Chemical Fermentation PoreCreation on Multilevel Bio-Carbon Structure with In Situ Ni–Fe Alloy Loading for Superior Oxygen Evolution Reaction Electrocatalysis
Corresponding Author: Qingyi Lu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 269
Abstract
In the quest for high-efficiency and cost-effective catalysts for the oxygen evolution reaction (OER), a novel biomass-driven strategy is developed to fabricate a unique one-dimensional rod-arrays@two-dimensional interlaced-sheets (C1D@2D) network. A groundbreaking chemical fermentation (CF) pore-generation mechanism, proposed for the first time for creating nanopores within carbon structures, is based on the optimal balance between gasification and solidification. This mechanism not only results in a distinctive C1D@2D multilevel network with nanoscale, intersecting and freely flowing channels but also introduces a novel concept for in situ, extensive and hierarchical pore formation. The unique architecture, combined with the homogeneous dispersion of Ni–Fe nanoparticles, facilitates easy electrolyte penetration and provides abundant active sites for the anchoring and dispersion of reactive molecules or ions. Consequently, the Ni–Fe@C1D@2D porous network demonstrates an exceptional OER electrocatalytic performance, achieving a record-low overpotential of 165 mV at 10 mA cm−2 and maintaining long-term stability for over 90 h. Theoretical calculations reveal that the porous structure markedly strengthens the interaction between alloy nanoparticles and the carbon matrix, thereby significantly boosting their electrocatalytic activity and stability. These findings unequivocally validate the CF pore-generation mechanism as a powerful and innovative strategy for designing highly efficient functional nanostructures.
Highlights:
1 A groundbreaking chemical fermentation pore-generation mechanism is developed for the first time for creating nanopores within carbon structures to form multilevel porous network based on the optimal balance between gasification and solidification.
2 The Ni–Fe@C1D@2D porous network demonstrates an exceptional oxygen evolution reaction electrocatalytic performance, achieving an ultralow overpotential of 165 mV at 10 mA cm−2 on a non-supported inert electrode and maintaining long-term stability for over 90 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.T.C. Vogt, B.M. Weckhuysen, The refinery of the future. Nature 629(8011), 295–306 (2024). https://doi.org/10.1038/s41586-024-07322-2
- C.A. Mirkin, E.H. Sargent, D.P. Schrag, Energy transition needs new materials. Science 384(6697), 713 (2024). https://doi.org/10.1126/science.adq3799
- P.C. Verpoort, L. Gast, A. Hofmann, F. Ueckerdt, Impact of global heterogeneity of renewable energy supply on heavy industrial production and green value chains. Nat. Energy 9(4), 491–503 (2024). https://doi.org/10.1038/s41560-024-01492-z
- B. Chandran, J. K. Oh, S. W. Lee, D. Y. Um, S. U. Kim et al., Solar-driven sustainability: III-V semiconductor for green energy production technologies. Nano-Micro Lett. 16(1), 244 (2024). https://doi.org/10.1007/s40820-024-01412-6
- W. Liu, C. Ni, M. Gao, X. Zhao, W. Zhang et al., Metal–organic-framework-based nanoarrays for oxygen evolution electrocatalysis. ACS Nano 17(24), 24564–24592 (2023). https://doi.org/10.1021/acsnano.3c09261
