Flexible Polydimethylsiloxane Composite with Multi-Scale Conductive Network for Ultra-Strong Electromagnetic Interference Protection
Corresponding Author: Zhong‑Ming Li
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 15
Abstract
Highly conductive polymer composites (CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference (EMI) shielding materials, which can be used for the electromagnetic interference protection of flexible electronic devices. It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks. In this paper, a novel silver-plated polylactide short fiber (Ag@PLASF, AAF) was fabricated and was integrated with carbon nanotubes (CNT) to construct a multi-scale conductive network in polydimethylsiloxane (PDMS) matrix. The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m−1 and ultra-strong EMI shielding effectiveness (EMI SE) of up to 113 dB, containing only 5.0 vol% of AAF and 3.0 vol% of CNT (11.1wt% conductive filler content). Due to its excellent flexibility, the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy (60 °C for 7 days) and 10,000 bending-releasing cycles. This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace, environment and sensitive circuits against radiation for flexible electronic devices.
Highlights:
1 A multi-scale conductive network was constructed in flexible PDMS/Ag@PLASF/CNT composite with micro-size Ag@PLASF and nano-size CNT.
2 The PDMS/Ag@PLASF/CNT composite showed outstanding electrical conductivity of 440 S m-1 and superior electromagnetic interference shielding effectiveness of up to 113 dB.
3 The PDMS/Ag@PLASF/CNT composites owned good retention (> 90%) of electromagnetic interference shielding performance even after subjected to a simulated aging strategy or 10,000 bending-releasing cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Shen, Q. Zheng, J.K. Kim, Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 115, 100708 (2021). https://doi.org/10.1016/j.pmatsci.2020.100708
- V.O. Mercadillo, K.C. Chan, M. Caironi, A. Athanassiou, I.A. Kinloch et al., Electrically conductive 2D material coatings for flexible and stretchable electronics: a comparative review of graphenes and MXenes. Adv. Funct. Mater. 32(38), 2204772 (2022). https://doi.org/10.1002/adfm.202204772
- J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- L.C. Jia, D.X. Yan, X. Liu, R. Ma, H.Y. Wu et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces. 10(14), 11941–11949 (2018). https://doi.org/10.1021/acsami.8b00492
- H.Y. Wu, L.C. Jia, D.X. Yan, J.F. Gao, X.P. Zhang et al., Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 156, 87–94 (2018). https://doi.org/10.1016/j.compscitech.2017.12.027
- Y. Wei, H. Zhou, H. Deng, W. Ji, K. Tian et al., “Toolbox” for the processing of functional polymer composites. Nano-Micro Lett. 14, 35 (2021). https://doi.org/10.1007/s40820-021-00774-5
- T. Wang, W.W. Kong, W.C. Yu, J.F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
- Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
- K.K. Zou, S.Q. Yi, X.Y. Li, J. Li, Y.T. Xu et al., Efficient electromagnetic interference shielding of flexible Ag microfiber sponge/polydimethylsiloxane composite constructed by blow spinning. Compos. Sci. Technol. 220, 109281 (2022). https://doi.org/10.1016/j.compscitech.2022.109281
- Y.P. Jia, R.Z. Sun, Y.M. Pan, X. Wang, Z.Y. Zhai et al., Flexible and thin multifunctional waterborne polyurethane/Ag film for high-efficiency electromagnetic interference shielding, electro-thermal and strain sensing performances. Compos. B 210, 100708 (2021). https://doi.org/10.1016/j.compositesb.2021.108668
- H.K. Choi, A. Lee, M. Park, D.S. Lee, S. Bae et al., Hierarchical porous film with layer-by-layer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding. ACS Nano 15(1), 829–839 (2021). https://doi.org/10.1021/acsnano.0c07352
- Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), 1908496 (2020). https://doi.org/10.1002/adma.201908496
- V.V. Tran, D.D. Nguyen, A.T. Nguyen, M. Hofmann, Y.P. Hsieh et al., Electromagnetic interference shielding by transparent graphene/nickel mesh films. ACS Appl. Nano Mater. 3(8), 7474–7481 (2020). https://doi.org/10.1021/acsanm.0c01076
- Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14, 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
- H. Cheng, C. Cao, Q. Zhang, Y. Wang, Y. Liu et al., Enhancement of electromagnetic interference shielding performance and wear resistance of the UHMWPE/PP blend by constructing a segregated hybrid conductive carbon black-polymer network. ACS Omega 6(23), 15078–15088 (2021). https://doi.org/10.1021/acsomega.1c01240
- X. Sun, C. Huang, L. Wang, L. Liang, Y. Cheng et al., Recent progress in graphene/polymer nanocomposites. Adv. Mater. 33(6), 2001105 (2021). https://doi.org/10.1002/adma.202001105
- S. Lu, B. Ouyang, S. Han, F. Qiao, K. Chen et al., Flexible polypyrrole nanotube-polyethylene glycol-polyvinyl alcohol hydrogels for enhanced electromagnetic shielding. ACS Appl. Nano Mater. 5(8), 11407–11413 (2022). https://doi.org/10.1021/acsanm.2c02468
- Y. Zhang, Z.J. Yang, T. Pan, H. Gao, H.T. Guan et al., Construction of natural fiber/polyaniline core-shell heterostructures with tunable and excellent electromagnetic shielding capability via a facile secondary doping strategy. Compos. A 137, 105994 (2020). https://doi.org/10.1016/j.compositesa.2020.105994
- X.H. Fang, S.K. Zhao, Z. Qin, Y.H. Lv, K. Pan, Fingerprint-inspired high conductive PEDOT-coated nanofiber film for ultra-sensitive, stretchable, and flexible piezoresistive sensor. Adv. Mater. Technol. 7(1), 2100788 (2022). https://doi.org/10.1002/admt.202100788
- S.Q. Yi, H. Sun, Y.F. Jin, K.K. Zou, J. Li et al., CNT-assisted design of stable liquid metal droplets for flexible multifunctional composites. Compos. B 239, 109961 (2022). https://doi.org/10.1016/j.compositesb.2022.109961
- Y.Q. Wang, H.B. Zhao, J.B. Cheng, B.W. Liu, Q. Fu et al., Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins. Nano-Micro Lett. 14, 76 (2022). https://doi.org/10.1007/s40820-022-00817-5
- J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34(5), 2106253 (2022). https://doi.org/10.1002/adma.202106253
- S. Zhang, Y. Ma, L. Suresh, A. Hao, M. Bick et al., Carbon nanotube reinforced strong carbon matrix composites. ACS Nano 14(8), 9282–9319 (2020). https://doi.org/10.1021/acsnano.0c03268
- H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
- J.H. Lee, Y.S. Kim, H.J. Ru, S.Y. Lee, S.J. Park, Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nano-Micro Lett. 14, 188 (2022). https://doi.org/10.1007/s40820-022-00926-1
- Y.D. Shi, J. Li, Y.J. Tan, Y.F. Chen, M. Wang, Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites. Compos. Sci. Technol. 170, 70–76 (2019). https://doi.org/10.1016/j.compscitech.2018.11.033
- X.D. Qi, J.H. Yang, N. Zhang, T. Huang, Z.W. Zhou et al., Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends. Prog. Polym. Sci. 123, 101471 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101471
- Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue et al., Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2016). https://doi.org/10.1016/j.carbon.2015.10.004
- Q.F. Guan, Z.M. Han, K.P. Yang, H.B. Yang, Z.C. Ling et al., Sustainable double-network structural materials for electromagnetic shielding. Nano Lett. 21(6), 2532–2537 (2021). https://doi.org/10.1021/acs.nanolett.0c05081
- J. Li, Y. Wang, T.N. Yue, Y.N. Gao, Y.D. Shi et al., Robust electromagnetic interference shielding, joule heating, thermal conductivity, and anti-dripping performances of polyoxymethylene with uniform distribution and high content of carbon-based nanofillers. Compos. Sci. Technol. 206, 108681 (2021). https://doi.org/10.1016/j.compscitech.2021.108681
