon 184, 514–525 (2021). https://doi.org/10.1016/j.carbon.2021.08.026
References
X.J. Zeng, X.Y. Cheng, R.H. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028
X.X. Sun, M.L. Yang, S. Yang, S.S. Wang, W.L. Yin et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure. Small 15(43), 1902974 (2019). https://doi.org/10.1002/smll.201902974
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You et al., Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021). https://doi.org/10.1002/adfm.202102812
Z.R. Zi, M.Y. Kong, B.W. Yu, Y.Z. Ma, J.Y. Pan et al., Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 127, 153–163 (2022). https://doi.org/10.1016/j.jmst.2022.04.005
Z.H. Wu, Z.Z. Meng, C. Yao, Y. Deng, G.L. Zhang et al., Rice husk derived hierarchical porous carbon with lightweight and efficient microwave absorption. Mater. Chem. Phys. 275, 125246 (2022). https://doi.org/10.1016/j.matchemphys.2021.125246
D.D. Zhi, T. Li, J.Z. Li, H.S. Ren, F.B. Meng, A review of three-dimensional graphene-based aerogels: synthesis, structure and application for microwave absorption. Compos. Part B Eng. 211, 108642 (2021). https://doi.org/10.1016/j.compositesb.2021.108642
L.B. Zhao, Y.Y. Guo, Y.X. Xie, T.T. Cheng, A.L. Meng et al., Construction of SiCNWS@NiCo2O4@PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption. Appl. Surf. Sci. 592, 153324 (2022). https://doi.org/10.1016/j.apsusc.2022.153324
F.Y. Hu, X.H. Wang, S. Bao, L.M. Song, S. Zhang et al., Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni ps of different morphologies. Chem. Eng. J. 440, 135855 (2022). https://doi.org/10.1016/j.cej.2022.135855
J.B. Cheng, Y.Q. Wang, A.N. Zhang, H.B. Zhao, Y.Z. Wang, Growing MoO3-doped WO3 nanoflakes on rGO aerogel sheets towards superior microwave absorption. Carbon 183, 205–215 (2021). https://doi.org/10.1016/j.carbon.2021.07.019
M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, X.W. He et al., Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material. Nano Res. 11(3), 1500–1519 (2018). https://doi.org/10.1007/s12274-017-1767-0
Z.J. Li, H. Lin, Y.X. Xie, L.B. Zhao, Y.Y. Guo et al., Monodispersed Co@C nanops anchored on reclaimed carbon black toward high-performance electromagnetic wave absorption. J. Mater. Sci. Technol. 124, 182–192 (2022). https://doi.org/10.1016/j.jmst.2022.03.004
D.W. Xu, S. Yang, P. Chen, Q. Yu, X.H. Xiong et al., Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis. Carbon 146, 301–312 (2019). https://doi.org/10.1016/j.carbon.2019.02.005
M. Zhang, H.L. Ling, S.Q. Ding, Y.X. Xie, T.T. Cheng et al., Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanops towards excellent lightweight microwave absorber. Carbon 174, 248–259 (2021). https://doi.org/10.1016/j.carbon.2020.12.005
H. Du, Q.P. Zhang, B. Zhao, F. Marken, Q.C. Gao et al., Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. J. Adv. Ceram. 10(5), 1042–1051 (2021). https://doi.org/10.1007/s40145-021-0487-9
H.T. Guan, Q.Y. Wang, X.F. Wu, J. Pang, Z.Y. Jiang et al., Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B Eng. 207, 108562 (2021). https://doi.org/10.1016/j.compositesb.2020.108562
W.D. Zhang, X. Zhang, Q. Zhu, Y. Zheng, L.F. Liott et al., High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber. J. Colloid Interface Sci. 586, 457–468 (2021). https://doi.org/10.1016/j.jcis.2020.10.109