- H. Yu, A. Díaz, X. Lu, B. Sun, Y. Ding et al., Hydrogen embrittlement as a conspicuous material challenge—comprehensive review and future directions. Chem. Rev. 124(10), 6271–6392 (2024). https://doi.org/10.1021/acs.chemrev.3c00624
- J. Kang, G. Liu, Q. Hu, Y. Huang, L. M. Liu et al., Parallel nanosheet arrays for industrial oxygen production. J. Am. Chem. Soc. 145(46), 25143–25149 (2023). https://doi.org/10.1021/jacs.3c05688
- X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett. 16(1), 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
- J.R. Esquius, D.J. Morgan, G.A. Siller, D. Gianolio, M. Aramini, L. Lahn, O. Kasian, S.A. Kondrat, R. Schlögl, G.J. Hutchings, R. Arrigo, S.J. Freakley, Lithium-directed transformation of amorphous iridium (Oxy)hydroxides to produce active water oxidation catalysts. J. Am. Chem. Soc. 145(11), 6398–6409 (2023). https://doi.org/10.1021/jacs.2c13567
- Q. Huang, G. J. Xia, B. Huang, D. Xie, J. Wang et al., Activating lattice oxygen by a defect-engineered Fe2O3–CeO2 nano-heterojunction for efficient electrochemical water oxidation. Energy Environ. Sci. 17(14), 5260–5272 (2024). https://doi.org/10.1039/D4EE01588F
- W. Zhang, M. Niu, J. Yu, S. Li, Y. Wang et al., Mechanochemical post-synthesis of metal–organic framework-based pre-electrocatalysts with surface Fe–O–Ni/Co bonding for highly efficient oxygen evolution. Adv. Funct. Mater. 33(37), 2302014 (2023). https://doi.org/10.1002/adfm.202302014
- H. Zhou, F. Yu, Q. Zhu, J. Sun, F. Qin et al., Water splitting by electrolysis at high current densities under 1.6 volts. Energy Environ. Sci. 11(10), 2858–2864 (2018). https://doi.org/10.1039/C8EE00927A
- F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin et al., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9(1), 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z
- X. Kong, J. Xu, Z. Ju, C. Chen, Durable Ru nanocrystal with HfO2 modification for acidic overall water splitting. Nano-Micro Lett. 16(1), 185 (2024). https://doi.org/10.1007/s40820-024-01384-7
- Y. Kim, E. Choi, S. Kim, H. R. Byon, Layered transition metal oxides (LTMO) for oxygen evolution reactions and aqueous Li-ion batteries. Chem. Sci. 14(39), 10644–10663 (2023). https://doi.org/10.1039/d3sc03220e
- Y. Xie, Y. Feng, S. Pan, H. Bao, Y. Yu et al., Electrochemical leaching of Ni dopants in IrRu alloy electrocatalyst boosts overall water splitting. Adv. Funct. Mater. 34(41), 2406351 (2024). https://doi.org/10.1002/adfm.202406351
- Y. Wang, Y. Zhao, L. Liu, W. Qin, S. Liu et al., Mesoporous single crystals with Fe-rich skin for ultralow overpotential in oxygen evolution catalysis. Adv. Mater. 34(20), 2200088 (2022). https://doi.org/10.1002/adma.202200088
- J. Liu, L. Wu, D. Chen, Q. Xu, L. Chen et al., Regulation engineering of lignin-derived N-doped carbon-supported FeNi alloy ps towards efficient electrocatalytic oxygen evolution. Chem. Eng. Sci. 285, 119596 (2024). https://doi.org/10.1016/j.ces.2023.119596
- X. Xu, J. Xie, B. Liu, R. Wang, M. Liu et al., PBA-derived FeCo alloy with core-shell structure embedded in 2D N-doped ultrathin carbon sheets as a bifunctional catalyst for rechargeable Zn-air batteries. Appl. Catal. B Environ. 316, 121687 (2022). https://doi.org/10.1016/j.apcatb.2022.121687
- Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-Gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15(1), 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
