Advances in Metal Halide Perovskite Scintillators for X-Ray Detection
Corresponding Author: Xiaoping Ouyang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 275
Abstract
The relentless pursuit of advanced X-ray detection technologies has been significantly bolstered by the emergence of metal halides perovskites (MHPs) and their derivatives, which possess remarkable light yield and X-ray sensitivity. This comprehensive review delves into cutting-edge approaches for optimizing MHP scintillators performances by enhancing intrinsic physical properties and employing engineering radioluminescent (RL) light strategies, underscoring their potential for developing materials with superior high-resolution X-ray detection and imaging capabilities. We initially explore into recent research focused on strategies to effectively engineer the intrinsic physical properties of MHP scintillators, including light yield and response times. Additionally, we explore innovative engineering strategies involving stacked structures, waveguide effects, chiral circularly polarized luminescence, increased transparency, and the fabrication of flexile MHP scintillators, all of which effectively manage the RL light to achieve high-resolution and high-contrast X-ray imaging. Finally, we provide a roadmap for advancing next-generation MHP scintillators, highlighting their transformative potential in high-performance X-ray detection systems.
Highlights:
1 The review highlights recent advancements in enhancing the intrinsic physical properties of metal halide perovskite scintillators, such as improving light yield and response times, to improve their X-ray detection performance.
2 It discusses innovative engineering strategies to effectively optimize radioluminescent light management for high-resolution X-ray imaging.
3 The problems encountered in the application of metal halides perovskites materials for X-ray detection are summarized, and the potential development direction in the future is prospected.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Ou, X. Chen, X. Xu, L. Xie, X. Chen et al., Recent development in X-ray imaging technology: future and challenges. Research 2021, 9892152 (2021). https://doi.org/10.34133/2021/9892152
- Y. Wu, J. Feng, Z. Yang, Y. Liu, S. Liu, Halide perovskite: a promising candidate for next-generation X-ray detectors. Adv. Sci. 10(1), 2205536 (2023). https://doi.org/10.1002/advs.202205536
- J. Liu, B. Shabbir, C. Wang, T. Wan, Q. Ou et al., Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 31(30), e1901644 (2019). https://doi.org/10.1002/adma.201901644
- B. Yang, L. Yin, G. Niu, J.-H. Yuan, K.-H. Xue et al., Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Adv. Mater. 31(44), 1904711 (2019). https://doi.org/10.1002/adma.201904711
- Q. Zhou, W. Li, J. Xiao, A. Li, X. Han, Low-dimensional metal halide for high performance scintillators. Adv. Funct. Mater. 34(38), 2402902 (2024). https://doi.org/10.1002/adfm.202402902
- Y.C. Kim, K.H. Kim, D.Y. Son, D.N. Jeong, J.Y. Seo et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017). https://doi.org/10.1038/nature24032
- K. Dong, T. Jiang, G. Chen, H. Cui, S. Wang et al., Light management in 2D perovskite toward high-performance optoelectronic applications. Nano-Micro Lett. 17(1), 131 (2025). https://doi.org/10.1007/s40820-024-01643-7
- S. Tsuda, K. Saito, Spectrum–dose conversion operator of NaI(Tl) and CsI(Tl) scintillation detectors for air dose rate measurement in contaminated environments. J. Environ. Radioact. 166, 419–426 (2017). https://doi.org/10.1016/j.jenvrad.2016.02.008
- V.V. Nagarkar, T.K. Gupta, S. Miller, Y. Klugarman, M.R. Squillante et al., Structured CsI(Tl) scintillators for X-ray imaging applications. In 1997 IEEE nuclear science symposium conference record. November 9-15, 1997, Albuquerque, NM, USA. IEEE, (1997), 226–230
- C. Greskovich, S. Duclos, Ceramic scintillators. Annu. Rev. Mater. Sci. 27, 69–88 (1997). https://doi.org/10.1146/annurev.matsci.27.1.69
- C. Michail, V. Koukou, N. Martini, G. Saatsakis, N. Kalyvas et al., Luminescence efficiency of cadmium tungstate (CdWO4) single crystal for medical imaging applications. Crystals 10(6), 429 (2020). https://doi.org/10.3390/cryst10060429
- C. Michail, I. Valais, I. Seferis, N. Kalyvas, S. David et al., Measurement of the luminescence properties of Gd2O2S: Pr, Ce, F powder scintillators under X-ray radiation. Radiat. Meas. 70, 59–64 (2014). https://doi.org/10.1016/j.radmeas.2014.09.008
- S. Blahuta, B. Viana, A. Bessière, E. Mattmann, B. LaCourse, Luminescence quenching processes in Gd2O2S: Pr3+, Ce3+ scintillating ceramics. Opt. Mater. 33(10), 1514–1518 (2011). https://doi.org/10.1016/j.optmat.2011.02.040
- G. Borghi, B.J. Peet, V. Tabacchini, D.R. Schaart, A 32 mm × 32 mm × 22 mm monolithic LYSO: Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI. Phys. Med. Biol. 61(13), 4929 (2016). https://doi.org/10.1088/0031-9155/61/13/4929
- D.N. ter Weele, D.R. Schaart, P. Dorenbos, Comparative study of Co-doped and non Co-doped LSO: Ce and LYSO: Ce scintillators for TOF-PET. IEEE Trans. Nucl. Sci. 62(3), 727–731 (2015). https://doi.org/10.1109/TNS.2015.2431295
- H. Wu, Y. Ge, G. Niu, J. Tang, Metal halide perovskites for X-ray detection and imaging. Matter 4(1), 144–163 (2021). https://doi.org/10.1016/j.matt.2020.11.015
- S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter et al., Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 9(7), 444–449 (2015). https://doi.org/10.1038/nphoton.2015.82
- K. Shibuya, M. Koshimizu, Y. Takeoka, K. Asai, Scintillation properties of C6H13NH3)2PbI4: exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 20 MeV protons. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. At. 194(2), 207–212 (2002). https://doi.org/10.1016/S0168-583X(02)00671-7
- M.D. Birowosuto, D. Cortecchia, W. Drozdowski, K. Brylew, W. Lachmanski et al., X-ray scintillation in lead halide perovskite crystals. Sci. Rep. 6, 37254 (2016). https://doi.org/10.1038/srep37254
- F. Zhou, Z. Li, W. Lan, Q. Wang, L. Ding et al., Halide perovskite, a potential scintillator for X-ray detection. Small Meth. 4(10), 2000506 (2020). https://doi.org/10.1002/smtd.202000506
- J.H. Heo, D.H. Shin, J.K. Park, D.H. Kim, S.J. Lee et al., High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801743
- H. Zhang, Z. Yang, M. Zhou, L. Zhao, T. Jiang et al., Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv. Mater. 33(40), 2102529 (2021). https://doi.org/10.1002/adma.202102529
- H. Li, Y. Zhang, M. Zhou, H. Ding, L. Zhao et al., A solar-blind perovskite scintillator realizing portable X-ray imaging. ACS Energy Lett. 7(9), 2876–2883 (2022). https://doi.org/10.1021/acsenergylett.2c01440
- G.E. Eperon, K.H. Stone, L.E. Mundt, T.H. Schloemer, S.N. Habisreutinger et al., The role of dimethylammonium in bandgap modulation for stable halide perovskites. ACS Energy Lett. 5(6), 1856–1864 (2020). https://doi.org/10.1021/acsenergylett.0c00872
- E. Oksenberg, A. Merdasa, L. Houben, I. Kaplan-Ashiri, A. Rothman et al., Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowires. Nat. Commun. 11(1), 489 (2020). https://doi.org/10.1038/s41467-020-14365-2
- K. Kim, H. Kim, J. Park, Bandgap modulation of Cs2AgInX6 (X = Cl and Br) double perovskite nano- and microcrystals via Cu2+ doping. ACS Omega 6(41), 26952–26958 (2021). https://doi.org/10.1021/acsomega.1c03290
- F. Ruf, P. Rietz, M.F. Aygüler, I. Kelz, P. Docampo et al., The bandgap as a moving target: reversible bandgap instabilities in multiple-cation mixed-halide perovskite solar cells. ACS Energy Lett. 3(12), 2995–3001 (2018). https://doi.org/10.1021/acsenergylett.8b01857
- Z. Wang, J. Qiu, X. Wang, Z. Zhang, Y. Chen et al., Two-dimensional light-emitting materials: preparation, properties and applications. Chem. Soc. Rev. 47(16), 6128–6174 (2018). https://doi.org/10.1039/c8cs00332g
- A. Xie, F. Maddalena, M.E. Witkowski, M. Makowski, B. Mahler et al., Library of two-dimensional hybrid lead halide perovskite scintillator crystals. Chem. Mater. 32(19), 8530–8539 (2020). https://doi.org/10.1021/acs.chemmater.0c02789
- A. Wibowo, M.A.K. Sheikh, L.J. Diguna, M.B. Ananda, M.A. Marsudi et al., Development and challenges in perovskite scintillators for high-resolution imaging and timing applications. Commun. Mater. 4, 21 (2023). https://doi.org/10.1038/s43246-023-00348-5
- M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski, S.O. Flyckt, Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 44(3), 1052–1061 (1997). https://doi.org/10.1109/23.603803
- S. Liu, F. Jiang, E. Song, P. Li, W. Liu et al., Controllable preparation and enhanced luminescence of Tb3+-activated transparent gadolinium-rich silicate glass ceramic scintillator. Ceram. Int. (2025). https://doi.org/10.1016/j.ceramint.2025.01.413
- T. He, Y. Zhou, X. Wang, J. Yin, L. Gutiérrez-Arzaluz et al., High-performance copper-doped perovskite-related silver halide X-ray imaging scintillator. ACS Energy Lett. 7(8), 2753–2760 (2022). https://doi.org/10.1021/acsenergylett.2c01484
- E. Auffray, G. Dosovitskiy, A. Fedorov, I. Guz, M. Korjik et al., Irradiation effects on Gd3Al2Ga3O12 scintillators prospective for application in harsh irradiation environments. Radiat. Phys. Chem. 164, 108365 (2019). https://doi.org/10.1016/j.radphyschem.2019.108365
- W. Yan, B. Duan, Z. Zhu, Y. Song, G. Song et al., Organic–inorganic hybrid perovskite scintillator for high-resolution X-ray imaging. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. At. 546, 165159 (2024). https://doi.org/10.1016/j.nimb.2023.165159
- V. Dormenev, K.T. Brinkmann, D. Kazlou, M. Moritz, R.W. Novotny et al., Scintillation properties of garnets and oxyorthosilicates with different dopants. IEEE Trans. Nucl. Sci. 70(7), 1392–1397 (2023). https://doi.org/10.1109/TNS.2023.3275642
- F. Maddalena, A. Xie, X.Y. Chin, R. Begum, M.E. Witkowski et al., Deterministic light yield, fast scintillation, and microcolumn structures in lead halide perovskite nanocrystals. J. Phys. Chem. C 125(25), 14082–14088 (2021). https://doi.org/10.1021/acs.jpcc.1c03392