H.G. Zhamg, Z.R. Jia, A.L. Feng, Z.H. Zhou, C.H. Zhang et al., Enhanced microwave absorption performance of sulfur-doped hollow carbon microspheres with mesoporous shell as a broadband absorber. Compos. Commun. 19, 42–50 (2020). https://doi.org/10.1016/j.coco.2020.02.010
Z.C. Wang, R.B. Wei, J.W. Gu, H. Liu, C.T. Liu et al., Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139, 1126–1135 (2018). https://doi.org/10.1016/j.carbon.2018.08.014
M. Zhang, H. Lin, S.Q. Ding, T. Wang, Z.J. Li et al., Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber. Compos. Part B Eng. 179, 107525 (2019). https://doi.org/10.1016/j.compositesb.2019.107525
M.L. Cheng, W.L. Ren, H.X. Li, X.G. Liu, S. Bandaru et al., Multiscale collaborative coupling of wood-derived porous carbon modified by three-dimensional conductive magnetic networks for electromagnetic interference shielding. Compos. Part B Eng. 224, 109169 (2021). https://doi.org/10.1016/j.compositesb.2021.109169
X.M. Huang, X.H. Liu, Z.R. Jia, B.B. Wang, X.M. Wu et al., Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv. Compos. Hybrid Mater. 4(4), 1398–1412 (2021). https://doi.org/10.1007/s42114-021-00304-2
H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
R. Shu, G. Zhang, C. Zhang, Y. Wu, J. Zhang, Nitrogen-doping-regulated electromagnetic wave absorption properties of ultralight three-dimensional porous reduced graphene oxide aerogels. Adv. Electron. Mater. 7(2), 2001001 (2020). https://doi.org/10.1002/aelm.202001001
X.J. Zhu, Y.Y. Dong, Z. Xiang, L. Cai, F. Pan et al., Morphology-controllable synthesis of polyurethane-derived highly cross-linked 3D networks for multifunctional and efficient electromagnetic wave absorption. Carbon 182, 254–264 (2021). https://doi.org/10.1016/j.carbon.2021.06.028
M.A. Aslam, W. Ding, S. Rehman, A. Hassan, Y. Bian et al., Low cost 3D bio-carbon foams obtained from wheat straw with broadened bandwidth electromagnetic wave absorption performance. Appl. Surf. Sci. 543, 148785 (2021). https://doi.org/10.1016/j.apsusc.2020.148785
D. Zhao, Q. Zhao, L. Feng, X.Y. Yuan, Y. Liu et al., Honey-comb carbon nanostructure derived from peach gum to yield high microwave absorption. J. Mater. Sci. Mater. Electron. 32(21), 25829–25839 (2020). https://doi.org/10.1007/s10854-020-04804-7
Z. Xiang, C. Huang, Y.M. Song, B.W. Deng, X. Zhang et al., Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption. Carbon 167, 364–377 (2020). https://doi.org/10.1016/j.carbon.2020.06.015
P.B. Liu, S. Gao, C. Chen, F.T. Zhou, Z.Y. Meng et al., Vacancies-engineered and heteroatoms-regulated N-doped porous carbon aerogel for ultrahigh microwave absorption. Carbon 169, 276–287 (2020). https://doi.org/10.1016/j.carbon.2020.07.063
W.B. Deng, T.H. Li, H. Li, X. Liu, A.L. Dang et al., Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior. J. Colloid Interface Sci. 618, 129–140 (2022). https://doi.org/10.1016/j.jcis.2022.03.071
H.L. Lv, Y.H. Guo, Z.H. Yang, T.C. Guo, H.J. Wu et al., Doping strategy to boost the electromagnetic wave attenuation ability of hollow carbon spheres at elevated temperatures. ACS Sustain. Chem. Eng. 6(2), 1539–1544 (2018). https://doi.org/10.1021/acssuschemeng.7b03857
H.L. Zhu, Y.F. Liu, J. Chen, X. Li, L.H. Gao et al., A one-step ultrasonic spray pyrolysis approach to large-scale synthesis of silica microspheres. Silicon 12(7), 1667–1672 (2020). https://doi.org/10.1007/s12633-019-00261-y
