A Healable and Mechanically Enhanced Composite with Segregated Conductive Network Structure for High-Efficient Electromagnetic Interference Shielding
Corresponding Author: Zhong‑Ming Li
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 162
Abstract
It is still challenging for conductive polymer composite-based electromagnetic interference (EMI) shielding materials to achieve long-term stability while maintaining high EMI shielding effectiveness (EMI SE), especially undergoing external mechanical stimuli, such as scratches or large deformations. Herein, an electrostatic assembly strategy is adopted to design a healable and segregated carbon nanotube (CNT)/graphene oxide (GO)/polyurethane (PU) composite with excellent and reliable EMI SE, even bearing complex mechanical condition. The negatively charged CNT/GO hybrid is facilely adsorbed on the surface of positively charged PU microsphere to motivate formation of segregated conductive networks in CNT/GO/PU composite, establishing a high EMI SE of 52.7 dB at only 10 wt% CNT/GO loading. The Diels–Alder bonds in PU microsphere endow the CNT/GO/PU composite suffering three cutting/healing cycles with EMI SE retention up to 90%. Additionally, the electrostatic attraction between CNT/GO hybrid and PU microsphere helps to strong interfacial bonding in the composite, resulting in high tensile strength of 43.1 MPa and elongation at break of 626%. The healing efficiency of elongation at break achieves 95% when the composite endured three cutting/healing cycles. This work demonstrates a novel strategy for developing segregated EMI shielding composite with healable features and excellent mechanical performance and shows great potential in the durable and high precision electrical instruments.
Highlights:
1 The cationic waterborne polyurethanes microspheres with Diels-Alder bonds were synthesized for the first time.
2 The electrostatic attraction not only endows the composite with segregated structure to gain high electromagnetic-interference shielding effectiveness, but also greatly enhances mechanical properties.
3 Efficient healing property was realized under heating environment.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.T. Xu, Y. Wang, C.G. Zhou, W.J. Sun, K. Dai et al., An electrically conductive polymer composite with a co-continuous segregated structure for enhanced mechanical performance. J. Mater. Chem. C 8(33), 11546–11554 (2020). https://doi.org/10.1039/d0tc02265a
- Y. Yao, S. Jin, H. Zou, L. Li, X. Ma et al., Polymer-based lightweight materials for electromagnetic interference shielding: a review. J. Mater. Sci. 56(11), 6549–6580 (2021). https://doi.org/10.1007/s10853-020-05635-x
- J. Kruželák, A. Kvasničáková, K. Hložeková, I. Hudec, Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 3(1), 123–172 (2021). https://doi.org/10.1039/d0na00760a
- H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai et al., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006
- S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K. Khadheer Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A 114, 49–71 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006
- W.C. Yu, T. Wang, Y.H. Liu, Z.G. Wang, L. Xu et al., Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core. Chem. Eng. J. 393, 124644 (2020). https://doi.org/10.1016/j.cej.2020.124644
- D. Feng, Q. Wang, D. Xu, P. Liu, Microwave assisted sinter molding of polyetherimide/carbon nanotubes composites with segregated structure for high-performance EMI shielding applications. Compos. Sci. Technol. 182, 107753 (2019). https://doi.org/10.1016/j.compscitech.2019.107753
- L.C. Jia, C.G. Zhou, W.J. Sun, L. Xu, D.X. Yan et al., Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chem. Eng. J. 384, 123368 (2020). https://doi.org/10.1016/j.cej.2019.123368