- W. Chen, M. Zhou, Y. Liu, X. Yu, C. Pi et al., All-inorganic perovskite polymer–ceramics for flexible and refreshable X-ray imaging. Adv. Funct. Mater. 32(2), 2107424 (2022). https://doi.org/10.1002/adfm.202107424
- Y. Li, L. Chen, B. Liu, P. Jin, R. Gao et al., Scintillation performance of two-dimensional perovskite (BA)2PbBr4 microcrystals. J. Mater. Chem. C 9(47), 17124–17128 (2021). https://doi.org/10.1039/D1TC04072C
- W. Shao, X. Wang, Z. Zhang, J. Huang, Z. Han et al., Highly efficient and flexible scintillation screen based on manganese (II) activated 2D perovskite for planar and nonplanar high-resolution X-ray imaging. Adv. Opt. Mater. 10(6), 2102282 (2022). https://doi.org/10.1002/adom.202102282
- N. Li, Z. Xu, Y. Xiao, Y. Liu, Z. Yang et al., Flexible, high scintillation yield Cu3Cu2I5 film made of ball-milled powder for high spatial resolution X-ray imaging. Adv. Opt. Mater. 10(5), 2102232 (2022). https://doi.org/10.1002/adom.202102232
- J.J. van Blaaderen, L.A. van den Brekel, K.W. Krämer, P. Dorenbos, Scintillation and optical characterization of CsCu2I3 single crystals from 10 to 400 K. Chem. Mater. 35(22), 9623–9631 (2023). https://doi.org/10.1021/acs.chemmater.3c01810
- P. Ran, X. Chen, Z. Chen, Y. Su, J. Hui et al., Metal halide CsCu2I3 flexible scintillator with high photodiode spectral compatibility for X-ray cone beam computed tomography (CBCT) imaging. Laser Photonics Rev. 18(1), 2300743 (2024). https://doi.org/10.1002/lpor.202300743
- R. Zhang, H. Xie, W. Liu, K. Zhan, H. Liu et al., High-efficiency narrow-band green-emitting manganese(II) halide for multifunctional applications. ACS Appl. Mater. Interfaces 15(40), 47238–47249 (2023). https://doi.org/10.1021/acsami.3c09518
- Z. Gong, J. Zhang, X. Deng, M.-P. Ren, W.-Q. Wang et al., Near-unity broadband emissive hybrid manganese bromides as highly-efficient radiation scintillators. Aggregate 5(5), e574 (2024). https://doi.org/10.1002/agt2.574
- B. Su, J. Jin, K. Han, Z. Xia, Ceramic wafer scintillation screen by utilizing near-unity blue-emitting lead-free metal halide (C8H20N)2Cu2Br4. Adv. Funct. Mater. 33(5), 2210735 (2023). https://doi.org/10.1002/adfm.202210735
- M. Zhou, H. Jiang, T. Hou, S. Hou, J. Li et al., Inch-size and thickness-adjustable hybrid manganese halide single-crystalline films for high resolution X-ray imaging. Chem. Eng. J. 490, 151823 (2024). https://doi.org/10.1016/j.cej.2024.151823
- F. Zhang, Y. Zhou, Z. Chen, M. Wang, Z. Ma et al., Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Adv. Mater. 34(43), 2204801 (2022). https://doi.org/10.1002/adma.202204801
- H. Wu, Q. Wang, A. Zhang, G. Niu, M. Nikl et al., One-dimensional scintillator film with benign grain boundaries for high-resolution and fast X-ray imaging. Sci. Adv. 9(30), eadh1789 (2023). https://doi.org/10.1126/sciadv.adh1789
- Y. Zhou, J. Chen, O.M. Bakr, O.F. Mohammed, Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett. 6(2), 739–768 (2021). https://doi.org/10.1021/acsenergylett.0c02430
- A. Jana, S. Cho, S.A. Patil, A. Meena, Y. Jo et al., Perovskite: Scintillators, direct detectors, and X-ray imagers. Mater. Today 55, 110–136 (2022). https://doi.org/10.1016/j.mattod.2022.04.009
- C. Thalhammer, Improving the light yield and timing resolution of scintillator-based detectors for positron emission tomography. IEEE Trans. Neural Networks Learn. Syst. (2015). https://doi.org/10.1109/tnnls.2023.3323131
- M. Nikl, A. Yoshikawa, Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater. 3(4), 463–481 (2015). https://doi.org/10.1002/adom.201400571
- Y. Wang, M. Li, Z. Chai, Y. Wang, S. Wang, Perovskite scintillators for improved X-ray detection and imaging. Angew. Chem. 135(38), e202304638 (2023). https://doi.org/10.1002/ange.202304638
- A. Anand, M.L. Zaffalon, A. Erroi, F. Cova, F. Carulli et al., Advances in perovskite nanocrystals and nanocomposites for scintillation applications. ACS Energy Lett. 9(3), 1261–1287 (2024). https://doi.org/10.1021/acsenergylett.3c02763
- J. Ye, D. Gaur, C. Mi, Z. Chen, I.L. Fernández et al., Strongly-confined colloidal lead-halide perovskite quantum dots: from synthesis to applications. Chem. Soc. Rev. 53(16), 8095–8122 (2024). https://doi.org/10.1039/D4CS00077C
- W. Chen, Y. Liu, Z. Yuan, Z. Xu, Z. Zhang et al., X-ray radioluminescence effect of all-inorganic halide perovskite CsPbBr3 quantum dots. J. Radioanal. Nucl. Chem. 314(3), 2327–2337 (2017). https://doi.org/10.1007/s10967-017-5562-x
- Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88–93 (2018). https://doi.org/10.1038/s41586-018-0451-1
- Y. Zhang, R. Sun, X. Ou, K. Fu, Q. Chen et al., Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 13(2), 2520–2525 (2019). https://doi.org/10.1021/acsnano.8b09484
- W. Ma, T. Jiang, Z. Yang, H. Zhang, Y. Su et al., Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering. Adv. Sci. 8(15), e2003728 (2021). https://doi.org/10.1002/advs.202003728
- H. Zhang, Z. Yang, M. Zhou, L. Zhao, T. Jiang, H. Yang, Y. Xue, J. Qiu, Reproducible X‐ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv. Mater. (2021). https://doi.org/10.1002/adma.202102529
- Y. Li, Y. Lei, H. Wang, Z. Jin, Two-dimensional metal halides for X-ray detection applications. Nano-Micro Lett. 15(1), 128 (2023). https://doi.org/10.1007/s40820-023-01118-1
- B. Jia, D. Chu, N. Li, Y. Zhang, Z. Yang et al., Airflow-controlled crystallization for a multi-inch 2D halide perovskite single-crystal scintillator for fast high-resolution X-ray imaging. ACS Energy Lett. 8(1), 590–599 (2023). https://doi.org/10.1021/acsenergylett.2c02196
- M. Xia, Z. Xie, H. Wang, T. Jin, L. Liu et al., Sub-nanosecond 2D perovskite scintillators by dielectric engineering. Adv. Mater. 35(18), e2211769 (2023). https://doi.org/10.1002/adma.202211769
- M.A. Kuddus Sheikh, F. Maddalena, D. Kowal, M. Makowski, S. Mahato et al., Effect of dual-organic cations on the structure and properties of 2D hybrid perovskites as scintillators. ACS Appl. Mater. Interfaces 16(19), 25529–25539 (2024). https://doi.org/10.1021/acsami.4c01741
- W. Shao, Q. Li, T. He, Y. Zhang, M. Niu et al., Synergy of organic and inorganic sites in 2D perovskite for fast neutron and X-ray imaging. Adv. Funct. Mater. 33(40), 2301767 (2023). https://doi.org/10.1002/adfm.202301767
- W. Zhu, W. Ma, Y. Su, Z. Chen, X. Chen et al., Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light Sci. Appl. 9, 112 (2020). https://doi.org/10.1038/s41377-020-00353-0
- Y.-H. Liu, N.-N. Wang, M.-P. Ren, X. Yan, Y.-F. Wu et al., Zero-dimensional hybrid cuprous halide of [BAPMA] Cu2Br5 as a highly efficient light emitter and an X-ray scintillator. ACS Appl. Mater. Interfaces 15(16), 20219–20227 (2023). https://doi.org/10.1021/acsami.3c00206
- F. Zhang, Y. Zhou, Z. Chen, X. Niu, H. Wang et al., Large-area X-ray scintillator screen based on cesium hafnium chloride microcrystals films with high sensitivity and stability. Laser Photonics Rev. 17(5), 2200848 (2023). https://doi.org/10.1002/lpor.202200848
- L. Zi, J. Song, N. Wang, T. Wang, W. Li et al., X-ray quantum cutting scintillator based on CsPbClxBr3–x: Yb3+ single crystals. Laser Photonics Rev. 17(5), 2200852 (2023). https://doi.org/10.1002/lpor.202200852
- D.-Y. Li, Y.-B. Shang, Q. Liu, H.-W. Zhang, X.-Y. Zhang et al., 0D hybrid indium halide as a highly efficient X-ray scintillation and ultra-sensitive fluorescent probe. Mater. Horiz. 10(11), 5004–5015 (2023). https://doi.org/10.1039/D3MH00536D
- S. Wang, W. Huang, X. Liu, S. Wang, H. Ye et al., Ruddlesden–popper perovskite nanocrystals stabilized in mesoporous silica with efficient carrier dynamics for flexible X-ray scintillator. Adv. Funct. Mater. 33(3), 2210765 (2023). https://doi.org/10.1002/adfm.202210765
- P. Ran, L. Yang, T. Jiang, X. Xu, J. Hui et al., Multispectral large-panel X-ray imaging enabled by stacked metal halide scintillators. Adv. Mater. 34(42), e2205458 (2022). https://doi.org/10.1002/adma.202205458
- X. Wang, X. Zhang, S. Yan, H. Liu, Y. Zhang, Nearly-unity quantum yield and 12-hour afterglow from a transparent perovskite of Cs2NaScCl6: Tb. Angew. Chem. Int. Ed. 134(40), e202210853 (2022). https://doi.org/10.1002/ange.202210853
- Z. Zhang, Q. Han, J.W. Lau, B. Xing, Lanthanide-doped upconversion nanops meet the needs for cutting-edge bioapplications: recent progress and perspectives. ACS Mater. Lett. 2(11), 1516–1531 (2020). https://doi.org/10.1021/acsmaterialslett.0c00377
- L. Han, B. Sun, C. Guo, G. Peng, H. Chen et al., Photophysics in zero-dimensional potassium-doped cesium copper chloride Cs3Cu2Cl5 nanosheets and its application for high-performance flexible X-Ray detection. Adv. Opt. Mater. 10(6), 2102453 (2022). https://doi.org/10.1002/adom.202102453
- W. Chen, T. Wang, T. Wang, J. Yu, S. Yao et al., Customizable scintillator of Cs3Cu2I5: 2% In+ @Paper for large-area X-ray imaging. Adv. Sci. 10(34), e2304957 (2023). https://doi.org/10.1002/advs.202304957
- V. Naresh, P.-R. Cha, N. Lee, Cs2NaGdCl6: Tb3+─A highly luminescent rare-earth double perovskite scintillator for low-dose X-ray detection and imaging. ACS Appl. Mater. Interfaces 16(15), 19068–19080 (2024). https://doi.org/10.1021/acsami.3c17301
- W. Li, L. Yuan, H. Wu, Y. Jin, Tb3+-doped a zero-dimensional all-inorganic metal halide perovskite scintillator Cs2ScCl5·H2O for X-ray imaging. Opt. Mater. 157, 116130 (2024). https://doi.org/10.1016/j.optmat.2024.116130
- J. Shi, Z. Wang, L. Xu, J. Wang, Z. Da et al., In situ growth of lead-free double perovskite micron sheets in polymethyl methacrylate for X-ray imaging. Adv. Opt. Mater. 12(22), 2400691 (2024). https://doi.org/10.1002/adom.202400691
- Y.-Y. Wang, W.-T. Song, X.-R. Yao, X.-Y. Chen, M.-T. Cheng et al., A new polar lead-free hybrid halide X-ray scintillator. Adv. Opt. Mater. 12(22), 2400190 (2024). https://doi.org/10.1002/adom.202400190
- T. Feng, Z.-A. Zhou, Y.-N. An, L. Chen, Y. Fu et al., Large-area transparent antimony-based perovskite glass for high-resolution X-ray imaging. ACS Nano 18(26), 16715–16725 (2024). https://doi.org/10.1021/acsnano.4c01761