- G. Wu, Y. Chen, H. Zhan, H.T. Chen, J.H. Lin et al., Ultrathin and flexible carbon nanotube/polymer composite films with excellent mechanical strength and electromagnetic interference shielding. Carbon 158, 472–480 (2020). https://doi.org/10.1016/j.carbon.2019.11.014
- J.P. Zhang, H.T. Li, T. Xu, J.J. Wu, S.L. Zhou et al., Homogeneous silver nanops decorating 3D carbon nanotube sponges as flexible high-performance electromagnetic shielding composite materials. Carbon 165, 404–411 (2020). https://doi.org/10.1016/j.carbon.2020.04.043
- K. Huang, M.M. Chen, G. He, X.Y. Hu, W.Q. He et al., Stretchable microwave absorbing and electromagnetic interference shielding foam with hierarchical buckling induced by solvent swelling. Carbon 157, 466–477 (2020). https://doi.org/10.1016/j.carbon.2019.10.059
- Z.X. Xie, Y.F. Cai, Y.H. Zhan, Y.Y. Meng, Y.C. Li et al., Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 435, 135118 (2022). https://doi.org/10.1016/j.cej.2022.135118
- J.R. Tao, X.H. Tang, Q.M. He, M. Wang, Effect of surface conductivity on electromagnetic shielding of multi-walled carbon nanotubes/Poly(ε-caprolactone) composites. Compos. Sci. Technol. 229, 109715 (2022). https://doi.org/10.1016/j.compscitech.2022.109715
- Y.H. Zhan, Y. Cheng, N. Yan, Y.C. Li, Y.Y. Meng et al., Lightweight and self-healing carbon nanotube/acrylic copolymer foams: toward the simultaneous enhancement of electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 417, 129339 (2021). https://doi.org/10.1016/j.cej.2021.129339
- Y. Wu, X. Zhao, Y. Shang, S. Chang, L. Dai et al., Application-driven carbon nanotube functional materials. ACS Nano 15(5), 7946–7974 (2021). https://doi.org/10.1021/acsnano.0c10662
- J. Li, Y.J. Tan, Y.F. Chen, H. Wu, S. Guo et al., Constructing multiple interfaces in polydimethylsiloxane/multi-walled carbon nanotubes nanocomposites by the incorporation of cotton fibers for high-performance electromagnetic interference shielding and mechanical enhancement. Appl. Surf. Sci. 466, 657–665 (2019). https://doi.org/10.1016/j.apsusc.2018.10.079
- J.M. Yang, X. Liao, G. Wang, J. Chen, P.W. Song et al., Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding. Compos. Sci. Technol. 206, 108663 (2021). https://doi.org/10.1016/j.compscitech.2021.108663
- J. Li, W.J. Peng, Z.J. Fu, X.H. Tang, H. Wu et al., Achieving high electrical conductivity and excellent electromagnetic interference shielding in poly(lactic acid)/silver nanocomposites by constructing large-area silver nanoplates in polymer matrix. Compos. B 171, 204–213 (2019). https://doi.org/10.1016/j.compositesb.2019.05.003
- J.H. Cai, X.H. Tang, X.D. Chen, M. Wang, Temperature and strain-induced tunable electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites with temperature-sensitive microspheres. Compos. A 140, 106188 (2021). https://doi.org/10.1016/j.compositesa.2020.106188
- K. Qian, H. Wu, J. Fang, Y. Yang, M. Miao et al., Yarn-ball-shaped CNF/MWCNT microspheres intercalating Ti3C2Tx MXene for electromagnetic interference shielding films. Carbohydr. Polym. 254, 117325 (2021). https://doi.org/10.1016/j.carbpol.2020.117325
- J.J. Ju, T.R. Kuang, X.P. Ke, M. Zeng, Z. Chen et al., Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Compos. Sci. Technol. 193, 108116 (2020). https://doi.org/10.1016/j.compscitech.2020.108116
- A. Sheng, W. Ren, Y. Yang, D.X. Yan, H. Duan et al., Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. A 129, 105692 (2020). https://doi.org/10.1016/j.compositesa.2019.105692
- R.S. Li, L. Ding, Q. Gao, H.M. Zhang, D. Zeng et al., Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J. 415, 128930 (2021). https://doi.org/10.1016/j.cej.2021.128930