- J. Zhang, H. Li, T. Xu, J. Wu, S. Zhou et al., Homogeneous silver nanoparticles decorating 3D carbon nanotube sponges as flexible high-performance electromagnetic shielding composite materials. Carbon 165, 404–411 (2020). https://doi.org/10.1016/j.carbon.2020.04.043
- S. Zhu, C. Xing, F. Wu, X. Zuo, Y. Zhang et al., Cake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shielding. Carbon 145, 259–265 (2019). https://doi.org/10.1016/j.carbon.2019.01.030
- D. Lu, Z. Mo, B. Liang, L. Yang, Z. He et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018). https://doi.org/10.1016/j.carbon.2018.03.061
- Z.H. Zhou, Y. Liang, H.D. Huang, L. Li, B. Yang et al., Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon 152, 316–324 (2019). https://doi.org/10.1016/j.carbon.2019.06.027
- J. Chen, X. Liao, W. Xiao, J. Yang, Q. Jiang et al., Facile and green method to structure ultralow-threshold and lightweight polystyrene/MWCNT composites with segregated conductive networks for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 7(11), 9904–9915 (2019). https://doi.org/10.1021/acssuschemeng.9b00678
- Y.F. Liu, L.M. Feng, Y.F. Chen, Y.D. Shi, X.D. Chen et al., Segregated polypropylene/cross-linked poly(ethylene-co-1-octene)/multi-walled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect: towards electromagnetic interference shielding and thermistors. Compos. Sci. Technol. 159, 152–161 (2018). https://doi.org/10.1016/j.compscitech.2018.02.041
- X.H. Tang, Y. Tang, Y. Wang, Y.X. Weng, M. Wang, Interfacial metallization in segregated poly (lactic acid)/poly (ε-caprolactone)/multi-walled carbon nanotubes composites for enhancing electromagnetic interference shielding. Compos. Part A 139, 106116 (2020). https://doi.org/10.1016/j.compositesa.2020.106116
- J.H. Cai, J. Li, X.D. Chen, M. Wang, Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor. Chem. Eng. J. 393, 124805 (2020). https://doi.org/10.1016/j.cej.2020.124805
- M. Wang, X.H. Tang, J.H. Cai, H. Wu, J.B. Shen et al., Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 177, 377–402 (2021). https://doi.org/10.1016/j.carbon.2021.02.047
- W.C. Yu, G.Q. Zhang, Y.H. Liu, L. Xu, D.X. Yan et al., Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks. Chem. Eng. J. 373, 556–564 (2019). https://doi.org/10.1016/j.cej.2019.05.074
- L. Xu, X.P. Zhang, C.H. Cui, P.G. Ren, D.X. Yan et al., Enhanced mechanical performance of segregated carbon nanotube/poly(iactic acid) composite for efficient electromagnetic interference shielding. Ind. Eng. Chem. Res. 58(11), 4454–4461 (2019). https://doi.org/10.1021/acs.iecr.8b05764
- H.Y. Wu, Y.P. Zhang, L.C. Jia, D.X. Yan, J.F. Gao et al., Injection molded segregated carbon nanotube/polypropylene composite for efficient electromagnetic interference shielding. Ind. Eng. Chem. Res. 57(37), 12378–12385 (2018). https://doi.org/10.1021/acs.iecr.8b02293
- L.C. Jia, D.X. Yan, X. Jiang, H. Pang, J.F. Gao et al., Synergistic effect of graphite and carbon nanotubes on improved electromagnetic interference shielding performance in segregated composites. Ind. Eng. Chem. Res. 57(35), 11929–11938 (2018). https://doi.org/10.1021/acs.iecr.8b03238
- S. Utrera-Barrios, R. Verdejo, M.A. López-Manchado, M. Hernández Santana, Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Mater Horiz 7, 2882–2902 (2020). https://doi.org/10.1039/d0mh00535e
- T.P. Huynh, P. Sonar, H. Haick, Advanced materials for use in soft self-healing devices. Adv. Mater. 29(19), 1604973 (2017). https://doi.org/10.1002/adma.201604973
- H.J. Sim, D.W. Lee, H. Kim, Y. Jang, G.M. Spinks et al., Self-healing graphene oxide-based composite for electromagnetic interference shielding. Carbon 155, 499–505 (2019). https://doi.org/10.1016/j.carbon.2019.08.073