- J. Li, Q. Hu, J. Xiao, Z.-G. Yan, High-stability double perovskite scintillator for flexible X-ray imaging. J. Colloid Interface Sci. 671, 725–731 (2024). https://doi.org/10.1016/j.jcis.2024.05.203
- Y. Zhang, K. Li, L. Niu, J. Ren, X. Liu et al., Eu2+ doped cesium alkaline earth chloride nanocrystals in glass for X-ray imaging. Ceram. Int. 50(17), 31673–31679 (2024). https://doi.org/10.1016/j.ceramint.2024.05.475
- W. Bu, Y. Yan, P. Liu, T. Wang, S. Wang et al., In-situ growth of Cs5Cu3Cl6I2 nanocrystals within AAO arrays for X-ray imaging. Chem. Eng. J. 492, 151908 (2024). https://doi.org/10.1016/j.cej.2024.151908
- Y. Zhang, M. Shen, B. Cheng, W. Ma, X. Huang et al., Ultrafast scintillation at room temperature achieved in CsPbCl3-based single crystals through Br over-doping. J. Mater. Chem. C 12(20), 7169–7175 (2024). https://doi.org/10.1039/D4TC00880D
- J.-A. Lai, P. Wang, B. Zheng, T. Xuan, D. Wu et al., Enhanced performance in cesium tellurium chlorine by hafnium alloying for X-ray computed tomography imaging. Adv. Opt. Mater. 12(17), 2303297 (2024). https://doi.org/10.1002/adom.202303297
- Y. Wang, C. Wang, L. Men, Q. Hu, J. Xiao, Colloidal synthesis of hollow double perovskite nanocrystals and their applications in X-ray imaging. Inorg. Chem. 63(12), 5734–5742 (2024). https://doi.org/10.1021/acs.inorgchem.4c00280
- J. Qiu, H. Zhao, Z. Mu, J. Chen, H. Gu et al., Turning nonemissive CsPb2Br5 crystals into high-performance scintillators through alkali metal doping. Nano Lett. 24(8), 2503–2510 (2024). https://doi.org/10.1021/acs.nanolett.3c04455
- W. Xiang, D. Shen, X. Zhang, X. Li, Y. Liu et al., Transparent and planar Cs3Cu2Cl5 crystals for micrometer-resolution X-ray imaging screen. ACS Appl. Mater. Interfaces 16(4), 4918–4924 (2024). https://doi.org/10.1021/acsami.3c15764
- M. Wang, X. Qing, T. Du, C. Wu, X. Han, Te4+-doped Cs2SnCl6 scintillator for flexible and efficient X-ray imaging screens. J. Mater. Chem. C 12(6), 2241–2246 (2024). https://doi.org/10.1039/D3TC03818A
- N. Liu, J. Luo, Q. Guo, P. Du, L. Gao et al., Reduced self-absorption of quasi-2D perovskites and their application in color conversion layers. Adv. Opt. Mater. 11(1), 2202118 (2023). https://doi.org/10.1002/adom.202202118
- T. Haposan, A. Arramel, P.Y.D. Maulida, S. Hartati, A.A. Afkauni et al., All-inorganic copper-halide perovskites for large-Stokes shift and ten-nanosecond-emission scintillators. J. Mater. Chem. C 12(7), 2398–2409 (2024). https://doi.org/10.1039/D3TC03977C
- S. Cheng, M. Nikl, A. Beitlerova, R. Kucerkova, X. Du et al., Ultrabright and highly efficient all-inorganic zero-dimensional perovskite scintillators. Adv. Opt. Mater. 9(13), 2100460 (2021). https://doi.org/10.1002/adom.202100460
- W.J. Mir, Y. Mahor, A. Lohar, M. Jagadeeswararao, S. Das et al., Postsynthesis doping of Mn and Yb into CsPbX3 (X = Cl, Br, or I) perovskite nanocrystals for downconversion emission. Chem. Mater. 30(22), 8170–8178 (2018). https://doi.org/10.1021/acs.chemmater.8b03066
- V. Pinchetti, A. Anand, Q.A. Akkerman, D. Sciacca, M. Lorenzon et al., Trap-mediated two-step sensitization of manganese dopants in perovskite nanocrystals. ACS Energy Lett. 4(1), 85–93 (2019). https://doi.org/10.1021/acsenergylett.8b02052
- W. Liu, Q. Lin, H. Li, K. Wu, I. Robel et al., Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138(45), 14954–14961 (2016). https://doi.org/10.1021/jacs.6b08085
- S. Das Adhikari, A.K. Guria, N. Pradhan, Insights of doping and the photoluminescence properties of Mn-doped perovskite nanocrystals. J. Phys. Chem. Lett. 10(9), 2250–2257 (2019). https://doi.org/10.1021/acs.jpclett.9b00182
- S. Paul, E. Bladt, A.F. Richter, M. Döblinger, Y. Tong et al., Manganese-doping-induced quantum confinement within host perovskite nanocrystals through ruddlesden–popper defects. Angew. Chem. Int. Ed. 59(17), 6794–6799 (2020). https://doi.org/10.1002/anie.201914473
- G. Huang, C. Wang, S. Xu, S. Zong, J. Lu et al., Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange. Adv. Mater. 29(29), 1700095 (2017). https://doi.org/10.1002/adma.201700095
- H. Xu, W. Liang, Z. Zhang, C. Cao, W. Yang et al., 2D perovskite Mn2+-doped Cs2CdBr2Cl2 scintillator for low-dose high-resolution X-ray imaging. Adv. Mater. 35(26), e2300136 (2023). https://doi.org/10.1002/adma.202300136
- K. Li, W. Zhang, L. Niu, Y. Ye, J. Ren et al., Lead-free cesium manganese halide nanocrystals embedded glasses for X-ray imaging. Adv. Sci. 10(4), 2204843 (2023). https://doi.org/10.1002/advs.202204843
- D.J. Kiebala, R. Style, D. Vanhecke, C. Calvino, C. Weder et al., Sub-micrometer mechanochromic inclusions enable strain sensing in polymers. Adv. Funct. Mater. 33(50), 2304938 (2023). https://doi.org/10.1002/adfm.202304938
- B. Wang, X. Ouyang, X. He, Z. Deng, Y. Zhou et al., High-resolution X-ray imaging of Mn enhanced lead-free halide scintillators in pixelated array structures. Adv. Opt. Mater. 11(17), 2300388 (2023). https://doi.org/10.1002/adom.202300388
- N. Varnakavi, R. Rajavaram, K. Gupta, P.-R. Cha, N. Lee, Scintillation performance of Mn(II)-doped Cs2NaBiCl6 double perovskite nanocrystals for X-Ray imaging applications. Adv. Opt. Mater. 12(9), 2301868 (2024). https://doi.org/10.1002/adom.202301868
- C. Wang, Z.-G. Yan, Y. Wang, J. Zhu, C. Peng et al., All-inorganic ruddlesden–popper perovskite Cs2CdCl4: Mn for low-dose and flexible X-ray imaging. ACS Mater. Lett. 6(4), 1429–1438 (2024). https://doi.org/10.1021/acsmaterialslett.3c01665
- P. Pei, R. Wei, B. Wang, J. Su, Z. Zhang et al., An advanced tunable multimodal luminescent La4GeO8: Eu2+, Er3+ phosphor for multicolor anticounterfeiting. Adv. Funct. Mater. 31(31), 2102479 (2021). https://doi.org/10.1002/adfm.202102479
- M.P. Davydova, L. Meng, M.I. Rakhmanova, Z. Jia, A.S. Berezin et al., Strong magnetically-responsive circularly polarized phosphorescence and X-ray scintillation in ultrarobust Mn(II)–organic helical chains. Adv. Mater. 35(35), 2303611 (2023). https://doi.org/10.1002/adma.202303611
- H. Tang, Z. Jia, Y. Xu, Y. Liu, Q. Lin, Enhanced photoluminescence quantum yield of metal halide perovskite microcrystals for multiple optoelectronic applications. Small 20(4), 2304336 (2024). https://doi.org/10.1002/smll.202304336
- Z. Wang, Y. Wei, C. Liu, Y. Liu, M. Hong, Mn2+-activated Cs3Cu2I5 nano-scintillators for ultra-high resolution flexible X-Ray imaging. Laser Photonics Rev. 17(6), 2200851 (2023). https://doi.org/10.1002/lpor.202200851
- L. Li, Z. Fan, J. Zhang, D. Fan, X. Liu et al., Yellow emissive CsCu2I3 nanocrystals induced by Mn2+ for high-resolution X-ray imaging. Inorg. Chem. 62(49), 19848–19855 (2023). https://doi.org/10.1021/acs.inorgchem.3c03724
- J. Barrio, A. Pedersen, S.C. Sarma, A. Bagger, M. Gong et al., FeNC oxygen reduction electrocatalyst with high utilization penta-coordinated sites. Adv. Mater. 35(14), e2211022 (2023). https://doi.org/10.1002/adma.202211022
- J.-X. Zheng, Z.-A. Zhou, T. Feng, H. Li, C.-H. Sun et al., Hydrophobic long-chain two-dimensional perovskite scintillators for underwater X-ray imaging. Rare Met. 43(1), 175–185 (2024). https://doi.org/10.1007/s12598-023-02421-x
- N. Kawano, M. Akatsuka, H. Kimura, D. Nakauchi, T. Kato et al., Scintillation properties of Mn-doped methylammonium lead chloride crystals. J. Mater. Sci. Mater. Electron. 32(10), 12903–12910 (2021). https://doi.org/10.1007/s10854-020-04480-7
- X. Li, H. Guo, Y. Li, C. Lin, L. Xie, Enhancing persistent radioluminescence in perovskite scintillators through trap defect modulation. Mater. Chem. Front. 8(13), 2539–2548 (2024). https://doi.org/10.1039/D4QM00039K
- B. Su, K. Han, Z. Xia, Mn2+-doped Cs2ZnBr4 scintillator for X-ray imaging. J. Mater. Chem. C 11(24), 8052–8061 (2023). https://doi.org/10.1039/D2TC04249E
- K.E. Yorov, W.J. Mir, X. Song, L. Gutiérrez-Arzaluz, R. Naphade et al., Mn4+-doped fluoride nanocrystals enable high-resolution red-emitting X-ray imaging screens. ACS Mater. Lett. 4(11), 2273–2281 (2022). https://doi.org/10.1021/acsmaterialslett.2c00746
- L.-J. Xu, X. Lin, Q. He, M. Worku, B. Ma, Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nat. Commun. 11(1), 4329 (2020). https://doi.org/10.1038/s41467-020-18119-y
- J. Jin, K. Han, Y. Hu, Z. Xia, Zn2+ doping in organic manganese(II) bromide hybrid scintillators toward enhanced light yield for X-ray imaging. Adv. Opt. Mater. 11(14), 2300330 (2023). https://doi.org/10.1002/adom.202300330
- J. Zhang, X. Wang, W.-Q. Wang, X. Deng, C.-Y. Yue et al., Near-unity green luminescent hybrid manganese halides as X-ray scintillators. Inorg. Chem. 63(5), 2647–2654 (2024). https://doi.org/10.1021/acs.inorgchem.3c03924
- X. Wang, X. Zhang, Y. Liu, Y. Zhang, Shape-on-demand synthesis of luminescent (ETP)2MnBr4 glass scintillator. Chem. Eng. J. 483, 149239 (2024). https://doi.org/10.1016/j.cej.2024.149239
- Y. Xu, Z. Li, G. Peng, F. Qiu, Z. Li et al., Organic cation design of manganese halide hybrids glass toward low-temperature integrated efficient, scaling, and reproducible X-ray detector. Adv. Opt. Mater. 11(13), 2300216 (2023). https://doi.org/10.1002/adom.202300216
- S. Wang, S. Feng, R. Li, J. Jin, J. Wu et al., Multiexciton generation from a 2D organic-inorganic hybrid perovskite with nearly 200% quantum yield of red phosphorescence. Adv. Mater. 35(18), e2211992 (2023). https://doi.org/10.1002/adma.202211992
- F. Montanarella, K.M. McCall, K. Sakhatskyi, S. Yakunin, P. Trtik et al., Highly concentrated, zwitterionic ligand-capped Mn2+: CsPb(BrxCl1-x)3 nanocrystals as bright scintillators for fast neutron imaging. ACS Energy Lett. 6(12), 4365–4373 (2021). https://doi.org/10.1021/acsenergylett.1c01923
- F. Wang, X. Liu, Multicolor tuning of lanthanide-doped nanops by single wavelength excitation. Acc. Chem. Res. 47(4), 1378–1385 (2014). https://doi.org/10.1021/ar5000067
- Y. Wu, W. Wu, Combinations of superior inorganic phosphors for level-tunable information hiding and encoding. Adv. Opt. Mater. 9(17), 2100281 (2021). https://doi.org/10.1002/adom.202100281
- B. Liu, C. Li, P. Yang, Z. Hou, J. Lin, 808-nm-light-excited lanthanide-doped nanops: rational design, luminescence control and theranostic applications. Adv. Mater. 29(18), 1605434 (2017). https://doi.org/10.1002/adma.201605434