- Z. Zheng, D. Wu, G. Chen, N. Zhang, H. Wan et al., Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation. Carbon Energy 4(5), 901–913 (2022). https://doi.org/10.1002/cey2.215
- K. Ding, J. Hu, W. Jin, L. Zhao, Y. Liu et al., Dianion induced electron delocalization of trifunctional electrocatalysts for rechargeable Zn–air batteries and self-powered water splitting. Adv. Funct. Mater. 32(29), 2201944 (2022). https://doi.org/10.1002/adfm.202201944
- C. Yang, Y. Gao, T. Ma, M. Bai, C. He et al., Metal alloys-structured electrocatalysts: metal–metal interactions, coordination microenvironments, and structural property–reactivity relationships. Adv. Mater. 35(51), 2301836 (2023). https://doi.org/10.1002/adma.202301836
- F. Zhou, M. Gan, D. Yan, X. Chen, X. Peng, Hydrogen-rich pyrolysis from Ni-Fe heterometallic schiff base centrosymmetric cluster facilitates NiFe alloy for efficient OER electrocatalysts. Small 19(24), 2208276 (2023). https://doi.org/10.1002/smll.202208276
- C. Wang, H. Yang, Y. Zhang, Q. Wang, NiFe alloy nanops with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew. Chem. Int. Ed. 58(18), 6099–6103 (2019). https://doi.org/10.1002/anie.201902446
- Y. Liu, L. Zhou, S. Liu, S. Li, J. Zhou et al., Fe, N-inducing interfacial electron redistribution in NiCo spinel on biomass-derived carbon for bi-functional oxygen conversion. Angew. Chem. Int. Ed. 63(16), e202319983 (2024). https://doi.org/10.1002/anie.202319983
- F. Qin, C. Zhang, G. Zeng, D. Huang, X. Tan et al., Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renew. Sustain. Energy Rev. 157, 112056 (2022). https://doi.org/10.1016/j.rser.2021.112056
- X. Luo, P. Ji, P. Wang, X. Tan, L. Chen et al., Spherical Ni3 S2/Fe-NiPx magic cube with ultrahigh water/seawater oxidation efficiency. Adv. Sci. 9(7), e2104846 (2022). https://doi.org/10.1002/advs.202104846
- H. Lei, L. Ma, Q. Wan, S. Tan, B. Yang et al., Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution. Adv. Energy Mater. 12(48), 2202522 (2022). https://doi.org/10.1002/aenm.202202522
- D. Wang, Q. Li, C. Han, Q. Lu, Z. Xing et al., Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 10(1), 3899 (2019). https://doi.org/10.1038/s41467-019-11765-x
- Y. Luo, L. Tang, U. Khan, Q. Yu, H. M. Cheng et al., Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10(1), 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
- S. Kandambeth, V.S. Kale, D. Fan, J.A. Bau, P.M. Bhatt et al., Unveiling chemically robust bimetallic squarate-based metal–organic frameworks for electrocatalytic oxygen evolution reaction. Adv. Energy Mater. 13(1), 2202964 (2023). https://doi.org/10.1002/aenm.202202964
- Y. Zhao, Z. Zhang, L. Liu, Y. Wang, T. Wu et al., S and O co-coordinated Mo single sites in hierarchically porous tubes from sulfur-enamine copolymerization for oxygen reduction and evolution. J. Am. Chem. Soc. 144(45), 20571–20581 (2022). https://doi.org/10.1021/jacs.2c05247
- S. Furukawa, K. Ehara, K. Ozawa, T. Komatsu, A study on the hydrogen activation properties of Ni-based intermetallics: a relationship between reactivity and the electronic state. Phys. Chem. Chem. Phys. 16(37), 19828–19831 (2014). https://doi.org/10.1039/C4CP01514B
- Y. S. Wei, L. Sun, M. Wang, J. Hong, L. Zou et al., Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. 59(37), 16013–16022 (2020). https://doi.org/10.1002/anie.202007221