- H.J. Sim, H. Kim, Y. Jang, G.M. Spinks, S. Gambhir et al., Self-healing electrode with high electrical conductivity and mechanical strength for artificial electronic skin. ACS Appl. Mater. Interfaces 11(49), 46026–46033 (2019). https://doi.org/10.1021/acsami.9b10100
- A.V. Menon, G. Madras, S. Bose, Light weight, ultrathin, and “thermally-clickable” self-healing MWNT patch as electromagnetic interference suppressor. Chem. Eng. J. 366, 72–82 (2019). https://doi.org/10.1016/j.cej.2019.02.086
- T. Wang, W.C. Yu, C.G. Zhou, W.J. Sun, Y.P. Zhang et al., Self-healing and flexible carbon nanotube/polyurethane composite for efficient electromagnetic interference shielding. Compos. Part-B 193, 108015 (2020). https://doi.org/10.1016/j.compositesb.2020.108015
- A.V. Menon, B. Choudhury, G. Madras, S. Bose, ‘Trigger-free’ self-healable electromagnetic shielding material assisted by co-doped graphene nanostructures. Chem. Eng. J. 382, 122816 (2020). https://doi.org/10.1016/j.cej.2019.122816
- W. Yang, B. Shao, T. Liu, Y. Zhang, R. Huang et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(9), 8245–8257 (2018). https://doi.org/10.1021/acsami.7b18700
- G. Li, P. Xiao, S. Hou, Y. Huang, Rapid and efficient polymer/graphene based multichannel self-healing material via Diels–Alder reaction. Carbon 147, 398–407 (2019). https://doi.org/10.1016/j.carbon.2019.03.021
- T. Wang, W.C. Yu, W.J. Sun, L.C. Jia, J.F. Gao et al., Healable polyurethane/carbon nanotube composite with segregated structure for efficient electromagnetic interference shielding. Compos. Sci. Technol. 200, 108446 (2020). https://doi.org/10.1016/j.compscitech.2020.108446
- S. Shin, J.T. Ault, J. Feng, P.B. Warren, H.A. Stone, Low-cost zeta potentiometry using solute gradients. Adv. Mater. 29(30), 1701516 (2017). https://doi.org/10.1002/adma.201701516
- Y.J. Kwon, Y. Kim, H. Jeon, S. Cho, W. Lee et al., Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites. Compos. Part-B 122, 23–30 (2017). https://doi.org/10.1016/j.compositesb.2017.04.005
- L. Tian, M.J. Meziani, F. Lu, C.Y. Kong, L. Cao et al., Graphene oxides for homogeneous dispersion of carbon nanotubes. ACS Appl. Mater. Interfaces 2(11), 3217–3222 (2010). https://doi.org/10.1021/am100687n
- G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
- W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
- L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric TI3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- L.C. Jia, K.Q. Ding, R.J. Ma, H.L. Wang, W.J. Sun et al., Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Adv. Mater. Technol. 4(2), 1800503 (2019). https://doi.org/10.1002/admt.201800503
- R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- S. Pande, A. Chaudhary, D. Patel, B.P. Singh, R.B. Mathur, Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications. RSC Adv. 4(27), 13839 (2014). https://doi.org/10.1039/c3ra47387b
- M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50(14), 5126–5134 (2012). https://doi.org/10.1016/j.carbon.2012.06.053
- T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu et al., Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016). https://doi.org/10.1016/j.carbon.2016.04.052
- M. Arjmand, M. Mahmoodi, G.A. Gelves, S. Park, U. Sundararaj, Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate. Carbon 49(11), 3430–3440 (2011). https://doi.org/10.1016/j.carbon.2011.04.039
- Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du et al., Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45(4), 821–827 (2007). https://doi.org/10.1016/j.carbon.2006.11.020
- Y. Huang, N. Li, Y. Ma, D. Feng, F. Li et al., The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45(8), 1614–1621 (2007). https://doi.org/10.1016/j.carbon.2007.04.016