- G. Gao, A. Turshatov, I.A. Howard, D. Busko, R. Joseph et al., Up-conversion fluorescent labels for plastic recycling: a review. Adv. Sustain. Syst. 1(5), 1600033 (2017). https://doi.org/10.1002/adsu.201600033
- L. Lei, Y. Wang, A. Kuzmin, Y. Hua, J. Zhao et al., Next generation lanthanide doped nanoscintillators and photon converters. eLight 2(1), 17 (2022). https://doi.org/10.1186/s43593-022-00024-0
- G. Pan, X. Bai, D. Yang, X. Chen, P. Jing et al., Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties. Nano Lett. 17(12), 8005–8011 (2017). https://doi.org/10.1021/acs.nanolett.7b04575
- M. Gandini, I. Villa, M. Beretta, C. Gotti, M. Imran et al., Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 15(6), 462–468 (2020). https://doi.org/10.1038/s41565-020-0683-8
- Z. Wang, S. Li, G. Ren, S. Yao, D. Zhu et al., Flexible and reabsorption-free perovskite scintillators for low-dose X-ray detection and high-resolution imaging. ACS Photonics 11(8), 3003–3011 (2024). https://doi.org/10.1021/acsphotonics.4c00117
- Z. Yang, J. Yao, L. Xu, W. Fan, J. Song, Designer bright and fast CsPbBr3 perovskite nanocrystal scintillators for high-speed X-ray imaging. Nat. Commun. 15(1), 8870 (2024). https://doi.org/10.1038/s41467-024-53263-9
- H. Si, Z. Zhang, Q. Liao, G. Zhang, Y. Ou et al., A-site management for highly crystalline perovskites. Adv. Mater. 32(4), e1904702 (2020). https://doi.org/10.1002/adma.201904702
- W.-G. Li, X.-D. Wang, Y.-H. Huang, D.-B. Kuang, Ultrasound-assisted crystallization enables large-area perovskite quasi-monocrystalline film for high-sensitive X-ray detection and imaging. Adv. Mater. 35(31), 2210878 (2023). https://doi.org/10.1002/adma.202210878
- Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014). https://doi.org/10.1002/adma.201401685
- J. Zhang, W. Liang, W. Yu, S. Yu, Y. Wu et al., A two-stage annealing strategy for crystallization control of CH3NH3PbI3 films toward highly reproducible perovskite solar cells. Small 14(26), 1800181 (2018). https://doi.org/10.1002/smll.201800181
- S. Cui, J. Wang, H. Xie, Y. Zhao, Z. Li et al., Rubidium ions enhanced crystallinity for ruddlesden-popper perovskites. Adv. Sci. 7(24), 2002445 (2020). https://doi.org/10.1002/advs.202002445
- V. Naresh, S. Singh, H. Soh, J. Lee, N. Lee, Dual-phase CsPbBr3–CsPb2Br5 perovskite scintillator for sensitive X-ray detection and imaging. Mater. Today Nano 23, 100364 (2023). https://doi.org/10.1016/j.mtnano.2023.100364
- V.B. Mykhaylyk, H. Kraus, M. Saliba, Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures. Mater. Horiz. 6(8), 1740–1747 (2019). https://doi.org/10.1039/C9MH00281B
- S. Mahato, M. Makowski, S. Bose, D. Kowal, M.A. Kuddus Sheikh et al., Improvement of light output of MAPbBr 3 single crystal for ultrafast and bright cryogenic scintillator. J. Phys. Chem. Lett. 15(14), 3713–3720 (2024). https://doi.org/10.1021/acs.jpclett.4c00379
- S. Kishimoto, K. Shibuya, F. Nishikido, M. Koshimizu, R. Haruki et al., Subnanosecond time-resolved X-ray measurements using an organic-inorganic perovskite scintillator. Appl. Phys. Lett. 93(26), 261901 (2008). https://doi.org/10.1063/1.3059562
- X. Ou, X. Qin, B. Huang, J. Zan, Q. Wu et al., High-resolution X-ray luminescence extension imaging. Nature 590(7846), 410–415 (2021). https://doi.org/10.1038/s41586-021-03251-6
- X. Zhou, K. Han, Y. Wang, J. Jin, S. Jiang et al., Energy-trapping management in X-ray storage phosphors for flexible 3D imaging. Adv. Mater. 35(16), e2212022 (2023). https://doi.org/10.1002/adma.202212022
- L. Lu, S. Peng, L. Zhao, M. Zhang, J. Xiao et al., Visualized X-ray dosimetry for multienvironment applications. Nano Lett. 23(18), 8753–8760 (2023). https://doi.org/10.1021/acs.nanolett.3c02826
- N. Zhang, R. Zhang, X. Xu, F. Wang, Z. Sun et al., X-ray-activated long afterglow double-perovskite scintillator for detection and extension imaging. Adv. Opt. Mater. 11(16), 2300187 (2023). https://doi.org/10.1002/adom.202300187
- W. Bian, Y. Lin, T. Wang, X. Yu, J. Qiu et al., Direct identification of surface defects and their influence on the optical characteristics of upconversion nanops. ACS Nano 12(4), 3623–3628 (2018). https://doi.org/10.1021/acsnano.8b00741
- C. Wang, X. Mao, Z. Wang, X. Xu, W. Guo et al., Synthesis and exciton dynamics of a one-dimensional organic copper halide perovskite. J. Phys. Chem. C 126(10), 4959–4964 (2022). https://doi.org/10.1021/acs.jpcc.1c10402
- W. Shao, T. He, J.-X. Wang, Y. Zhou, P. Yuan et al., Transparent organic and metal halide tandem scintillators for high-resolution dual-energy X-ray imaging. ACS Energy Lett. 8(6), 2505–2512 (2023). https://doi.org/10.1021/acsenergylett.3c00784
- X. Hu, S. Luo, J. Leng, C. Wang, Y. Chen et al., Density-discriminating chromatic X-ray imaging based on metal halide nanocrystal scintillators. Sci. Adv. 9(37), eadh5081 (2023). https://doi.org/10.1126/sciadv.adh5081
- J. Hui, P. Ran, Y. Su, L. Yang, X. Xu et al., Stacked scintillators based multispectral X-ray imaging featuring quantum-cutting perovskite scintillators with 570 nm absorption-emission shift. Adv. Mater. 37(10), e2416360 (2025). https://doi.org/10.1002/adma.202416360
- J. Pang, S. Zhao, X. Du, H. Wu, G. Niu et al., Vertical matrix perovskite X-ray detector for effective multi-energy discrimination. Light Sci. Appl. 11(1), 105 (2022). https://doi.org/10.1038/s41377-022-00791-y
- B. Shabbir, J.C. Yu, T. Warnakula, R.A.W. Ayyubi, J.A. Pollock et al., Printable perovskite diodes for broad-spectrum multienergy X-ray detection. Adv. Mater. 35(20), e2210068 (2023). https://doi.org/10.1002/adma.202210068
- W. Shao, T. He, L. Wang, J.-X. Wang, Y. Zhou et al., Capillary manganese halide needle-like array scintillator with isolated light crosstalk for micro-X-ray imaging. Adv. Mater. 36(21), 2312053 (2024). https://doi.org/10.1002/adma.202312053
- X. Zhao, T. Jin, W. Gao, G. Niu, J. Zhu et al., Embedding Cs3Cu2I5 scintillators into anodic aluminum oxide matrix for high-resolution X-Ray imaging. Adv. Opt. Mater. 9(24), 2101194 (2021). https://doi.org/10.1002/adom.202101194
- H. Li, H. Yang, R. Yuan, Z. Sun, Y. Yang et al., Ultrahigh spatial resolution, fast decay, and stable X-Ray scintillation screen through assembling CsPbBr3 nanocrystals arrays in anodized aluminum oxide. Adv. Opt. Mater. 9(24), 2101297 (2021). https://doi.org/10.1002/adom.202101297
- W.E. van Eijk Carel, Inorganic scintillators in medical imaging. Phys. Med. Biol. 47(8), R85–R106 (2002). https://doi.org/10.1088/0031-9155/47/8/201
- J. Hui, P. Ran, Y. Su, L. Yang, X. Xu et al., High-resolution X-ray imaging based on solution-phase-synthesized Cs3Cu2I5 scintillator nanowire array. J. Phys. Chem. C 126(30), 12882–12888 (2022). https://doi.org/10.1021/acs.jpcc.2c03453
- M. Li, Y. Wang, L. Yang, Z. Chai, Y. Wang et al., Circularly polarized radioluminescence from chiral perovskite scintillators for improved X-ray imaging. Angew. Chem. Int. Ed. 134(37), e202208440 (2022). https://doi.org/10.1002/ange.202208440
- M. Wang, X. Wang, B. Zhang, F. Li, H. Meng et al., Chiral hybrid manganese(ii) halide clusters with circularly polarized luminescence for X-ray imaging. J. Mater. Chem. C 11(9), 3206–3212 (2023). https://doi.org/10.1039/D2TC05379A
- M.P. Davydova, L. Meng, M.I. Rakhmanova, I.Y. Bagryanskaya, V.S. Sulyaeva et al., Highly emissive chiral Mn(II) bromide hybrids for UV-pumped circularly polarized LEDs and scintillator image applications. Adv. Opt. Mater. 11(8), 2202811 (2023). https://doi.org/10.1002/adom.202202811
- J. Wu, S. You, P. Yu, Q. Guan, Z.-K. Zhu et al., Chirality inducing polar photovoltage in a 2D lead-free double perovskite toward self-powered X-ray detection. ACS Energy Lett. 8(6), 2809–2816 (2023). https://doi.org/10.1021/acsenergylett.3c00629
- S. Cho, S. Kim, J. Kim, Y. Jo, I. Ryu et al., Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Light Sci. Appl. 9, 156 (2020). https://doi.org/10.1038/s41377-020-00391-8
- T. Jiang, W. Ma, H. Zhang, Y. Tian, G. Lin et al., Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications. Adv. Funct. Mater. 31(14), 2009973 (2021). https://doi.org/10.1002/adfm.202009973
- Y. Wei, H. Ebendorff-Heidepriem, J. Zhao, Recent advances in hybrid optical materials: integrating nanops within a glass matrix. Adv. Opt. Mater. 7(21), 1900702 (2019). https://doi.org/10.1002/adom.201900702
- J. Nie, C. Li, S. Zhou, J. Huang, X. Ouyang et al., High photoluminescence quantum yield perovskite/polymer nanocomposites for high contrast X-ray imaging. ACS Appl. Mater. Interfaces 13(45), 54348–54353 (2021). https://doi.org/10.1021/acsami.1c15613
- B. Wang, P. Li, Y. Zhou, Z. Deng, X. Ouyang et al., Cs3Cu2I5 perovskite nanops in polymer matrix as large-area scintillation screen for high-definition X-ray imaging. ACS Appl. Nano Mater. 5(7), 9792–9798 (2022). https://doi.org/10.1021/acsanm.2c01996
- A. Giuri, A.C. Chekkallur, M. Calora, R. Mastria, L. Martinazzoli et al., 3D printed ultra-fast plastic scintillators based on perovskite-photocurable polymer composite. Adv. Funct. Mater. 35(12), 2417653 (2025). https://doi.org/10.1002/adfm.202417653
- X. Wu, Z. Guo, S. Zhu, B. Zhang, S. Guo et al., Ultrathin, transparent, and high density perovskite scintillator film for high resolution X-ray microscopic imaging. Adv. Sci. 9(17), e2200831 (2022). https://doi.org/10.1002/advs.202200831
- K. Han, K. Sakhatskyi, J. Jin, Q. Zhang, M.V. Kovalenko et al., Seed-crystal-induced cold sintering toward metal halide transparent ceramic scintillators. Adv. Mater. 34(17), e2110420 (2022). https://doi.org/10.1002/adma.202110420
- X. Hao, L. Nie, X. Zhu, G. Zeng, C. Liu et al., High-resolution X-ray image from copper-based perovskite hybrid polymer. ACS Appl. Mater. Interfaces 16(22), 29210–29216 (2024). https://doi.org/10.1021/acsami.4c03401
- B. Li, Y. Xu, X. Zhang, K. Han, J. Jin et al., Zero-dimensional luminescent metal halide hybrids enabling bulk transparent medium as large-area X-ray scintillators. Adv. Opt. Mater. 10(10), 2102793 (2022). https://doi.org/10.1002/adom.202102793