- N. Yao, G. Wang, H. Jia, J. Yin, H. Cong et al., Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation. Angew. Chem. Int. Ed. 61(28), e202117178 (2022). https://doi.org/10.1002/anie.202117178
- K. Ham, S. Hong, S. Kang, K. Cho, J. Lee, Extensive active-site formation in trirutile CoSb2O6 by oxygen vacancy for oxygen evolution reaction in anion exchange membrane water splitting. ACS Energy Lett. 6(2), 364–370 (2021). https://doi.org/10.1021/acsenergylett.0c02359
- S. Ding, L. He, L. Fang, Y. Zhu, T. Li et al., Carbon-nanotube-bridging strategy for integrating single Fe atoms and NiCo nanops in a bifunctional oxygen electrocatalyst toward high-efficiency and long-life rechargeable zinc–air batteries. Adv. Energy Mater. 12(48), 2202984 (2022). https://doi.org/10.1002/aenm.202202984
- Y. J. Wu, J. Yang, T. X. Tu, W. Q. Li, P. F. Zhang et al., Evolution of cationic vacancy defects: a motif for surface restructuration of OER precatalyst. Angew. Chem. Int. Ed. 60(51), 26829–26836 (2021). https://doi.org/10.1002/anie.202112447
References
E.T.C. Vogt, B.M. Weckhuysen, The refinery of the future. Nature 629(8011), 295–306 (2024). https://doi.org/10.1038/s41586-024-07322-2
C.A. Mirkin, E.H. Sargent, D.P. Schrag, Energy transition needs new materials. Science 384(6697), 713 (2024). https://doi.org/10.1126/science.adq3799
P.C. Verpoort, L. Gast, A. Hofmann, F. Ueckerdt, Impact of global heterogeneity of renewable energy supply on heavy industrial production and green value chains. Nat. Energy 9(4), 491–503 (2024). https://doi.org/10.1038/s41560-024-01492-z
B. Chandran, J. K. Oh, S. W. Lee, D. Y. Um, S. U. Kim et al., Solar-driven sustainability: III-V semiconductor for green energy production technologies. Nano-Micro Lett. 16(1), 244 (2024). https://doi.org/10.1007/s40820-024-01412-6
W. Liu, C. Ni, M. Gao, X. Zhao, W. Zhang et al., Metal–organic-framework-based nanoarrays for oxygen evolution electrocatalysis. ACS Nano 17(24), 24564–24592 (2023). https://doi.org/10.1021/acsnano.3c09261
H. Yu, A. Díaz, X. Lu, B. Sun, Y. Ding et al., Hydrogen embrittlement as a conspicuous material challenge—comprehensive review and future directions. Chem. Rev. 124(10), 6271–6392 (2024). https://doi.org/10.1021/acs.chemrev.3c00624
J. Kang, G. Liu, Q. Hu, Y. Huang, L. M. Liu et al., Parallel nanosheet arrays for industrial oxygen production. J. Am. Chem. Soc. 145(46), 25143–25149 (2023). https://doi.org/10.1021/jacs.3c05688
X. Gao, Y. Chen, Y. Wang, L. Zhao, X. Zhao et al., Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro Lett. 16(1), 237 (2024). https://doi.org/10.1007/s40820-024-01424-2
J.R. Esquius, D.J. Morgan, G.A. Siller, D. Gianolio, M. Aramini, L. Lahn, O. Kasian, S.A. Kondrat, R. Schlögl, G.J. Hutchings, R. Arrigo, S.J. Freakley, Lithium-directed transformation of amorphous iridium (Oxy)hydroxides to produce active water oxidation catalysts. J. Am. Chem. Soc. 145(11), 6398–6409 (2023). https://doi.org/10.1021/jacs.2c13567
Q. Huang, G. J. Xia, B. Huang, D. Xie, J. Wang et al., Activating lattice oxygen by a defect-engineered Fe2O3–CeO2 nano-heterojunction for efficient electrochemical water oxidation. Energy Environ. Sci. 17(14), 5260–5272 (2024). https://doi.org/10.1039/D4EE01588F