- N.C. Das, Y. Liu, K. Yang, W. Peng, S. Maiti et al., Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 49(8), 1627–1634 (2009). https://doi.org/10.1002/pen.21384
- Y.L. Yang, M.C. Gupta, Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005). https://doi.org/10.1021/nl051375r
- N. Li, Y. Huang, F. Du, X.B. He, X. Lin et al., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006). https://doi.org/10.1021/nl0602589
- H. Wang, K. Zheng, X. Zhang, T. Du, C. Xiao et al., Segregated poly(vinylidene fluoride)/MWCNTs composites for high-performance electromagnetic interference shielding. Compos. Part-A 90, 606–613 (2016). https://doi.org/10.1016/j.compositesa.2016.08.030
- H. Duan, Y. Xu, D.X. Yan, Y. Yang, G. Zhao et al., Ultrahigh molecular weight polyethylene composites with segregated nickel conductive network for highly efficient electromagnetic interference shielding. Mater. Lett. 209, 353–356 (2017). https://doi.org/10.1016/j.matlet.2017.08.053
- H. Li, D. Yuan, P. Li, C. He, High conductive and mechanical robust carbon nanotubes/waterborne polyurethane composite films for efficient electromagnetic interference shielding. Compos. Part-A 121, 411–417 (2019). https://doi.org/10.1016/j.compositesa.2019.04.003
- H.Y. Wu, L.C. Jia, D.X. Yan, J.F. Gao, X.P. Zhang et al., Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 156, 87–94 (2018). https://doi.org/10.1016/j.compscitech.2017.12.027
- T. Tran-Quang, N.E. Lee, Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 29(3), 1603167 (2017). https://doi.org/10.1002/adma.201603167
- X. Dai, Y. Du, J. Yang, D. Wang, J. Gu et al., Recoverable and self-healing electromagnetic wave absorbing check tor nanocomposites. Compos. Sci. Technol. 174, 27–32 (2019). https://doi.org/10.1016/j.compscitech.2019.02.018
- J. Li, G. Zhang, R. Sun, C.-P. Wong, A covalently cross-linked reduced functionalized graphene oxide/polyurethane composite based on diels–alder chemistry and its potential application in healable flexible electronics. J. Mater. Chem. C 5(1), 220–228 (2017). https://doi.org/10.1039/c6tc04715g
- N. Tiwari, F. Ho, A. Ankit, N. Mathews, A rapid low temperature self-healable polymeric composite for flexible electronic devices. J. Mater. Chem. A 6(43), 21428–21434 (2018). https://doi.org/10.1039/c8ta08328b
- Y. Fang, X. Du, Y. Jiang, Z. Du, P. Pan et al., Thermal-driven self-healing and recyclable waterborne polyurethane films based on reversible covalent interaction. ACS Sustain. Chem. Eng. 6(11), 14490–14500 (2018). https://doi.org/10.1021/acssuschemeng.8b03151
References
Y.T. Xu, Y. Wang, C.G. Zhou, W.J. Sun, K. Dai et al., An electrically conductive polymer composite with a co-continuous segregated structure for enhanced mechanical performance. J. Mater. Chem. C 8(33), 11546–11554 (2020). https://doi.org/10.1039/d0tc02265a
Y. Yao, S. Jin, H. Zou, L. Li, X. Ma et al., Polymer-based lightweight materials for electromagnetic interference shielding: a review. J. Mater. Sci. 56(11), 6549–6580 (2021). https://doi.org/10.1007/s10853-020-05635-x
J. Kruželák, A. Kvasničáková, K. Hložeková, I. Hudec, Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 3(1), 123–172 (2021). https://doi.org/10.1039/d0na00760a
H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai et al., Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 140, 696–733 (2018). https://doi.org/10.1016/j.carbon.2018.09.006
S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K. Khadheer Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A 114, 49–71 (2018). https://doi.org/10.1016/j.compositesa.2018.08.006
W.C. Yu, T. Wang, Y.H. Liu, Z.G. Wang, L. Xu et al., Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core. Chem. Eng. J. 393, 124644 (2020). https://doi.org/10.1016/j.cej.2020.124644