- A.J.J.M. van Breemen, M. Simon, O. Tousignant, S. Shanmugam, J.-L. van der Steen et al., Curved digital X-ray detectors. NPJ Flex. Electron. 4, 22 (2020). https://doi.org/10.1038/s41528-020-00084-7
- Y. Zhou, X. Wang, T. He, H. Yang, C. Yang et al., Large-area perovskite-related copper halide film for high-resolution flexible X-ray imaging scintillation screens. ACS Energy Lett. 7(2), 844–846 (2022). https://doi.org/10.1021/acsenergylett.2c00075
- L. Lian, X. Wang, P. Zhang, J. Zhu, X. Zhang et al., Highly luminescent zero-dimensional organic copper halides for X-ray scintillation. J. Phys. Chem. Lett. 12(29), 6919–6926 (2021). https://doi.org/10.1021/acs.jpclett.1c01946
- W. Li, Y. Li, Y. Wang, Z. Zhou, C. Wang et al., Highly efficient and flexible scintillation screen based on organic Mn(II) halide hybrids toward planar and nonplanar X-ray imaging. Laser Photonics Rev. 18(2), 2300860 (2024). https://doi.org/10.1002/lpor.202300860
References
X. Ou, X. Chen, X. Xu, L. Xie, X. Chen et al., Recent development in X-ray imaging technology: future and challenges. Research 2021, 9892152 (2021). https://doi.org/10.34133/2021/9892152
Y. Wu, J. Feng, Z. Yang, Y. Liu, S. Liu, Halide perovskite: a promising candidate for next-generation X-ray detectors. Adv. Sci. 10(1), 2205536 (2023). https://doi.org/10.1002/advs.202205536
J. Liu, B. Shabbir, C. Wang, T. Wan, Q. Ou et al., Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 31(30), e1901644 (2019). https://doi.org/10.1002/adma.201901644
B. Yang, L. Yin, G. Niu, J.-H. Yuan, K.-H. Xue et al., Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Adv. Mater. 31(44), 1904711 (2019). https://doi.org/10.1002/adma.201904711
Q. Zhou, W. Li, J. Xiao, A. Li, X. Han, Low-dimensional metal halide for high performance scintillators. Adv. Funct. Mater. 34(38), 2402902 (2024). https://doi.org/10.1002/adfm.202402902
Y.C. Kim, K.H. Kim, D.Y. Son, D.N. Jeong, J.Y. Seo et al., Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550(7674), 87–91 (2017). https://doi.org/10.1038/nature24032
K. Dong, T. Jiang, G. Chen, H. Cui, S. Wang et al., Light management in 2D perovskite toward high-performance optoelectronic applications. Nano-Micro Lett. 17(1), 131 (2025). https://doi.org/10.1007/s40820-024-01643-7
S. Tsuda, K. Saito, Spectrum–dose conversion operator of NaI(Tl) and CsI(Tl) scintillation detectors for air dose rate measurement in contaminated environments. J. Environ. Radioact. 166, 419–426 (2017). https://doi.org/10.1016/j.jenvrad.2016.02.008
V.V. Nagarkar, T.K. Gupta, S. Miller, Y. Klugarman, M.R. Squillante et al., Structured CsI(Tl) scintillators for X-ray imaging applications. In 1997 IEEE nuclear science symposium conference record. November 9-15, 1997, Albuquerque, NM, USA. IEEE, (1997), 226–230
C. Greskovich, S. Duclos, Ceramic scintillators. Annu. Rev. Mater. Sci. 27, 69–88 (1997). https://doi.org/10.1146/annurev.matsci.27.1.69
C. Michail, V. Koukou, N. Martini, G. Saatsakis, N. Kalyvas et al., Luminescence efficiency of cadmium tungstate (CdWO4) single crystal for medical imaging applications. Crystals 10(6), 429 (2020). https://doi.org/10.3390/cryst10060429
C. Michail, I. Valais, I. Seferis, N. Kalyvas, S. David et al., Measurement of the luminescence properties of Gd2O2S: Pr, Ce, F powder scintillators under X-ray radiation. Radiat. Meas. 70, 59–64 (2014). https://doi.org/10.1016/j.radmeas.2014.09.008
S. Blahuta, B. Viana, A. Bessière, E. Mattmann, B. LaCourse, Luminescence quenching processes in Gd2O2S: Pr3+, Ce3+ scintillating ceramics. Opt. Mater. 33(10), 1514–1518 (2011). https://doi.org/10.1016/j.optmat.2011.02.040
G. Borghi, B.J. Peet, V. Tabacchini, D.R. Schaart, A 32 mm × 32 mm × 22 mm monolithic LYSO: Ce detector with dual-sided digital photon counter readout for ultrahigh-performance TOF-PET and TOF-PET/MRI. Phys. Med. Biol. 61(13), 4929 (2016). https://doi.org/10.1088/0031-9155/61/13/4929
D.N. ter Weele, D.R. Schaart, P. Dorenbos, Comparative study of Co-doped and non Co-doped LSO: Ce and LYSO: Ce scintillators for TOF-PET. IEEE Trans. Nucl. Sci. 62(3), 727–731 (2015). https://doi.org/10.1109/TNS.2015.2431295
H. Wu, Y. Ge, G. Niu, J. Tang, Metal halide perovskites for X-ray detection and imaging. Matter 4(1), 144–163 (2021). https://doi.org/10.1016/j.matt.2020.11.015
S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter et al., Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photonics 9(7), 444–449 (2015). https://doi.org/10.1038/nphoton.2015.82
K. Shibuya, M. Koshimizu, Y. Takeoka, K. Asai, Scintillation properties of C6H13NH3)2PbI4: exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 20 MeV protons. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. At. 194(2), 207–212 (2002). https://doi.org/10.1016/S0168-583X(02)00671-7
M.D. Birowosuto, D. Cortecchia, W. Drozdowski, K. Brylew, W. Lachmanski et al., X-ray scintillation in lead halide perovskite crystals. Sci. Rep. 6, 37254 (2016). https://doi.org/10.1038/srep37254
F. Zhou, Z. Li, W. Lan, Q. Wang, L. Ding et al., Halide perovskite, a potential scintillator for X-ray detection. Small Meth. 4(10), 2000506 (2020). https://doi.org/10.1002/smtd.202000506
J.H. Heo, D.H. Shin, J.K. Park, D.H. Kim, S.J. Lee et al., High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. (2018). https://doi.org/10.1002/adma.201801743
H. Zhang, Z. Yang, M. Zhou, L. Zhao, T. Jiang et al., Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv. Mater. 33(40), 2102529 (2021). https://doi.org/10.1002/adma.202102529
H. Li, Y. Zhang, M. Zhou, H. Ding, L. Zhao et al., A solar-blind perovskite scintillator realizing portable X-ray imaging. ACS Energy Lett. 7(9), 2876–2883 (2022). https://doi.org/10.1021/acsenergylett.2c01440
G.E. Eperon, K.H. Stone, L.E. Mundt, T.H. Schloemer, S.N. Habisreutinger et al., The role of dimethylammonium in bandgap modulation for stable halide perovskites. ACS Energy Lett. 5(6), 1856–1864 (2020). https://doi.org/10.1021/acsenergylett.0c00872
E. Oksenberg, A. Merdasa, L. Houben, I. Kaplan-Ashiri, A. Rothman et al., Large lattice distortions and size-dependent bandgap modulation in epitaxial halide perovskite nanowires. Nat. Commun. 11(1), 489 (2020). https://doi.org/10.1038/s41467-020-14365-2
K. Kim, H. Kim, J. Park, Bandgap modulation of Cs2AgInX6 (X = Cl and Br) double perovskite nano- and microcrystals via Cu2+ doping. ACS Omega 6(41), 26952–26958 (2021). https://doi.org/10.1021/acsomega.1c03290
F. Ruf, P. Rietz, M.F. Aygüler, I. Kelz, P. Docampo et al., The bandgap as a moving target: reversible bandgap instabilities in multiple-cation mixed-halide perovskite solar cells. ACS Energy Lett. 3(12), 2995–3001 (2018). https://doi.org/10.1021/acsenergylett.8b01857
Z. Wang, J. Qiu, X. Wang, Z. Zhang, Y. Chen et al., Two-dimensional light-emitting materials: preparation, properties and applications. Chem. Soc. Rev. 47(16), 6128–6174 (2018). https://doi.org/10.1039/c8cs00332g
A. Xie, F. Maddalena, M.E. Witkowski, M. Makowski, B. Mahler et al., Library of two-dimensional hybrid lead halide perovskite scintillator crystals. Chem. Mater. 32(19), 8530–8539 (2020). https://doi.org/10.1021/acs.chemmater.0c02789
A. Wibowo, M.A.K. Sheikh, L.J. Diguna, M.B. Ananda, M.A. Marsudi et al., Development and challenges in perovskite scintillators for high-resolution imaging and timing applications. Commun. Mater. 4, 21 (2023). https://doi.org/10.1038/s43246-023-00348-5
M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski, S.O. Flyckt, Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 44(3), 1052–1061 (1997). https://doi.org/10.1109/23.603803
S. Liu, F. Jiang, E. Song, P. Li, W. Liu et al., Controllable preparation and enhanced luminescence of Tb3+-activated transparent gadolinium-rich silicate glass ceramic scintillator. Ceram. Int. (2025). https://doi.org/10.1016/j.ceramint.2025.01.413
T. He, Y. Zhou, X. Wang, J. Yin, L. Gutiérrez-Arzaluz et al., High-performance copper-doped perovskite-related silver halide X-ray imaging scintillator. ACS Energy Lett. 7(8), 2753–2760 (2022). https://doi.org/10.1021/acsenergylett.2c01484
E. Auffray, G. Dosovitskiy, A. Fedorov, I. Guz, M. Korjik et al., Irradiation effects on Gd3Al2Ga3O12 scintillators prospective for application in harsh irradiation environments. Radiat. Phys. Chem. 164, 108365 (2019). https://doi.org/10.1016/j.radphyschem.2019.108365
W. Yan, B. Duan, Z. Zhu, Y. Song, G. Song et al., Organic–inorganic hybrid perovskite scintillator for high-resolution X-ray imaging. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Mater. At. 546, 165159 (2024). https://doi.org/10.1016/j.nimb.2023.165159
V. Dormenev, K.T. Brinkmann, D. Kazlou, M. Moritz, R.W. Novotny et al., Scintillation properties of garnets and oxyorthosilicates with different dopants. IEEE Trans. Nucl. Sci. 70(7), 1392–1397 (2023). https://doi.org/10.1109/TNS.2023.3275642
F. Maddalena, A. Xie, X.Y. Chin, R. Begum, M.E. Witkowski et al., Deterministic light yield, fast scintillation, and microcolumn structures in lead halide perovskite nanocrystals. J. Phys. Chem. C 125(25), 14082–14088 (2021). https://doi.org/10.1021/acs.jpcc.1c03392
W. Chen, M. Zhou, Y. Liu, X. Yu, C. Pi et al., All-inorganic perovskite polymer–ceramics for flexible and refreshable X-ray imaging. Adv. Funct. Mater. 32(2), 2107424 (2022). https://doi.org/10.1002/adfm.202107424
Y. Li, L. Chen, B. Liu, P. Jin, R. Gao et al., Scintillation performance of two-dimensional perovskite (BA)2PbBr4 microcrystals. J. Mater. Chem. C 9(47), 17124–17128 (2021). https://doi.org/10.1039/D1TC04072C
W. Shao, X. Wang, Z. Zhang, J. Huang, Z. Han et al., Highly efficient and flexible scintillation screen based on manganese (II) activated 2D perovskite for planar and nonplanar high-resolution X-ray imaging. Adv. Opt. Mater. 10(6), 2102282 (2022). https://doi.org/10.1002/adom.202102282
N. Li, Z. Xu, Y. Xiao, Y. Liu, Z. Yang et al., Flexible, high scintillation yield Cu3Cu2I5 film made of ball-milled powder for high spatial resolution X-ray imaging. Adv. Opt. Mater. 10(5), 2102232 (2022). https://doi.org/10.1002/adom.202102232