N. Roosz, M. Euvrard, B. Lakard, L. Viau, A straightforward procedure for the synthesis of silica@polyaniline core-shell nanops. Colloids Surf. A Physicochem. Eng. Asp. 573, 237–245 (2019). https://doi.org/10.1016/j.colsurfa.2019.04.036
Z.J. Li, H. Lin, S.Q. Ding, H.L. Ling, T. Wang et al., Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 167, 148–159 (2020). https://doi.org/10.1016/j.carbon.2020.05.070
X. Zhang, J. Cheng, Z. Xiang, L. Cai, L. Wang, A hierarchical Co@mesoporous C/macroporous C sheet composite derived from bimetallic MOF and oroxylum indicum for enhanced microwave absorption. Carbon 187, 477–487 (2022). https://doi.org/10.1016/j.carbon.2021.11.044
X.C. Di, Y. Wang, Z. Lu, R.R. Cheng, L.Q. Yang et al., Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption. Carbon 179, 566–578 (2021). https://doi.org/10.1016/j.carbon.2021.04.050
X.A. Li, W.Q. Dong, C. Zhang, W.C. Guo, C.S. Wang et al., Leaf-like Fe/C composite assembled by iron veins interpenetrated into amorphous carbon lamina for high-performance microwave absorption. Compos. Part A Appl. Sci. Manuf. 140, 106202 (2021). https://doi.org/10.1016/j.compositesa.2020.106202
J.Q. Tao, J.T. Zhou, Z.J. Yao, Z.B. Jiao, B. Wei et al., Multi-shell hollow porous carbon nanops with excellent microwave absorption properties. Carbon 172, 542–555 (2021). https://doi.org/10.1016/j.carbon.2020.10.062
M.F. Zhou, X.F. Xu, G.P. Wan, P.P. Mou, S.J. Teng et al., Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4521-1
X.J. Zhu, Y.Y. Dong, F. Pan, Z. Xiang, Z.C. Liu et al., Covalent organic framework-derived hollow core-shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption. Compos. Commun. 25, 100731 (2021). https://doi.org/10.1016/j.coco.2021.100731
M. Rouhani, F.C.N. Hong, Y.R. Jeng, In-situ thermal stability analysis of amorphous carbon films with different sp3 content. Carbon 130, 401–409 (2018). https://doi.org/10.1016/j.carbon.2018.01.034
D. Geng, S. Zhang, Y.T. Jiang, Z.M. Jiang, M.J. Shi et al., 3D interconnected porous carbon derived from spontaneous merging of the nano-sized ZIF-8 polyhedrons for high-mass-loading supercapacitor electrodes. J. Mater. Chem. A 10(4), 2027–2034 (2022). https://doi.org/10.1039/D1TA09501C
Y.L. Zhou, N. Wang, X.H. Qu, F.R. Huang, Y.P. Duan et al., Arc-discharge synthesis of nitrogen-doped C embedded TiCN nanocubes with tunable dielectric/magnetic properties for electromagnetic absorbing applications. Nanoscale 11(42), 19994–20005 (2019). https://doi.org/10.1039/C9NR07111C
V. Dokmai, R. Methaapanon, V. Pavarajarn, Corrosion of amorphous alumina in deionized water under mild condition. Appl. Surf. Sci. 499, 143906 (2020). https://doi.org/10.1016/j.apsusc.2019.143906
S. Rai, R. Bhujel, J. Biswas, U. Deka, B.P. Swain, Dark and photocurrent response of porous Si/GO-PANI and Si/rGO-PANI heterojunctions for photovoltaics applications. Mater. Today 39, 1848–1851 (2021). https://doi.org/10.1016/j.matpr.2020.07.373
G. Veber, C.S. Diercks, C. Rogers, W.S. Perkins, J. Ciston et al., Reticular growth of graphene nanoribbon 2D covalent organic frameworks. Chem 6(5), 1125–1133 (2020). https://doi.org/10.1016/j.chempr.2020.01.022