- V.T. Nguyen, B.K. Min, Y. Yi, S.J. Kim, C.G. Choi, MXene(Ti3C2Tx)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem. Eng. J. 393, 124608 (2020). https://doi.org/10.1016/j.cej.2020.124608
- A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh et al., Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core-shell tubes as an exceptional tracker for electromagnetic environmental pollution. J. Mater. Chem. A 2(10), 3581–3593 (2014). https://doi.org/10.1039/c3ta14212d
- K. Rajavel, Y.G. Hu, P.L. Zhu, R. Sun, C.P. Wong, MXene/metal oxides-Ag ternary nanostructures for electromagnetic interference shielding. Chem. Eng. J. 399, 125791 (2020). https://doi.org/10.1016/j.cej.2020.125791
- X. Lei, X.R. Zhang, A.R. Song, S. Gong, Y. Wang et al., Investigation of electrical conductivity and electromagnetic interference shielding performance of Au@CNT/sodium alginate/polydimethylsiloxane flexible composite. Compos. A 130, 105762 (2020). https://doi.org/10.1016/j.compositesa.2019.105762
- X.T. Yang, S.G. Fan, Y. Li, Y.Q. Guo, Y.G. Li et al., Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. A 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
- N. Bagotia, V. Choudhary, D.K. Sharma, Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Compos. B 159, 378–388 (2019). https://doi.org/10.1016/j.compositesb.2018.10.009
- I. Arief, S. Biswas, S. Bose, FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces 9(22), 19202–19214 (2017). https://doi.org/10.1021/acsami.7b04053
- H.J. Duan, P.Y. He, H.X. Zhu, Y.Q. Yang, G.Z. Zhao et al., Constructing 3D carbon-metal hybrid conductive network in polymer for ultra-efficient electromagnetic interference shielding. Compos. B 212, 108690 (2021). https://doi.org/10.1016/j.compositesb.2021.108690
- M. Sang, Y.X. Wu, S. Liu, L.F. Bai, S. Wang et al., Flexible and lightweight melamine sponge/MXene/polyborosiloxane (MSMP) hybrid structure for high-performance electromagnetic interference shielding and anti-impact safe-guarding. Compos. B 211, 108669 (2021). https://doi.org/10.1016/j.compositesb.2021.108669
- G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
- B. Zhao, S. Wang, C. Zhao, R. Li, S.M. Hamidinejad et al., Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon 127, 469–478 (2018). https://doi.org/10.1016/j.carbon.2017.11.032
- H. Zhang, G. Zhang, M. Tang, L. Zhou, J. Li et al., Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem. Eng. J. 353, 381–393 (2018). https://doi.org/10.1016/j.cej.2018.07.144
- S. Kuester, N.R. Demarquette, J.C. Ferreira, B.G. Soares, G.M.O. Barra, Hybrid nanocomposites of thermoplastic elastomer and carbon nanoadditives for electromagnetic shielding. Eur. Polym. J. 88, 328–339 (2017). https://doi.org/10.1016/j.eurpolymj.2017.01.023
- S.K. Singh, T. Sharan, A.K. Singh, Enhancing the axial ratio bandwidth of circularly polarized open ground slot CPW-fed antenna for multiband wireless communications. Eng. Sci. 17, 274–284 (2021). https://doi.org/10.30919/es8d557
- K. Hegde, R. Dilli, Wireless sensor networks: network life time enhancement using an improved grey wolf optimization algorithm. Eng. Sci. 19, 186–197 (2022). https://doi.org/10.30919/es8d717
- J. Xu, J. Cao, M. Guo, S. Yang, H. Yao et al., Metamaterial mechanical antenna for very low frequency wireless communication. Adv. Compos. Hybrid Mater. 4(3), 761–767 (2021). https://doi.org/10.1007/s42114-021-00278-1
- G.Y. Li, J. Li, Z.J. Li, Y.P. Zhang, X. Zhang et al., Hierarchical PVDF-HFP/ZnO composite nanofiber-based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv. Compos. Hybrid Mater. 5(2), 766–775 (2021). https://doi.org/10.1007/s42114-021-00331-z