D. Feng, Q. Wang, D. Xu, P. Liu, Microwave assisted sinter molding of polyetherimide/carbon nanotubes composites with segregated structure for high-performance EMI shielding applications. Compos. Sci. Technol. 182, 107753 (2019). https://doi.org/10.1016/j.compscitech.2019.107753
L.C. Jia, C.G. Zhou, W.J. Sun, L. Xu, D.X. Yan et al., Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chem. Eng. J. 384, 123368 (2020). https://doi.org/10.1016/j.cej.2019.123368
J. Zhang, H. Li, T. Xu, J. Wu, S. Zhou et al., Homogeneous silver nanoparticles decorating 3D carbon nanotube sponges as flexible high-performance electromagnetic shielding composite materials. Carbon 165, 404–411 (2020). https://doi.org/10.1016/j.carbon.2020.04.043
S. Zhu, C. Xing, F. Wu, X. Zuo, Y. Zhang et al., Cake-like flexible carbon nanotubes/graphene composite prepared via a facile method for high-performance electromagnetic interference shielding. Carbon 145, 259–265 (2019). https://doi.org/10.1016/j.carbon.2019.01.030
D. Lu, Z. Mo, B. Liang, L. Yang, Z. He et al., Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 133, 457–463 (2018). https://doi.org/10.1016/j.carbon.2018.03.061
Z.H. Zhou, Y. Liang, H.D. Huang, L. Li, B. Yang et al., Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon 152, 316–324 (2019). https://doi.org/10.1016/j.carbon.2019.06.027
J. Chen, X. Liao, W. Xiao, J. Yang, Q. Jiang et al., Facile and green method to structure ultralow-threshold and lightweight polystyrene/MWCNT composites with segregated conductive networks for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 7(11), 9904–9915 (2019). https://doi.org/10.1021/acssuschemeng.9b00678
Y.F. Liu, L.M. Feng, Y.F. Chen, Y.D. Shi, X.D. Chen et al., Segregated polypropylene/cross-linked poly(ethylene-co-1-octene)/multi-walled carbon nanotube nanocomposites with low percolation threshold and dominated negative temperature coefficient effect: towards electromagnetic interference shielding and thermistors. Compos. Sci. Technol. 159, 152–161 (2018). https://doi.org/10.1016/j.compscitech.2018.02.041
X.H. Tang, Y. Tang, Y. Wang, Y.X. Weng, M. Wang, Interfacial metallization in segregated poly (lactic acid)/poly (ε-caprolactone)/multi-walled carbon nanotubes composites for enhancing electromagnetic interference shielding. Compos. Part A 139, 106116 (2020). https://doi.org/10.1016/j.compositesa.2020.106116
J.H. Cai, J. Li, X.D. Chen, M. Wang, Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor. Chem. Eng. J. 393, 124805 (2020). https://doi.org/10.1016/j.cej.2020.124805
M. Wang, X.H. Tang, J.H. Cai, H. Wu, J.B. Shen et al., Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 177, 377–402 (2021). https://doi.org/10.1016/j.carbon.2021.02.047
W.C. Yu, G.Q. Zhang, Y.H. Liu, L. Xu, D.X. Yan et al., Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks. Chem. Eng. J. 373, 556–564 (2019). https://doi.org/10.1016/j.cej.2019.05.074
L. Xu, X.P. Zhang, C.H. Cui, P.G. Ren, D.X. Yan et al., Enhanced mechanical performance of segregated carbon nanotube/poly(iactic acid) composite for efficient electromagnetic interference shielding. Ind. Eng. Chem. Res. 58(11), 4454–4461 (2019). https://doi.org/10.1021/acs.iecr.8b05764
H.Y. Wu, Y.P. Zhang, L.C. Jia, D.X. Yan, J.F. Gao et al., Injection molded segregated carbon nanotube/polypropylene composite for efficient electromagnetic interference shielding. Ind. Eng. Chem. Res. 57(37), 12378–12385 (2018). https://doi.org/10.1021/acs.iecr.8b02293
L.C. Jia, D.X. Yan, X. Jiang, H. Pang, J.F. Gao et al., Synergistic effect of graphite and carbon nanotubes on improved electromagnetic interference shielding performance in segregated composites. Ind. Eng. Chem. Res. 57(35), 11929–11938 (2018). https://doi.org/10.1021/acs.iecr.8b03238