A. Saral, P. Sudha, S. Muthu, B.R. Rajaraman, S. Selvakumari et al., Quantum mechanical, spectroscopic vibrational analysis, NBO, HOMO-LUMO, and molecular docking studies on 2-Chloroquinoline-3-Carboxamide. Mater. Today 50, 2655–2664 (2022). https://doi.org/10.1016/j.matpr.2020.07.595
C.Z. Wu, B. Wang, N. Wu, C. Han, X.S. Zhang et al., Molecular-scale understanding on the structure evolution from melamine diborate supramolecule to boron nitride fibers. Ceram. Int. 46(1), 1083–1090 (2020). https://doi.org/10.1016/j.ceramint.2019.09.075
Q.Q. Li, Y.H. Zhao, X.H. Li, L. Wang, X. Li et al., MOF induces 2D GO to assemble into 3D accordion-like composites for tunable and optimized microwave absorption performance. Small 16(42), 2003905 (2020). https://doi.org/10.1002/smll.202003905
T.T. Yu, J.F. Qiu, J. Liao, X.Y. Wang, W. Chen et al., Topological transformation strategy for layered double hydroxide@carbon nanofibers as highly efficient electromagnetic wave absorber. J. Alloys Compd. 867, 159046 (2021). https://doi.org/10.1016/j.jallcom.2021.159046
L.Q. Jin, P.S. Yi, L. Wan, J.S. Hou, P. Chen et al., Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chem. Eng. J. 427, 130940 (2022). https://doi.org/10.1016/j.cej.2021.130940
F. Wang, W.H. Gu, J.B. Chen, Y. Wu, M. Zhou et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 15(4), 3720–3728 (2022). https://doi.org/10.1007/s12274-021-3955-1
F. Wu, Z.H. Liu, J.Q. Wang, T. Shah, P. Liu et al., Template-free self-assembly of MXene and CoNi-bimetal MOF into intertwined one-dimensional heterostructure and its microwave absorbing properties. Chem. Eng. J. 422, 130591 (2022). https://doi.org/10.1016/j.cej.2021.130591
J.J. Qian, B. Du, M. Cai, C. He, X. Wang et al., Preparation of SiC nanowire/carbon fiber composites with enhanced electromagnetic wave absorption performance. Adv. Eng. Mater. 23(10), 2100434 (2021). https://doi.org/10.1002/adem.202100434
J.H. Luo, M.N. Feng, Z.Y. Dai, C.Y. Jiang, W. Yao et al., MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4411-6
A. Babajanyan, T. Abrahamyan, H. Haroyan, B. Minasyan, T. Yezekyan et al., Microwave response phase control of a graphite microstrip. Carbon 193, 151–156 (2022). https://doi.org/10.1016/j.carbon.2022.03.020
C.C. Dey, S. Sadhukhan, A. Mitra, M. Dalal, A. Shaw et al., Magnetic energy morphing, capacitive concept for Ni0.3Zn0.4Ca0.3Fe2O4 nanops embedded in graphene oxide matrix, and studies of wideband tunable microwave absorption. ACS Appl. Mater. 13(39), 46967–46979 (2021). https://doi.org/10.1021/acsami.1c10241
M. Zhang, J.H. Zhang, H. Lin, T. Wang, S.Q. Ding et al., Designable synthesis of reduced graphene oxide modified using CoFe2O4 nanospheres with tunable enhanced microwave absorption performances between the whole X and Ku bands. Compos. Part B Eng. 190, 107902 (2020). https://doi.org/10.1016/j.compositesb.2020.107902
Q. Chang, H.S. Liang, B. Shi, X.L. Li, Y.T. Zhang et al., Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance. J. Colloid Interface Sci. 588, 336–345 (2021). https://doi.org/10.1016/j.jcis.2020.12.099
R.Y. Tan, F.K. Zhou, P. Chen, B.S. Zhang, J.T. Zhou, PANI/FeCo@C composite microspheres with broadband microwave absorption performance. Compos. Sci. Technol. 218, 109143 (2022). https://doi.org/10.1016/j.compscitech.2021.109143