J.J. van Blaaderen, L.A. van den Brekel, K.W. Krämer, P. Dorenbos, Scintillation and optical characterization of CsCu2I3 single crystals from 10 to 400 K. Chem. Mater. 35(22), 9623–9631 (2023). https://doi.org/10.1021/acs.chemmater.3c01810
P. Ran, X. Chen, Z. Chen, Y. Su, J. Hui et al., Metal halide CsCu2I3 flexible scintillator with high photodiode spectral compatibility for X-ray cone beam computed tomography (CBCT) imaging. Laser Photonics Rev. 18(1), 2300743 (2024). https://doi.org/10.1002/lpor.202300743
R. Zhang, H. Xie, W. Liu, K. Zhan, H. Liu et al., High-efficiency narrow-band green-emitting manganese(II) halide for multifunctional applications. ACS Appl. Mater. Interfaces 15(40), 47238–47249 (2023). https://doi.org/10.1021/acsami.3c09518
Z. Gong, J. Zhang, X. Deng, M.-P. Ren, W.-Q. Wang et al., Near-unity broadband emissive hybrid manganese bromides as highly-efficient radiation scintillators. Aggregate 5(5), e574 (2024). https://doi.org/10.1002/agt2.574
B. Su, J. Jin, K. Han, Z. Xia, Ceramic wafer scintillation screen by utilizing near-unity blue-emitting lead-free metal halide (C8H20N)2Cu2Br4. Adv. Funct. Mater. 33(5), 2210735 (2023). https://doi.org/10.1002/adfm.202210735
M. Zhou, H. Jiang, T. Hou, S. Hou, J. Li et al., Inch-size and thickness-adjustable hybrid manganese halide single-crystalline films for high resolution X-ray imaging. Chem. Eng. J. 490, 151823 (2024). https://doi.org/10.1016/j.cej.2024.151823
F. Zhang, Y. Zhou, Z. Chen, M. Wang, Z. Ma et al., Thermally activated delayed fluorescence zirconium-based perovskites for large-area and ultraflexible X-ray scintillator screens. Adv. Mater. 34(43), 2204801 (2022). https://doi.org/10.1002/adma.202204801
H. Wu, Q. Wang, A. Zhang, G. Niu, M. Nikl et al., One-dimensional scintillator film with benign grain boundaries for high-resolution and fast X-ray imaging. Sci. Adv. 9(30), eadh1789 (2023). https://doi.org/10.1126/sciadv.adh1789
Y. Zhou, J. Chen, O.M. Bakr, O.F. Mohammed, Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett. 6(2), 739–768 (2021). https://doi.org/10.1021/acsenergylett.0c02430
A. Jana, S. Cho, S.A. Patil, A. Meena, Y. Jo et al., Perovskite: Scintillators, direct detectors, and X-ray imagers. Mater. Today 55, 110–136 (2022). https://doi.org/10.1016/j.mattod.2022.04.009
C. Thalhammer, Improving the light yield and timing resolution of scintillator-based detectors for positron emission tomography. IEEE Trans. Neural Networks Learn. Syst. (2015). https://doi.org/10.1109/tnnls.2023.3323131
M. Nikl, A. Yoshikawa, Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater. 3(4), 463–481 (2015). https://doi.org/10.1002/adom.201400571
Y. Wang, M. Li, Z. Chai, Y. Wang, S. Wang, Perovskite scintillators for improved X-ray detection and imaging. Angew. Chem. 135(38), e202304638 (2023). https://doi.org/10.1002/ange.202304638
A. Anand, M.L. Zaffalon, A. Erroi, F. Cova, F. Carulli et al., Advances in perovskite nanocrystals and nanocomposites for scintillation applications. ACS Energy Lett. 9(3), 1261–1287 (2024). https://doi.org/10.1021/acsenergylett.3c02763
J. Ye, D. Gaur, C. Mi, Z. Chen, I.L. Fernández et al., Strongly-confined colloidal lead-halide perovskite quantum dots: from synthesis to applications. Chem. Soc. Rev. 53(16), 8095–8122 (2024). https://doi.org/10.1039/D4CS00077C
W. Chen, Y. Liu, Z. Yuan, Z. Xu, Z. Zhang et al., X-ray radioluminescence effect of all-inorganic halide perovskite CsPbBr3 quantum dots. J. Radioanal. Nucl. Chem. 314(3), 2327–2337 (2017). https://doi.org/10.1007/s10967-017-5562-x
Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq et al., All-inorganic perovskite nanocrystal scintillators. Nature 561(7721), 88–93 (2018). https://doi.org/10.1038/s41586-018-0451-1
Y. Zhang, R. Sun, X. Ou, K. Fu, Q. Chen et al., Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 13(2), 2520–2525 (2019). https://doi.org/10.1021/acsnano.8b09484
W. Ma, T. Jiang, Z. Yang, H. Zhang, Y. Su et al., Highly resolved and robust dynamic X-ray imaging using perovskite glass-ceramic scintillator with reduced light scattering. Adv. Sci. 8(15), e2003728 (2021). https://doi.org/10.1002/advs.202003728
H. Zhang, Z. Yang, M. Zhou, L. Zhao, T. Jiang, H. Yang, Y. Xue, J. Qiu, Reproducible X‐ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv. Mater. (2021). https://doi.org/10.1002/adma.202102529
Y. Li, Y. Lei, H. Wang, Z. Jin, Two-dimensional metal halides for X-ray detection applications. Nano-Micro Lett. 15(1), 128 (2023). https://doi.org/10.1007/s40820-023-01118-1
B. Jia, D. Chu, N. Li, Y. Zhang, Z. Yang et al., Airflow-controlled crystallization for a multi-inch 2D halide perovskite single-crystal scintillator for fast high-resolution X-ray imaging. ACS Energy Lett. 8(1), 590–599 (2023). https://doi.org/10.1021/acsenergylett.2c02196
M. Xia, Z. Xie, H. Wang, T. Jin, L. Liu et al., Sub-nanosecond 2D perovskite scintillators by dielectric engineering. Adv. Mater. 35(18), e2211769 (2023). https://doi.org/10.1002/adma.202211769
M.A. Kuddus Sheikh, F. Maddalena, D. Kowal, M. Makowski, S. Mahato et al., Effect of dual-organic cations on the structure and properties of 2D hybrid perovskites as scintillators. ACS Appl. Mater. Interfaces 16(19), 25529–25539 (2024). https://doi.org/10.1021/acsami.4c01741
W. Shao, Q. Li, T. He, Y. Zhang, M. Niu et al., Synergy of organic and inorganic sites in 2D perovskite for fast neutron and X-ray imaging. Adv. Funct. Mater. 33(40), 2301767 (2023). https://doi.org/10.1002/adfm.202301767
W. Zhu, W. Ma, Y. Su, Z. Chen, X. Chen et al., Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators. Light Sci. Appl. 9, 112 (2020). https://doi.org/10.1038/s41377-020-00353-0
Y.-H. Liu, N.-N. Wang, M.-P. Ren, X. Yan, Y.-F. Wu et al., Zero-dimensional hybrid cuprous halide of [BAPMA] Cu2Br5 as a highly efficient light emitter and an X-ray scintillator. ACS Appl. Mater. Interfaces 15(16), 20219–20227 (2023). https://doi.org/10.1021/acsami.3c00206
F. Zhang, Y. Zhou, Z. Chen, X. Niu, H. Wang et al., Large-area X-ray scintillator screen based on cesium hafnium chloride microcrystals films with high sensitivity and stability. Laser Photonics Rev. 17(5), 2200848 (2023). https://doi.org/10.1002/lpor.202200848
L. Zi, J. Song, N. Wang, T. Wang, W. Li et al., X-ray quantum cutting scintillator based on CsPbClxBr3–x: Yb3+ single crystals. Laser Photonics Rev. 17(5), 2200852 (2023). https://doi.org/10.1002/lpor.202200852
D.-Y. Li, Y.-B. Shang, Q. Liu, H.-W. Zhang, X.-Y. Zhang et al., 0D hybrid indium halide as a highly efficient X-ray scintillation and ultra-sensitive fluorescent probe. Mater. Horiz. 10(11), 5004–5015 (2023). https://doi.org/10.1039/D3MH00536D
S. Wang, W. Huang, X. Liu, S. Wang, H. Ye et al., Ruddlesden–popper perovskite nanocrystals stabilized in mesoporous silica with efficient carrier dynamics for flexible X-ray scintillator. Adv. Funct. Mater. 33(3), 2210765 (2023). https://doi.org/10.1002/adfm.202210765
P. Ran, L. Yang, T. Jiang, X. Xu, J. Hui et al., Multispectral large-panel X-ray imaging enabled by stacked metal halide scintillators. Adv. Mater. 34(42), e2205458 (2022). https://doi.org/10.1002/adma.202205458
X. Wang, X. Zhang, S. Yan, H. Liu, Y. Zhang, Nearly-unity quantum yield and 12-hour afterglow from a transparent perovskite of Cs2NaScCl6: Tb. Angew. Chem. Int. Ed. 134(40), e202210853 (2022). https://doi.org/10.1002/ange.202210853
Z. Zhang, Q. Han, J.W. Lau, B. Xing, Lanthanide-doped upconversion nanops meet the needs for cutting-edge bioapplications: recent progress and perspectives. ACS Mater. Lett. 2(11), 1516–1531 (2020). https://doi.org/10.1021/acsmaterialslett.0c00377
L. Han, B. Sun, C. Guo, G. Peng, H. Chen et al., Photophysics in zero-dimensional potassium-doped cesium copper chloride Cs3Cu2Cl5 nanosheets and its application for high-performance flexible X-Ray detection. Adv. Opt. Mater. 10(6), 2102453 (2022). https://doi.org/10.1002/adom.202102453
W. Chen, T. Wang, T. Wang, J. Yu, S. Yao et al., Customizable scintillator of Cs3Cu2I5: 2% In+ @Paper for large-area X-ray imaging. Adv. Sci. 10(34), e2304957 (2023). https://doi.org/10.1002/advs.202304957
V. Naresh, P.-R. Cha, N. Lee, Cs2NaGdCl6: Tb3+─A highly luminescent rare-earth double perovskite scintillator for low-dose X-ray detection and imaging. ACS Appl. Mater. Interfaces 16(15), 19068–19080 (2024). https://doi.org/10.1021/acsami.3c17301
W. Li, L. Yuan, H. Wu, Y. Jin, Tb3+-doped a zero-dimensional all-inorganic metal halide perovskite scintillator Cs2ScCl5·H2O for X-ray imaging. Opt. Mater. 157, 116130 (2024). https://doi.org/10.1016/j.optmat.2024.116130
J. Shi, Z. Wang, L. Xu, J. Wang, Z. Da et al., In situ growth of lead-free double perovskite micron sheets in polymethyl methacrylate for X-ray imaging. Adv. Opt. Mater. 12(22), 2400691 (2024). https://doi.org/10.1002/adom.202400691
Y.-Y. Wang, W.-T. Song, X.-R. Yao, X.-Y. Chen, M.-T. Cheng et al., A new polar lead-free hybrid halide X-ray scintillator. Adv. Opt. Mater. 12(22), 2400190 (2024). https://doi.org/10.1002/adom.202400190
T. Feng, Z.-A. Zhou, Y.-N. An, L. Chen, Y. Fu et al., Large-area transparent antimony-based perovskite glass for high-resolution X-ray imaging. ACS Nano 18(26), 16715–16725 (2024). https://doi.org/10.1021/acsnano.4c01761
J. Li, Q. Hu, J. Xiao, Z.-G. Yan, High-stability double perovskite scintillator for flexible X-ray imaging. J. Colloid Interface Sci. 671, 725–731 (2024). https://doi.org/10.1016/j.jcis.2024.05.203
Y. Zhang, K. Li, L. Niu, J. Ren, X. Liu et al., Eu2+ doped cesium alkaline earth chloride nanocrystals in glass for X-ray imaging. Ceram. Int. 50(17), 31673–31679 (2024). https://doi.org/10.1016/j.ceramint.2024.05.475
W. Bu, Y. Yan, P. Liu, T. Wang, S. Wang et al., In-situ growth of Cs5Cu3Cl6I2 nanocrystals within AAO arrays for X-ray imaging. Chem. Eng. J. 492, 151908 (2024). https://doi.org/10.1016/j.cej.2024.151908
Y. Zhang, M. Shen, B. Cheng, W. Ma, X. Huang et al., Ultrafast scintillation at room temperature achieved in CsPbCl3-based single crystals through Br over-doping. J. Mater. Chem. C 12(20), 7169–7175 (2024). https://doi.org/10.1039/D4TC00880D
J.-A. Lai, P. Wang, B. Zheng, T. Xuan, D. Wu et al., Enhanced performance in cesium tellurium chlorine by hafnium alloying for X-ray computed tomography imaging. Adv. Opt. Mater. 12(17), 2303297 (2024). https://doi.org/10.1002/adom.202303297