- Z. Zhang, M. Liu, M.M. Ibrahim, H. Wu, Y. Wu et al., Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv. Compos. Hybrid Mater. 5(2), 1054–1066 (2022). https://doi.org/10.1007/s42114-022-00486-3
- P. Xie, Z. Shi, M. Feng, K. Sun, Y. Liu et al., Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv. Compos. Hybrid Mater. 5(2), 679–695 (2022). https://doi.org/10.1007/s42114-022-00479-2
- Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67(14), 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
- Y. Wang, P. Wang, Z. Du, C. Liu, C. Shen et al., Electromagnetic interference shielding enhancement of poly(lactic acid)-based carbonaceous nanocomposites by poly(ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv. Compos. Hybrid Mater. 5(1), 209–219 (2021). https://doi.org/10.1007/s42114-021-00320-2
- P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu et al., PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 16, 331–340 (2021). https://doi.org/10.30919/es8d518
- N. Wu, W. Du, Q. Hu, S. Vupputuri, Q. Jiang, Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng. Sci. 13, 11–23 (2020). https://doi.org/10.30919/es8d1149
- B. Dai, Y. Ma, F. Dong, J. Yu, M. Ma et al., Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5(2), 704–754 (2022). https://doi.org/10.1007/s42114-022-00510-6
- H. Cheng, L. Xing, Y. Zuo, Y. Pan, M. Huang et al., Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5(2), 755–765 (2022). https://doi.org/10.1007/s42114-022-00487-2
- F. Yao, W. Xie, C. Ma, D. Wang, Z.M. El-Bahy et al., Superb electromagnetic shielding polymer nanocomposites filled with 3-dimensional p-phenylenediamine/aniline copolymer nanofibers@copper foam hybrid nanofillers. Compos. B 245, 110236 (2022). https://doi.org/10.1016/j.compositesb.2022.110236
- X. Xu, F. Yao, O.A.A. Ali, W. Xie, S.F. Mahmoud et al., Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5(3), 2002–2011 (2022). https://doi.org/10.1007/s42114-022-00538-8
- Y. Zhang, Z. Ma, K. Ruan, J. Gu, Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 15(6), 5601–5609 (2022). https://doi.org/10.1007/s12274-022-4358-7
- Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4(2), 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
- H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4(3), 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
- Y. Guo, D. Wang, T. Bai, H. Liu, Y. Zheng et al., Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv. Compos. Hybrid Mater. 4(3), 602–613 (2021). https://doi.org/10.1007/s42114-021-00279-0
References
X. Shen, Q. Zheng, J.K. Kim, Rational design of two-dimensional nanofillers for polymer nanocomposites toward multifunctional applications. Prog. Mater. Sci. 115, 100708 (2021). https://doi.org/10.1016/j.pmatsci.2020.100708
V.O. Mercadillo, K.C. Chan, M. Caironi, A. Athanassiou, I.A. Kinloch et al., Electrically conductive 2D material coatings for flexible and stretchable electronics: a comparative review of graphenes and MXenes. Adv. Funct. Mater. 32(38), 2204772 (2022). https://doi.org/10.1002/adfm.202204772
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
L.C. Jia, D.X. Yan, X. Liu, R. Ma, H.Y. Wu et al., Highly efficient and reliable transparent electromagnetic interference shielding film. ACS Appl. Mater. Interfaces. 10(14), 11941–11949 (2018). https://doi.org/10.1021/acsami.8b00492
H.Y. Wu, L.C. Jia, D.X. Yan, J.F. Gao, X.P. Zhang et al., Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 156, 87–94 (2018). https://doi.org/10.1016/j.compscitech.2017.12.027
Y. Wei, H. Zhou, H. Deng, W. Ji, K. Tian et al., “Toolbox” for the processing of functional polymer composites. Nano-Micro Lett. 14, 35 (2021). https://doi.org/10.1007/s40820-021-00774-5
T. Wang, W.W. Kong, W.C. Yu, J.F. Gao, K. Dai et al., A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett. 13, 162 (2021). https://doi.org/10.1007/s40820-021-00693-5