J.W. Ge, Y. Cui, J.X. Qian, L. Liu, F.D. Meng et al., Morphology-controlled CoNi/C hybrids with bifunctions of efficient anti-corrosion and microwave absorption. J. Mater. Sci. Technol. 102, 24–35 (2022). https://doi.org/10.1016/j.jmst.2021.07.003
F. Wu, K. Yang, Q. Li, T. Shah, M. Ahmad et al., Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption. Carbon 173, 918–931 (2021). https://doi.org/10.1016/j.carbon.2020.11.088
R.D. Guo, D. Su, F. Chen, Y.Z. Cheng, X. Wang et al., Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption. ACS Appl. Mater. 14(2), 3084–3094 (2022). https://doi.org/10.1021/acsami.1c21272
M. Qin, L.M. Zhang, H.J. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 9(10), 2105553 (2022). https://doi.org/10.1002/advs.202105553
M. Qin, L.M. Zhang, X.R. Zhao, H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber. Adv. Funct. Mater. 31(30), 2103436 (2021). https://doi.org/10.1002/adfm.202103436
T.G. Zhu, Y. Sun, Y.J. Wang, H.N. Xing, Y. Zong et al., Controllable synthesis of MOF-derived FexNi1-x@ C composites with dielectric-magnetic synergy toward optimized impedance matching and outstanding microwave absorption. J. Mater. Sci. 56(1), 592–606 (2021). https://doi.org/10.1007/s10853-020-05307-w
J.Q. Tao, J.T. Zhou, Z.J. Yao, Z.B. Jiao, B. Wei et al., Multi-shell hollow porous carbon nanops with excellent microwave absorption properties. Carbon 172, 542–555 (2021). https://doi.org/10.1016/j.carbon.2020.10.062
C. Zhang, X.A. Li, Y.N. Shi, H.J. Wu, Y.F. Shen et al., Structure engineering of graphene nanocages toward high-performance microwave absorption applications. Adv. Opt. Mater. 10(2), 2101904 (2022). https://doi.org/10.1002/adom.202101904
X.J. Zhou, J.W. Wen, Z.N. Wang, X.H. Ma, H.J. Wu, Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol. 115, 148–155 (2022). https://doi.org/10.1016/j.jmst.2021.11.029
M. Zhang, Z.J. Li, T. Wang, S.Q. Ding, G.Y. Song et al., Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites. Chem. Eng. J. 362, 619–627 (2019). https://doi.org/10.1016/j.cej.2019.01.039
J.L. Liu, L.M. Zhang, H.J. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm.202200544
F. Pan, L. Cai, Y.Y. Shi, Y.Y. Dong, X.J. Zhu et al., Phase engineering reinforced multiple loss network in apple tree-like liquid metal/Ni-Ni3P/N-doped carbon fiber composites for high-performance microwave absorption. Chem. Eng. J. 435, 135009 (2022). https://doi.org/10.1016/j.cej.2022.135009
C.B. Liang, Z.J. Gu, Y.L. Zhang, Z.L. Ma, H. Qiu et al., Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett. 13, 181 (2021). https://doi.org/10.1007/s40820-021-00707-2
X.G. Huang, M. Qiao, X.C. Lu, Y.F. Li, Y.B. Ma et al., Evolution of dielectric loss-dominated electromagnetic patterns in magnetic absorbers for enhanced microwave absorption performances. Nano Res. 14(11), 4006–4013 (2021). https://doi.org/10.1007/s12274-021-3327-x
X.C. Zhang, Y.A. Shi, J. Xu, Q.Y. Ouyang, X. Zhang et al., Identification of the intrinsic dielectric properties of metal single atoms for electromagnetic wave absorption. Nano-Micro Lett. 14, 27 (2022). https://doi.org/10.1007/s40820-021-00773-6
X. Zhang, L. Cai, Z. Xiang, W. Lu, Hollow CuS microflowers anchored porous carbon composites as lightweight and broadband microwave absorber with flame-retardant and thermal stealth functions. Carbon 184, 514–525 (2021). https://doi.org/10.1016/j.carbon.2021.08.026