W. Zhang, M. Niu, J. Yu, S. Li, Y. Wang et al., Mechanochemical post-synthesis of metal–organic framework-based pre-electrocatalysts with surface Fe–O–Ni/Co bonding for highly efficient oxygen evolution. Adv. Funct. Mater. 33(37), 2302014 (2023). https://doi.org/10.1002/adfm.202302014
H. Zhou, F. Yu, Q. Zhu, J. Sun, F. Qin et al., Water splitting by electrolysis at high current densities under 1.6 volts. Energy Environ. Sci. 11(10), 2858–2864 (2018). https://doi.org/10.1039/C8EE00927A
F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin et al., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting. Nat. Commun. 9(1), 2551 (2018). https://doi.org/10.1038/s41467-018-04746-z
X. Kong, J. Xu, Z. Ju, C. Chen, Durable Ru nanocrystal with HfO2 modification for acidic overall water splitting. Nano-Micro Lett. 16(1), 185 (2024). https://doi.org/10.1007/s40820-024-01384-7
Y. Kim, E. Choi, S. Kim, H. R. Byon, Layered transition metal oxides (LTMO) for oxygen evolution reactions and aqueous Li-ion batteries. Chem. Sci. 14(39), 10644–10663 (2023). https://doi.org/10.1039/d3sc03220e
Y. Xie, Y. Feng, S. Pan, H. Bao, Y. Yu et al., Electrochemical leaching of Ni dopants in IrRu alloy electrocatalyst boosts overall water splitting. Adv. Funct. Mater. 34(41), 2406351 (2024). https://doi.org/10.1002/adfm.202406351
Y. Wang, Y. Zhao, L. Liu, W. Qin, S. Liu et al., Mesoporous single crystals with Fe-rich skin for ultralow overpotential in oxygen evolution catalysis. Adv. Mater. 34(20), 2200088 (2022). https://doi.org/10.1002/adma.202200088
J. Liu, L. Wu, D. Chen, Q. Xu, L. Chen et al., Regulation engineering of lignin-derived N-doped carbon-supported FeNi alloy ps towards efficient electrocatalytic oxygen evolution. Chem. Eng. Sci. 285, 119596 (2024). https://doi.org/10.1016/j.ces.2023.119596
X. Xu, J. Xie, B. Liu, R. Wang, M. Liu et al., PBA-derived FeCo alloy with core-shell structure embedded in 2D N-doped ultrathin carbon sheets as a bifunctional catalyst for rechargeable Zn-air batteries. Appl. Catal. B Environ. 316, 121687 (2022). https://doi.org/10.1016/j.apcatb.2022.121687
Q. Zhou, C. Xu, J. Hou, W. Ma, T. Jian et al., Duplex interpenetrating-phase FeNiZn and FeNi3 heterostructure with low-Gibbs free energy interface coupling for highly efficient overall water splitting. Nano-Micro Lett. 15(1), 95 (2023). https://doi.org/10.1007/s40820-023-01066-w
Z. Zheng, D. Wu, G. Chen, N. Zhang, H. Wan et al., Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation. Carbon Energy 4(5), 901–913 (2022). https://doi.org/10.1002/cey2.215
K. Ding, J. Hu, W. Jin, L. Zhao, Y. Liu et al., Dianion induced electron delocalization of trifunctional electrocatalysts for rechargeable Zn–air batteries and self-powered water splitting. Adv. Funct. Mater. 32(29), 2201944 (2022). https://doi.org/10.1002/adfm.202201944
C. Yang, Y. Gao, T. Ma, M. Bai, C. He et al., Metal alloys-structured electrocatalysts: metal–metal interactions, coordination microenvironments, and structural property–reactivity relationships. Adv. Mater. 35(51), 2301836 (2023). https://doi.org/10.1002/adma.202301836
F. Zhou, M. Gan, D. Yan, X. Chen, X. Peng, Hydrogen-rich pyrolysis from Ni-Fe heterometallic schiff base centrosymmetric cluster facilitates NiFe alloy for efficient OER electrocatalysts. Small 19(24), 2208276 (2023). https://doi.org/10.1002/smll.202208276