Y. Wang, C. Wang, L. Men, Q. Hu, J. Xiao, Colloidal synthesis of hollow double perovskite nanocrystals and their applications in X-ray imaging. Inorg. Chem. 63(12), 5734–5742 (2024). https://doi.org/10.1021/acs.inorgchem.4c00280
J. Qiu, H. Zhao, Z. Mu, J. Chen, H. Gu et al., Turning nonemissive CsPb2Br5 crystals into high-performance scintillators through alkali metal doping. Nano Lett. 24(8), 2503–2510 (2024). https://doi.org/10.1021/acs.nanolett.3c04455
W. Xiang, D. Shen, X. Zhang, X. Li, Y. Liu et al., Transparent and planar Cs3Cu2Cl5 crystals for micrometer-resolution X-ray imaging screen. ACS Appl. Mater. Interfaces 16(4), 4918–4924 (2024). https://doi.org/10.1021/acsami.3c15764
M. Wang, X. Qing, T. Du, C. Wu, X. Han, Te4+-doped Cs2SnCl6 scintillator for flexible and efficient X-ray imaging screens. J. Mater. Chem. C 12(6), 2241–2246 (2024). https://doi.org/10.1039/D3TC03818A
N. Liu, J. Luo, Q. Guo, P. Du, L. Gao et al., Reduced self-absorption of quasi-2D perovskites and their application in color conversion layers. Adv. Opt. Mater. 11(1), 2202118 (2023). https://doi.org/10.1002/adom.202202118
T. Haposan, A. Arramel, P.Y.D. Maulida, S. Hartati, A.A. Afkauni et al., All-inorganic copper-halide perovskites for large-Stokes shift and ten-nanosecond-emission scintillators. J. Mater. Chem. C 12(7), 2398–2409 (2024). https://doi.org/10.1039/D3TC03977C
S. Cheng, M. Nikl, A. Beitlerova, R. Kucerkova, X. Du et al., Ultrabright and highly efficient all-inorganic zero-dimensional perovskite scintillators. Adv. Opt. Mater. 9(13), 2100460 (2021). https://doi.org/10.1002/adom.202100460
W.J. Mir, Y. Mahor, A. Lohar, M. Jagadeeswararao, S. Das et al., Postsynthesis doping of Mn and Yb into CsPbX3 (X = Cl, Br, or I) perovskite nanocrystals for downconversion emission. Chem. Mater. 30(22), 8170–8178 (2018). https://doi.org/10.1021/acs.chemmater.8b03066
V. Pinchetti, A. Anand, Q.A. Akkerman, D. Sciacca, M. Lorenzon et al., Trap-mediated two-step sensitization of manganese dopants in perovskite nanocrystals. ACS Energy Lett. 4(1), 85–93 (2019). https://doi.org/10.1021/acsenergylett.8b02052
W. Liu, Q. Lin, H. Li, K. Wu, I. Robel et al., Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. J. Am. Chem. Soc. 138(45), 14954–14961 (2016). https://doi.org/10.1021/jacs.6b08085
S. Das Adhikari, A.K. Guria, N. Pradhan, Insights of doping and the photoluminescence properties of Mn-doped perovskite nanocrystals. J. Phys. Chem. Lett. 10(9), 2250–2257 (2019). https://doi.org/10.1021/acs.jpclett.9b00182
S. Paul, E. Bladt, A.F. Richter, M. Döblinger, Y. Tong et al., Manganese-doping-induced quantum confinement within host perovskite nanocrystals through ruddlesden–popper defects. Angew. Chem. Int. Ed. 59(17), 6794–6799 (2020). https://doi.org/10.1002/anie.201914473
G. Huang, C. Wang, S. Xu, S. Zong, J. Lu et al., Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange. Adv. Mater. 29(29), 1700095 (2017). https://doi.org/10.1002/adma.201700095
H. Xu, W. Liang, Z. Zhang, C. Cao, W. Yang et al., 2D perovskite Mn2+-doped Cs2CdBr2Cl2 scintillator for low-dose high-resolution X-ray imaging. Adv. Mater. 35(26), e2300136 (2023). https://doi.org/10.1002/adma.202300136
K. Li, W. Zhang, L. Niu, Y. Ye, J. Ren et al., Lead-free cesium manganese halide nanocrystals embedded glasses for X-ray imaging. Adv. Sci. 10(4), 2204843 (2023). https://doi.org/10.1002/advs.202204843
D.J. Kiebala, R. Style, D. Vanhecke, C. Calvino, C. Weder et al., Sub-micrometer mechanochromic inclusions enable strain sensing in polymers. Adv. Funct. Mater. 33(50), 2304938 (2023). https://doi.org/10.1002/adfm.202304938
B. Wang, X. Ouyang, X. He, Z. Deng, Y. Zhou et al., High-resolution X-ray imaging of Mn enhanced lead-free halide scintillators in pixelated array structures. Adv. Opt. Mater. 11(17), 2300388 (2023). https://doi.org/10.1002/adom.202300388
N. Varnakavi, R. Rajavaram, K. Gupta, P.-R. Cha, N. Lee, Scintillation performance of Mn(II)-doped Cs2NaBiCl6 double perovskite nanocrystals for X-Ray imaging applications. Adv. Opt. Mater. 12(9), 2301868 (2024). https://doi.org/10.1002/adom.202301868
C. Wang, Z.-G. Yan, Y. Wang, J. Zhu, C. Peng et al., All-inorganic ruddlesden–popper perovskite Cs2CdCl4: Mn for low-dose and flexible X-ray imaging. ACS Mater. Lett. 6(4), 1429–1438 (2024). https://doi.org/10.1021/acsmaterialslett.3c01665
P. Pei, R. Wei, B. Wang, J. Su, Z. Zhang et al., An advanced tunable multimodal luminescent La4GeO8: Eu2+, Er3+ phosphor for multicolor anticounterfeiting. Adv. Funct. Mater. 31(31), 2102479 (2021). https://doi.org/10.1002/adfm.202102479
M.P. Davydova, L. Meng, M.I. Rakhmanova, Z. Jia, A.S. Berezin et al., Strong magnetically-responsive circularly polarized phosphorescence and X-ray scintillation in ultrarobust Mn(II)–organic helical chains. Adv. Mater. 35(35), 2303611 (2023). https://doi.org/10.1002/adma.202303611
H. Tang, Z. Jia, Y. Xu, Y. Liu, Q. Lin, Enhanced photoluminescence quantum yield of metal halide perovskite microcrystals for multiple optoelectronic applications. Small 20(4), 2304336 (2024). https://doi.org/10.1002/smll.202304336
Z. Wang, Y. Wei, C. Liu, Y. Liu, M. Hong, Mn2+-activated Cs3Cu2I5 nano-scintillators for ultra-high resolution flexible X-Ray imaging. Laser Photonics Rev. 17(6), 2200851 (2023). https://doi.org/10.1002/lpor.202200851
L. Li, Z. Fan, J. Zhang, D. Fan, X. Liu et al., Yellow emissive CsCu2I3 nanocrystals induced by Mn2+ for high-resolution X-ray imaging. Inorg. Chem. 62(49), 19848–19855 (2023). https://doi.org/10.1021/acs.inorgchem.3c03724
J. Barrio, A. Pedersen, S.C. Sarma, A. Bagger, M. Gong et al., FeNC oxygen reduction electrocatalyst with high utilization penta-coordinated sites. Adv. Mater. 35(14), e2211022 (2023). https://doi.org/10.1002/adma.202211022
J.-X. Zheng, Z.-A. Zhou, T. Feng, H. Li, C.-H. Sun et al., Hydrophobic long-chain two-dimensional perovskite scintillators for underwater X-ray imaging. Rare Met. 43(1), 175–185 (2024). https://doi.org/10.1007/s12598-023-02421-x
N. Kawano, M. Akatsuka, H. Kimura, D. Nakauchi, T. Kato et al., Scintillation properties of Mn-doped methylammonium lead chloride crystals. J. Mater. Sci. Mater. Electron. 32(10), 12903–12910 (2021). https://doi.org/10.1007/s10854-020-04480-7
X. Li, H. Guo, Y. Li, C. Lin, L. Xie, Enhancing persistent radioluminescence in perovskite scintillators through trap defect modulation. Mater. Chem. Front. 8(13), 2539–2548 (2024). https://doi.org/10.1039/D4QM00039K
B. Su, K. Han, Z. Xia, Mn2+-doped Cs2ZnBr4 scintillator for X-ray imaging. J. Mater. Chem. C 11(24), 8052–8061 (2023). https://doi.org/10.1039/D2TC04249E
K.E. Yorov, W.J. Mir, X. Song, L. Gutiérrez-Arzaluz, R. Naphade et al., Mn4+-doped fluoride nanocrystals enable high-resolution red-emitting X-ray imaging screens. ACS Mater. Lett. 4(11), 2273–2281 (2022). https://doi.org/10.1021/acsmaterialslett.2c00746
L.-J. Xu, X. Lin, Q. He, M. Worku, B. Ma, Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide. Nat. Commun. 11(1), 4329 (2020). https://doi.org/10.1038/s41467-020-18119-y
J. Jin, K. Han, Y. Hu, Z. Xia, Zn2+ doping in organic manganese(II) bromide hybrid scintillators toward enhanced light yield for X-ray imaging. Adv. Opt. Mater. 11(14), 2300330 (2023). https://doi.org/10.1002/adom.202300330
J. Zhang, X. Wang, W.-Q. Wang, X. Deng, C.-Y. Yue et al., Near-unity green luminescent hybrid manganese halides as X-ray scintillators. Inorg. Chem. 63(5), 2647–2654 (2024). https://doi.org/10.1021/acs.inorgchem.3c03924
X. Wang, X. Zhang, Y. Liu, Y. Zhang, Shape-on-demand synthesis of luminescent (ETP)2MnBr4 glass scintillator. Chem. Eng. J. 483, 149239 (2024). https://doi.org/10.1016/j.cej.2024.149239
Y. Xu, Z. Li, G. Peng, F. Qiu, Z. Li et al., Organic cation design of manganese halide hybrids glass toward low-temperature integrated efficient, scaling, and reproducible X-ray detector. Adv. Opt. Mater. 11(13), 2300216 (2023). https://doi.org/10.1002/adom.202300216
S. Wang, S. Feng, R. Li, J. Jin, J. Wu et al., Multiexciton generation from a 2D organic-inorganic hybrid perovskite with nearly 200% quantum yield of red phosphorescence. Adv. Mater. 35(18), e2211992 (2023). https://doi.org/10.1002/adma.202211992
F. Montanarella, K.M. McCall, K. Sakhatskyi, S. Yakunin, P. Trtik et al., Highly concentrated, zwitterionic ligand-capped Mn2+: CsPb(BrxCl1-x)3 nanocrystals as bright scintillators for fast neutron imaging. ACS Energy Lett. 6(12), 4365–4373 (2021). https://doi.org/10.1021/acsenergylett.1c01923
F. Wang, X. Liu, Multicolor tuning of lanthanide-doped nanops by single wavelength excitation. Acc. Chem. Res. 47(4), 1378–1385 (2014). https://doi.org/10.1021/ar5000067
Y. Wu, W. Wu, Combinations of superior inorganic phosphors for level-tunable information hiding and encoding. Adv. Opt. Mater. 9(17), 2100281 (2021). https://doi.org/10.1002/adom.202100281
B. Liu, C. Li, P. Yang, Z. Hou, J. Lin, 808-nm-light-excited lanthanide-doped nanops: rational design, luminescence control and theranostic applications. Adv. Mater. 29(18), 1605434 (2017). https://doi.org/10.1002/adma.201605434
G. Gao, A. Turshatov, I.A. Howard, D. Busko, R. Joseph et al., Up-conversion fluorescent labels for plastic recycling: a review. Adv. Sustain. Syst. 1(5), 1600033 (2017). https://doi.org/10.1002/adsu.201600033
L. Lei, Y. Wang, A. Kuzmin, Y. Hua, J. Zhao et al., Next generation lanthanide doped nanoscintillators and photon converters. eLight 2(1), 17 (2022). https://doi.org/10.1186/s43593-022-00024-0
G. Pan, X. Bai, D. Yang, X. Chen, P. Jing et al., Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties. Nano Lett. 17(12), 8005–8011 (2017). https://doi.org/10.1021/acs.nanolett.7b04575
M. Gandini, I. Villa, M. Beretta, C. Gotti, M. Imran et al., Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 15(6), 462–468 (2020). https://doi.org/10.1038/s41565-020-0683-8
Z. Wang, S. Li, G. Ren, S. Yao, D. Zhu et al., Flexible and reabsorption-free perovskite scintillators for low-dose X-ray detection and high-resolution imaging. ACS Photonics 11(8), 3003–3011 (2024). https://doi.org/10.1021/acsphotonics.4c00117