Y. Zhang, J. Gu, A perspective for developing polymer-based electromagnetic interference shielding composites. Nano-Micro Lett. 14, 89 (2022). https://doi.org/10.1007/s40820-022-00843-3
K.K. Zou, S.Q. Yi, X.Y. Li, J. Li, Y.T. Xu et al., Efficient electromagnetic interference shielding of flexible Ag microfiber sponge/polydimethylsiloxane composite constructed by blow spinning. Compos. Sci. Technol. 220, 109281 (2022). https://doi.org/10.1016/j.compscitech.2022.109281
Y.P. Jia, R.Z. Sun, Y.M. Pan, X. Wang, Z.Y. Zhai et al., Flexible and thin multifunctional waterborne polyurethane/Ag film for high-efficiency electromagnetic interference shielding, electro-thermal and strain sensing performances. Compos. B 210, 100708 (2021). https://doi.org/10.1016/j.compositesb.2021.108668
H.K. Choi, A. Lee, M. Park, D.S. Lee, S. Bae et al., Hierarchical porous film with layer-by-layer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding. ACS Nano 15(1), 829–839 (2021). https://doi.org/10.1021/acsnano.0c07352
Z. Zeng, F. Jiang, Y. Yue, D. Han, L. Lin et al., Flexible and ultrathin waterproof cellular membranes based on high-conjunction metal-wrapped polymer nanofibers for electromagnetic interference shielding. Adv. Mater. 32(19), 1908496 (2020). https://doi.org/10.1002/adma.201908496
V.V. Tran, D.D. Nguyen, A.T. Nguyen, M. Hofmann, Y.P. Hsieh et al., Electromagnetic interference shielding by transparent graphene/nickel mesh films. ACS Appl. Nano Mater. 3(8), 7474–7481 (2020). https://doi.org/10.1021/acsanm.0c01076
Z. Zeng, G. Wang, B.F. Wolan, N. Wu, C. Wang et al., Printable aligned single-walled carbon nanotube film with outstanding thermal conductivity and electromagnetic interference shielding performance. Nano-Micro Lett. 14, 179 (2022). https://doi.org/10.1007/s40820-022-00883-9
H. Cheng, C. Cao, Q. Zhang, Y. Wang, Y. Liu et al., Enhancement of electromagnetic interference shielding performance and wear resistance of the UHMWPE/PP blend by constructing a segregated hybrid conductive carbon black-polymer network. ACS Omega 6(23), 15078–15088 (2021). https://doi.org/10.1021/acsomega.1c01240
X. Sun, C. Huang, L. Wang, L. Liang, Y. Cheng et al., Recent progress in graphene/polymer nanocomposites. Adv. Mater. 33(6), 2001105 (2021). https://doi.org/10.1002/adma.202001105
S. Lu, B. Ouyang, S. Han, F. Qiao, K. Chen et al., Flexible polypyrrole nanotube-polyethylene glycol-polyvinyl alcohol hydrogels for enhanced electromagnetic shielding. ACS Appl. Nano Mater. 5(8), 11407–11413 (2022). https://doi.org/10.1021/acsanm.2c02468
Y. Zhang, Z.J. Yang, T. Pan, H. Gao, H.T. Guan et al., Construction of natural fiber/polyaniline core-shell heterostructures with tunable and excellent electromagnetic shielding capability via a facile secondary doping strategy. Compos. A 137, 105994 (2020). https://doi.org/10.1016/j.compositesa.2020.105994
X.H. Fang, S.K. Zhao, Z. Qin, Y.H. Lv, K. Pan, Fingerprint-inspired high conductive PEDOT-coated nanofiber film for ultra-sensitive, stretchable, and flexible piezoresistive sensor. Adv. Mater. Technol. 7(1), 2100788 (2022). https://doi.org/10.1002/admt.202100788
S.Q. Yi, H. Sun, Y.F. Jin, K.K. Zou, J. Li et al., CNT-assisted design of stable liquid metal droplets for flexible multifunctional composites. Compos. B 239, 109961 (2022). https://doi.org/10.1016/j.compositesb.2022.109961
Y.Q. Wang, H.B. Zhao, J.B. Cheng, B.W. Liu, Q. Fu et al., Hierarchical Ti3C2Tx@ZnO hollow spheres with excellent microwave absorption inspired by the visual phenomenon of eyeless urchins. Nano-Micro Lett. 14, 76 (2022). https://doi.org/10.1007/s40820-022-00817-5
J. Liu, L. McKeon, J. Garcia, S. Pinilla, S. Barwich et al., Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 34(5), 2106253 (2022). https://doi.org/10.1002/adma.202106253