C. Wang, H. Yang, Y. Zhang, Q. Wang, NiFe alloy nanops with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew. Chem. Int. Ed. 58(18), 6099–6103 (2019). https://doi.org/10.1002/anie.201902446
Y. Liu, L. Zhou, S. Liu, S. Li, J. Zhou et al., Fe, N-inducing interfacial electron redistribution in NiCo spinel on biomass-derived carbon for bi-functional oxygen conversion. Angew. Chem. Int. Ed. 63(16), e202319983 (2024). https://doi.org/10.1002/anie.202319983
F. Qin, C. Zhang, G. Zeng, D. Huang, X. Tan et al., Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renew. Sustain. Energy Rev. 157, 112056 (2022). https://doi.org/10.1016/j.rser.2021.112056
X. Luo, P. Ji, P. Wang, X. Tan, L. Chen et al., Spherical Ni3 S2/Fe-NiPx magic cube with ultrahigh water/seawater oxidation efficiency. Adv. Sci. 9(7), e2104846 (2022). https://doi.org/10.1002/advs.202104846
H. Lei, L. Ma, Q. Wan, S. Tan, B. Yang et al., Promoting surface reconstruction of NiFe layered double hydroxide for enhanced oxygen evolution. Adv. Energy Mater. 12(48), 2202522 (2022). https://doi.org/10.1002/aenm.202202522
D. Wang, Q. Li, C. Han, Q. Lu, Z. Xing et al., Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 10(1), 3899 (2019). https://doi.org/10.1038/s41467-019-11765-x
Y. Luo, L. Tang, U. Khan, Q. Yu, H. M. Cheng et al., Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun. 10(1), 269 (2019). https://doi.org/10.1038/s41467-018-07792-9
S. Kandambeth, V.S. Kale, D. Fan, J.A. Bau, P.M. Bhatt et al., Unveiling chemically robust bimetallic squarate-based metal–organic frameworks for electrocatalytic oxygen evolution reaction. Adv. Energy Mater. 13(1), 2202964 (2023). https://doi.org/10.1002/aenm.202202964
Y. Zhao, Z. Zhang, L. Liu, Y. Wang, T. Wu et al., S and O co-coordinated Mo single sites in hierarchically porous tubes from sulfur-enamine copolymerization for oxygen reduction and evolution. J. Am. Chem. Soc. 144(45), 20571–20581 (2022). https://doi.org/10.1021/jacs.2c05247
S. Furukawa, K. Ehara, K. Ozawa, T. Komatsu, A study on the hydrogen activation properties of Ni-based intermetallics: a relationship between reactivity and the electronic state. Phys. Chem. Chem. Phys. 16(37), 19828–19831 (2014). https://doi.org/10.1039/C4CP01514B
Y. S. Wei, L. Sun, M. Wang, J. Hong, L. Zou et al., Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. 59(37), 16013–16022 (2020). https://doi.org/10.1002/anie.202007221
N. Yao, G. Wang, H. Jia, J. Yin, H. Cong et al., Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation. Angew. Chem. Int. Ed. 61(28), e202117178 (2022). https://doi.org/10.1002/anie.202117178
K. Ham, S. Hong, S. Kang, K. Cho, J. Lee, Extensive active-site formation in trirutile CoSb2O6 by oxygen vacancy for oxygen evolution reaction in anion exchange membrane water splitting. ACS Energy Lett. 6(2), 364–370 (2021). https://doi.org/10.1021/acsenergylett.0c02359
S. Ding, L. He, L. Fang, Y. Zhu, T. Li et al., Carbon-nanotube-bridging strategy for integrating single Fe atoms and NiCo nanops in a bifunctional oxygen electrocatalyst toward high-efficiency and long-life rechargeable zinc–air batteries. Adv. Energy Mater. 12(48), 2202984 (2022). https://doi.org/10.1002/aenm.202202984
Y. J. Wu, J. Yang, T. X. Tu, W. Q. Li, P. F. Zhang et al., Evolution of cationic vacancy defects: a motif for surface restructuration of OER precatalyst. Angew. Chem. Int. Ed. 60(51), 26829–26836 (2021). https://doi.org/10.1002/anie.202112447