S. Utrera-Barrios, R. Verdejo, M.A. López-Manchado, M. Hernández Santana, Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Mater Horiz 7, 2882–2902 (2020). https://doi.org/10.1039/d0mh00535e
T.P. Huynh, P. Sonar, H. Haick, Advanced materials for use in soft self-healing devices. Adv. Mater. 29(19), 1604973 (2017). https://doi.org/10.1002/adma.201604973
H.J. Sim, D.W. Lee, H. Kim, Y. Jang, G.M. Spinks et al., Self-healing graphene oxide-based composite for electromagnetic interference shielding. Carbon 155, 499–505 (2019). https://doi.org/10.1016/j.carbon.2019.08.073
H.J. Sim, H. Kim, Y. Jang, G.M. Spinks, S. Gambhir et al., Self-healing electrode with high electrical conductivity and mechanical strength for artificial electronic skin. ACS Appl. Mater. Interfaces 11(49), 46026–46033 (2019). https://doi.org/10.1021/acsami.9b10100
A.V. Menon, G. Madras, S. Bose, Light weight, ultrathin, and “thermally-clickable” self-healing MWNT patch as electromagnetic interference suppressor. Chem. Eng. J. 366, 72–82 (2019). https://doi.org/10.1016/j.cej.2019.02.086
T. Wang, W.C. Yu, C.G. Zhou, W.J. Sun, Y.P. Zhang et al., Self-healing and flexible carbon nanotube/polyurethane composite for efficient electromagnetic interference shielding. Compos. Part-B 193, 108015 (2020). https://doi.org/10.1016/j.compositesb.2020.108015
A.V. Menon, B. Choudhury, G. Madras, S. Bose, ‘Trigger-free’ self-healable electromagnetic shielding material assisted by co-doped graphene nanostructures. Chem. Eng. J. 382, 122816 (2020). https://doi.org/10.1016/j.cej.2019.122816
W. Yang, B. Shao, T. Liu, Y. Zhang, R. Huang et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(9), 8245–8257 (2018). https://doi.org/10.1021/acsami.7b18700
G. Li, P. Xiao, S. Hou, Y. Huang, Rapid and efficient polymer/graphene based multichannel self-healing material via Diels–Alder reaction. Carbon 147, 398–407 (2019). https://doi.org/10.1016/j.carbon.2019.03.021
T. Wang, W.C. Yu, W.J. Sun, L.C. Jia, J.F. Gao et al., Healable polyurethane/carbon nanotube composite with segregated structure for efficient electromagnetic interference shielding. Compos. Sci. Technol. 200, 108446 (2020). https://doi.org/10.1016/j.compscitech.2020.108446
S. Shin, J.T. Ault, J. Feng, P.B. Warren, H.A. Stone, Low-cost zeta potentiometry using solute gradients. Adv. Mater. 29(30), 1701516 (2017). https://doi.org/10.1002/adma.201701516
Y.J. Kwon, Y. Kim, H. Jeon, S. Cho, W. Lee et al., Graphene/carbon nanotube hybrid as a multi-functional interfacial reinforcement for carbon fiber-reinforced composites. Compos. Part-B 122, 23–30 (2017). https://doi.org/10.1016/j.compositesb.2017.04.005
L. Tian, M.J. Meziani, F. Lu, C.Y. Kong, L. Cao et al., Graphene oxides for homogeneous dispersion of carbon nanotubes. ACS Appl. Mater. Interfaces 2(11), 3217–3222 (2010). https://doi.org/10.1021/am100687n
G.M. Weng, J. Li, M. Alhabeb, C. Karpovich, H. Wang et al., Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding. Adv. Funct. Mater. 28(44), 1803360 (2018). https://doi.org/10.1002/adfm.201803360
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu et al., Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 29(38), 1702367 (2017). https://doi.org/10.1002/adma.201702367
L.X. Liu, W. Chen, H.B. Zhang, Q.W. Wang, F. Guan et al., Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv. Funct. Mater. 29(44), 1905197 (2019). https://doi.org/10.1002/adfm.201905197
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric TI3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(51), 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
L.C. Jia, K.Q. Ding, R.J. Ma, H.L. Wang, W.J. Sun et al., Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Adv. Mater. Technol. 4(2), 1800503 (2019). https://doi.org/10.1002/admt.201800503