Z. Yang, J. Yao, L. Xu, W. Fan, J. Song, Designer bright and fast CsPbBr3 perovskite nanocrystal scintillators for high-speed X-ray imaging. Nat. Commun. 15(1), 8870 (2024). https://doi.org/10.1038/s41467-024-53263-9
H. Si, Z. Zhang, Q. Liao, G. Zhang, Y. Ou et al., A-site management for highly crystalline perovskites. Adv. Mater. 32(4), e1904702 (2020). https://doi.org/10.1002/adma.201904702
W.-G. Li, X.-D. Wang, Y.-H. Huang, D.-B. Kuang, Ultrasound-assisted crystallization enables large-area perovskite quasi-monocrystalline film for high-sensitive X-ray detection and imaging. Adv. Mater. 35(31), 2210878 (2023). https://doi.org/10.1002/adma.202210878
Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan et al., Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014). https://doi.org/10.1002/adma.201401685
J. Zhang, W. Liang, W. Yu, S. Yu, Y. Wu et al., A two-stage annealing strategy for crystallization control of CH3NH3PbI3 films toward highly reproducible perovskite solar cells. Small 14(26), 1800181 (2018). https://doi.org/10.1002/smll.201800181
S. Cui, J. Wang, H. Xie, Y. Zhao, Z. Li et al., Rubidium ions enhanced crystallinity for ruddlesden-popper perovskites. Adv. Sci. 7(24), 2002445 (2020). https://doi.org/10.1002/advs.202002445
V. Naresh, S. Singh, H. Soh, J. Lee, N. Lee, Dual-phase CsPbBr3–CsPb2Br5 perovskite scintillator for sensitive X-ray detection and imaging. Mater. Today Nano 23, 100364 (2023). https://doi.org/10.1016/j.mtnano.2023.100364
V.B. Mykhaylyk, H. Kraus, M. Saliba, Bright and fast scintillation of organolead perovskite MAPbBr3 at low temperatures. Mater. Horiz. 6(8), 1740–1747 (2019). https://doi.org/10.1039/C9MH00281B
S. Mahato, M. Makowski, S. Bose, D. Kowal, M.A. Kuddus Sheikh et al., Improvement of light output of MAPbBr 3 single crystal for ultrafast and bright cryogenic scintillator. J. Phys. Chem. Lett. 15(14), 3713–3720 (2024). https://doi.org/10.1021/acs.jpclett.4c00379
S. Kishimoto, K. Shibuya, F. Nishikido, M. Koshimizu, R. Haruki et al., Subnanosecond time-resolved X-ray measurements using an organic-inorganic perovskite scintillator. Appl. Phys. Lett. 93(26), 261901 (2008). https://doi.org/10.1063/1.3059562
X. Ou, X. Qin, B. Huang, J. Zan, Q. Wu et al., High-resolution X-ray luminescence extension imaging. Nature 590(7846), 410–415 (2021). https://doi.org/10.1038/s41586-021-03251-6
X. Zhou, K. Han, Y. Wang, J. Jin, S. Jiang et al., Energy-trapping management in X-ray storage phosphors for flexible 3D imaging. Adv. Mater. 35(16), e2212022 (2023). https://doi.org/10.1002/adma.202212022
L. Lu, S. Peng, L. Zhao, M. Zhang, J. Xiao et al., Visualized X-ray dosimetry for multienvironment applications. Nano Lett. 23(18), 8753–8760 (2023). https://doi.org/10.1021/acs.nanolett.3c02826
N. Zhang, R. Zhang, X. Xu, F. Wang, Z. Sun et al., X-ray-activated long afterglow double-perovskite scintillator for detection and extension imaging. Adv. Opt. Mater. 11(16), 2300187 (2023). https://doi.org/10.1002/adom.202300187
W. Bian, Y. Lin, T. Wang, X. Yu, J. Qiu et al., Direct identification of surface defects and their influence on the optical characteristics of upconversion nanops. ACS Nano 12(4), 3623–3628 (2018). https://doi.org/10.1021/acsnano.8b00741
C. Wang, X. Mao, Z. Wang, X. Xu, W. Guo et al., Synthesis and exciton dynamics of a one-dimensional organic copper halide perovskite. J. Phys. Chem. C 126(10), 4959–4964 (2022). https://doi.org/10.1021/acs.jpcc.1c10402
W. Shao, T. He, J.-X. Wang, Y. Zhou, P. Yuan et al., Transparent organic and metal halide tandem scintillators for high-resolution dual-energy X-ray imaging. ACS Energy Lett. 8(6), 2505–2512 (2023). https://doi.org/10.1021/acsenergylett.3c00784
X. Hu, S. Luo, J. Leng, C. Wang, Y. Chen et al., Density-discriminating chromatic X-ray imaging based on metal halide nanocrystal scintillators. Sci. Adv. 9(37), eadh5081 (2023). https://doi.org/10.1126/sciadv.adh5081
J. Hui, P. Ran, Y. Su, L. Yang, X. Xu et al., Stacked scintillators based multispectral X-ray imaging featuring quantum-cutting perovskite scintillators with 570 nm absorption-emission shift. Adv. Mater. 37(10), e2416360 (2025). https://doi.org/10.1002/adma.202416360
J. Pang, S. Zhao, X. Du, H. Wu, G. Niu et al., Vertical matrix perovskite X-ray detector for effective multi-energy discrimination. Light Sci. Appl. 11(1), 105 (2022). https://doi.org/10.1038/s41377-022-00791-y
B. Shabbir, J.C. Yu, T. Warnakula, R.A.W. Ayyubi, J.A. Pollock et al., Printable perovskite diodes for broad-spectrum multienergy X-ray detection. Adv. Mater. 35(20), e2210068 (2023). https://doi.org/10.1002/adma.202210068
W. Shao, T. He, L. Wang, J.-X. Wang, Y. Zhou et al., Capillary manganese halide needle-like array scintillator with isolated light crosstalk for micro-X-ray imaging. Adv. Mater. 36(21), 2312053 (2024). https://doi.org/10.1002/adma.202312053
X. Zhao, T. Jin, W. Gao, G. Niu, J. Zhu et al., Embedding Cs3Cu2I5 scintillators into anodic aluminum oxide matrix for high-resolution X-Ray imaging. Adv. Opt. Mater. 9(24), 2101194 (2021). https://doi.org/10.1002/adom.202101194
H. Li, H. Yang, R. Yuan, Z. Sun, Y. Yang et al., Ultrahigh spatial resolution, fast decay, and stable X-Ray scintillation screen through assembling CsPbBr3 nanocrystals arrays in anodized aluminum oxide. Adv. Opt. Mater. 9(24), 2101297 (2021). https://doi.org/10.1002/adom.202101297
W.E. van Eijk Carel, Inorganic scintillators in medical imaging. Phys. Med. Biol. 47(8), R85–R106 (2002). https://doi.org/10.1088/0031-9155/47/8/201
J. Hui, P. Ran, Y. Su, L. Yang, X. Xu et al., High-resolution X-ray imaging based on solution-phase-synthesized Cs3Cu2I5 scintillator nanowire array. J. Phys. Chem. C 126(30), 12882–12888 (2022). https://doi.org/10.1021/acs.jpcc.2c03453
M. Li, Y. Wang, L. Yang, Z. Chai, Y. Wang et al., Circularly polarized radioluminescence from chiral perovskite scintillators for improved X-ray imaging. Angew. Chem. Int. Ed. 134(37), e202208440 (2022). https://doi.org/10.1002/ange.202208440
M. Wang, X. Wang, B. Zhang, F. Li, H. Meng et al., Chiral hybrid manganese(ii) halide clusters with circularly polarized luminescence for X-ray imaging. J. Mater. Chem. C 11(9), 3206–3212 (2023). https://doi.org/10.1039/D2TC05379A
M.P. Davydova, L. Meng, M.I. Rakhmanova, I.Y. Bagryanskaya, V.S. Sulyaeva et al., Highly emissive chiral Mn(II) bromide hybrids for UV-pumped circularly polarized LEDs and scintillator image applications. Adv. Opt. Mater. 11(8), 2202811 (2023). https://doi.org/10.1002/adom.202202811
J. Wu, S. You, P. Yu, Q. Guan, Z.-K. Zhu et al., Chirality inducing polar photovoltage in a 2D lead-free double perovskite toward self-powered X-ray detection. ACS Energy Lett. 8(6), 2809–2816 (2023). https://doi.org/10.1021/acsenergylett.3c00629
S. Cho, S. Kim, J. Kim, Y. Jo, I. Ryu et al., Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Light Sci. Appl. 9, 156 (2020). https://doi.org/10.1038/s41377-020-00391-8
T. Jiang, W. Ma, H. Zhang, Y. Tian, G. Lin et al., Highly efficient and tunable emission of lead-free manganese halides toward white light-emitting diode and X-ray scintillation applications. Adv. Funct. Mater. 31(14), 2009973 (2021). https://doi.org/10.1002/adfm.202009973
Y. Wei, H. Ebendorff-Heidepriem, J. Zhao, Recent advances in hybrid optical materials: integrating nanops within a glass matrix. Adv. Opt. Mater. 7(21), 1900702 (2019). https://doi.org/10.1002/adom.201900702
J. Nie, C. Li, S. Zhou, J. Huang, X. Ouyang et al., High photoluminescence quantum yield perovskite/polymer nanocomposites for high contrast X-ray imaging. ACS Appl. Mater. Interfaces 13(45), 54348–54353 (2021). https://doi.org/10.1021/acsami.1c15613
B. Wang, P. Li, Y. Zhou, Z. Deng, X. Ouyang et al., Cs3Cu2I5 perovskite nanops in polymer matrix as large-area scintillation screen for high-definition X-ray imaging. ACS Appl. Nano Mater. 5(7), 9792–9798 (2022). https://doi.org/10.1021/acsanm.2c01996
A. Giuri, A.C. Chekkallur, M. Calora, R. Mastria, L. Martinazzoli et al., 3D printed ultra-fast plastic scintillators based on perovskite-photocurable polymer composite. Adv. Funct. Mater. 35(12), 2417653 (2025). https://doi.org/10.1002/adfm.202417653
X. Wu, Z. Guo, S. Zhu, B. Zhang, S. Guo et al., Ultrathin, transparent, and high density perovskite scintillator film for high resolution X-ray microscopic imaging. Adv. Sci. 9(17), e2200831 (2022). https://doi.org/10.1002/advs.202200831
K. Han, K. Sakhatskyi, J. Jin, Q. Zhang, M.V. Kovalenko et al., Seed-crystal-induced cold sintering toward metal halide transparent ceramic scintillators. Adv. Mater. 34(17), e2110420 (2022). https://doi.org/10.1002/adma.202110420
X. Hao, L. Nie, X. Zhu, G. Zeng, C. Liu et al., High-resolution X-ray image from copper-based perovskite hybrid polymer. ACS Appl. Mater. Interfaces 16(22), 29210–29216 (2024). https://doi.org/10.1021/acsami.4c03401
B. Li, Y. Xu, X. Zhang, K. Han, J. Jin et al., Zero-dimensional luminescent metal halide hybrids enabling bulk transparent medium as large-area X-ray scintillators. Adv. Opt. Mater. 10(10), 2102793 (2022). https://doi.org/10.1002/adom.202102793
A.J.J.M. van Breemen, M. Simon, O. Tousignant, S. Shanmugam, J.-L. van der Steen et al., Curved digital X-ray detectors. NPJ Flex. Electron. 4, 22 (2020). https://doi.org/10.1038/s41528-020-00084-7
Y. Zhou, X. Wang, T. He, H. Yang, C. Yang et al., Large-area perovskite-related copper halide film for high-resolution flexible X-ray imaging scintillation screens. ACS Energy Lett. 7(2), 844–846 (2022). https://doi.org/10.1021/acsenergylett.2c00075
L. Lian, X. Wang, P. Zhang, J. Zhu, X. Zhang et al., Highly luminescent zero-dimensional organic copper halides for X-ray scintillation. J. Phys. Chem. Lett. 12(29), 6919–6926 (2021). https://doi.org/10.1021/acs.jpclett.1c01946
W. Li, Y. Li, Y. Wang, Z. Zhou, C. Wang et al., Highly efficient and flexible scintillation screen based on organic Mn(II) halide hybrids toward planar and nonplanar X-ray imaging. Laser Photonics Rev. 18(2), 2300860 (2024). https://doi.org/10.1002/lpor.202300860