S. Zhang, Y. Ma, L. Suresh, A. Hao, M. Bick et al., Carbon nanotube reinforced strong carbon matrix composites. ACS Nano 14(8), 9282–9319 (2020). https://doi.org/10.1021/acsnano.0c03268
H. Abbasi, M. Antunes, J.I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 103, 319–373 (2019). https://doi.org/10.1016/j.pmatsci.2019.02.003
J.H. Lee, Y.S. Kim, H.J. Ru, S.Y. Lee, S.J. Park, Highly flexible fabrics/epoxy composites with hybrid carbon nanofillers for absorption-dominated electromagnetic interference shielding. Nano-Micro Lett. 14, 188 (2022). https://doi.org/10.1007/s40820-022-00926-1
Y.D. Shi, J. Li, Y.J. Tan, Y.F. Chen, M. Wang, Percolation behavior of electromagnetic interference shielding in polymer/multi-walled carbon nanotube nanocomposites. Compos. Sci. Technol. 170, 70–76 (2019). https://doi.org/10.1016/j.compscitech.2018.11.033
X.D. Qi, J.H. Yang, N. Zhang, T. Huang, Z.W. Zhou et al., Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends. Prog. Polym. Sci. 123, 101471 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101471
Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue et al., Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2016). https://doi.org/10.1016/j.carbon.2015.10.004
Q.F. Guan, Z.M. Han, K.P. Yang, H.B. Yang, Z.C. Ling et al., Sustainable double-network structural materials for electromagnetic shielding. Nano Lett. 21(6), 2532–2537 (2021). https://doi.org/10.1021/acs.nanolett.0c05081
J. Li, Y. Wang, T.N. Yue, Y.N. Gao, Y.D. Shi et al., Robust electromagnetic interference shielding, joule heating, thermal conductivity, and anti-dripping performances of polyoxymethylene with uniform distribution and high content of carbon-based nanofillers. Compos. Sci. Technol. 206, 108681 (2021). https://doi.org/10.1016/j.compscitech.2021.108681
G. Wu, Y. Chen, H. Zhan, H.T. Chen, J.H. Lin et al., Ultrathin and flexible carbon nanotube/polymer composite films with excellent mechanical strength and electromagnetic interference shielding. Carbon 158, 472–480 (2020). https://doi.org/10.1016/j.carbon.2019.11.014
J.P. Zhang, H.T. Li, T. Xu, J.J. Wu, S.L. Zhou et al., Homogeneous silver nanops decorating 3D carbon nanotube sponges as flexible high-performance electromagnetic shielding composite materials. Carbon 165, 404–411 (2020). https://doi.org/10.1016/j.carbon.2020.04.043
K. Huang, M.M. Chen, G. He, X.Y. Hu, W.Q. He et al., Stretchable microwave absorbing and electromagnetic interference shielding foam with hierarchical buckling induced by solvent swelling. Carbon 157, 466–477 (2020). https://doi.org/10.1016/j.carbon.2019.10.059
Z.X. Xie, Y.F. Cai, Y.H. Zhan, Y.Y. Meng, Y.C. Li et al., Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 435, 135118 (2022). https://doi.org/10.1016/j.cej.2022.135118
J.R. Tao, X.H. Tang, Q.M. He, M. Wang, Effect of surface conductivity on electromagnetic shielding of multi-walled carbon nanotubes/Poly(ε-caprolactone) composites. Compos. Sci. Technol. 229, 109715 (2022). https://doi.org/10.1016/j.compscitech.2022.109715
Y.H. Zhan, Y. Cheng, N. Yan, Y.C. Li, Y.Y. Meng et al., Lightweight and self-healing carbon nanotube/acrylic copolymer foams: toward the simultaneous enhancement of electromagnetic interference shielding and thermal insulation. Chem. Eng. J. 417, 129339 (2021). https://doi.org/10.1016/j.cej.2021.129339
Y. Wu, X. Zhao, Y. Shang, S. Chang, L. Dai et al., Application-driven carbon nanotube functional materials. ACS Nano 15(5), 7946–7974 (2021). https://doi.org/10.1021/acsnano.0c10662
J. Li, Y.J. Tan, Y.F. Chen, H. Wu, S. Guo et al., Constructing multiple interfaces in polydimethylsiloxane/multi-walled carbon nanotubes nanocomposites by the incorporation of cotton fibers for high-performance electromagnetic interference shielding and mechanical enhancement. Appl. Surf. Sci. 466, 657–665 (2019). https://doi.org/10.1016/j.apsusc.2018.10.079