R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27(45), 1702807 (2017). https://doi.org/10.1002/adfm.201702807
S. Pande, A. Chaudhary, D. Patel, B.P. Singh, R.B. Mathur, Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications. RSC Adv. 4(27), 13839 (2014). https://doi.org/10.1039/c3ra47387b
M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50(14), 5126–5134 (2012). https://doi.org/10.1016/j.carbon.2012.06.053
T. Kuang, L. Chang, F. Chen, Y. Sheng, D. Fu et al., Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 105, 305–313 (2016). https://doi.org/10.1016/j.carbon.2016.04.052
M. Arjmand, M. Mahmoodi, G.A. Gelves, S. Park, U. Sundararaj, Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate. Carbon 49(11), 3430–3440 (2011). https://doi.org/10.1016/j.carbon.2011.04.039
Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du et al., Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45(4), 821–827 (2007). https://doi.org/10.1016/j.carbon.2006.11.020
Y. Huang, N. Li, Y. Ma, D. Feng, F. Li et al., The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45(8), 1614–1621 (2007). https://doi.org/10.1016/j.carbon.2007.04.016
N.C. Das, Y. Liu, K. Yang, W. Peng, S. Maiti et al., Single-walled carbon nanotube/poly(methyl methacrylate) composites for electromagnetic interference shielding. Polym. Eng. Sci. 49(8), 1627–1634 (2009). https://doi.org/10.1002/pen.21384
Y.L. Yang, M.C. Gupta, Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005). https://doi.org/10.1021/nl051375r
N. Li, Y. Huang, F. Du, X.B. He, X. Lin et al., Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141–1145 (2006). https://doi.org/10.1021/nl0602589
H. Wang, K. Zheng, X. Zhang, T. Du, C. Xiao et al., Segregated poly(vinylidene fluoride)/MWCNTs composites for high-performance electromagnetic interference shielding. Compos. Part-A 90, 606–613 (2016). https://doi.org/10.1016/j.compositesa.2016.08.030
H. Duan, Y. Xu, D.X. Yan, Y. Yang, G. Zhao et al., Ultrahigh molecular weight polyethylene composites with segregated nickel conductive network for highly efficient electromagnetic interference shielding. Mater. Lett. 209, 353–356 (2017). https://doi.org/10.1016/j.matlet.2017.08.053
H. Li, D. Yuan, P. Li, C. He, High conductive and mechanical robust carbon nanotubes/waterborne polyurethane composite films for efficient electromagnetic interference shielding. Compos. Part-A 121, 411–417 (2019). https://doi.org/10.1016/j.compositesa.2019.04.003
H.Y. Wu, L.C. Jia, D.X. Yan, J.F. Gao, X.P. Zhang et al., Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 156, 87–94 (2018). https://doi.org/10.1016/j.compscitech.2017.12.027
T. Tran-Quang, N.E. Lee, Recent progress on stretchable electronic devices with intrinsically stretchable components. Adv. Mater. 29(3), 1603167 (2017). https://doi.org/10.1002/adma.201603167
X. Dai, Y. Du, J. Yang, D. Wang, J. Gu et al., Recoverable and self-healing electromagnetic wave absorbing check tor nanocomposites. Compos. Sci. Technol. 174, 27–32 (2019). https://doi.org/10.1016/j.compscitech.2019.02.018
J. Li, G. Zhang, R. Sun, C.-P. Wong, A covalently cross-linked reduced functionalized graphene oxide/polyurethane composite based on diels–alder chemistry and its potential application in healable flexible electronics. J. Mater. Chem. C 5(1), 220–228 (2017). https://doi.org/10.1039/c6tc04715g
N. Tiwari, F. Ho, A. Ankit, N. Mathews, A rapid low temperature self-healable polymeric composite for flexible electronic devices. J. Mater. Chem. A 6(43), 21428–21434 (2018). https://doi.org/10.1039/c8ta08328b
Y. Fang, X. Du, Y. Jiang, Z. Du, P. Pan et al., Thermal-driven self-healing and recyclable waterborne polyurethane films based on reversible covalent interaction. ACS Sustain. Chem. Eng. 6(11), 14490–14500 (2018). https://doi.org/10.1021/acssuschemeng.8b03151