J.M. Yang, X. Liao, G. Wang, J. Chen, P.W. Song et al., Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding. Compos. Sci. Technol. 206, 108663 (2021). https://doi.org/10.1016/j.compscitech.2021.108663
J. Li, W.J. Peng, Z.J. Fu, X.H. Tang, H. Wu et al., Achieving high electrical conductivity and excellent electromagnetic interference shielding in poly(lactic acid)/silver nanocomposites by constructing large-area silver nanoplates in polymer matrix. Compos. B 171, 204–213 (2019). https://doi.org/10.1016/j.compositesb.2019.05.003
J.H. Cai, X.H. Tang, X.D. Chen, M. Wang, Temperature and strain-induced tunable electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites with temperature-sensitive microspheres. Compos. A 140, 106188 (2021). https://doi.org/10.1016/j.compositesa.2020.106188
K. Qian, H. Wu, J. Fang, Y. Yang, M. Miao et al., Yarn-ball-shaped CNF/MWCNT microspheres intercalating Ti3C2Tx MXene for electromagnetic interference shielding films. Carbohydr. Polym. 254, 117325 (2021). https://doi.org/10.1016/j.carbpol.2020.117325
J.J. Ju, T.R. Kuang, X.P. Ke, M. Zeng, Z. Chen et al., Lightweight multifunctional polypropylene/carbon nanotubes/carbon black nanocomposite foams with segregated structure, ultralow percolation threshold and enhanced electromagnetic interference shielding performance. Compos. Sci. Technol. 193, 108116 (2020). https://doi.org/10.1016/j.compscitech.2020.108116
A. Sheng, W. Ren, Y. Yang, D.X. Yan, H. Duan et al., Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos. A 129, 105692 (2020). https://doi.org/10.1016/j.compositesa.2019.105692
R.S. Li, L. Ding, Q. Gao, H.M. Zhang, D. Zeng et al., Tuning of anisotropic electrical conductivity and enhancement of EMI shielding of polymer composite foam via CO2-assisted delamination and orientation of MXene. Chem. Eng. J. 415, 128930 (2021). https://doi.org/10.1016/j.cej.2021.128930
V.T. Nguyen, B.K. Min, Y. Yi, S.J. Kim, C.G. Choi, MXene(Ti3C2Tx)/graphene/PDMS composites for multifunctional broadband electromagnetic interference shielding skins. Chem. Eng. J. 393, 124608 (2020). https://doi.org/10.1016/j.cej.2020.124608
A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh et al., Encapsulation of γ-Fe2O3 decorated reduced graphene oxide in polyaniline core-shell tubes as an exceptional tracker for electromagnetic environmental pollution. J. Mater. Chem. A 2(10), 3581–3593 (2014). https://doi.org/10.1039/c3ta14212d
K. Rajavel, Y.G. Hu, P.L. Zhu, R. Sun, C.P. Wong, MXene/metal oxides-Ag ternary nanostructures for electromagnetic interference shielding. Chem. Eng. J. 399, 125791 (2020). https://doi.org/10.1016/j.cej.2020.125791
X. Lei, X.R. Zhang, A.R. Song, S. Gong, Y. Wang et al., Investigation of electrical conductivity and electromagnetic interference shielding performance of Au@CNT/sodium alginate/polydimethylsiloxane flexible composite. Compos. A 130, 105762 (2020). https://doi.org/10.1016/j.compositesa.2019.105762
X.T. Yang, S.G. Fan, Y. Li, Y.Q. Guo, Y.G. Li et al., Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. A 128, 105670 (2020). https://doi.org/10.1016/j.compositesa.2019.105670
N. Bagotia, V. Choudhary, D.K. Sharma, Synergistic effect of graphene/multiwalled carbon nanotube hybrid fillers on mechanical, electrical and EMI shielding properties of polycarbonate/ethylene methyl acrylate nanocomposites. Compos. B 159, 378–388 (2019). https://doi.org/10.1016/j.compositesb.2018.10.009
I. Arief, S. Biswas, S. Bose, FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl. Mater. Interfaces 9(22), 19202–19214 (2017). https://doi.org/10.1021/acsami.7b04053
H.J. Duan, P.Y. He, H.X. Zhu, Y.Q. Yang, G.Z. Zhao et al., Constructing 3D carbon-metal hybrid conductive network in polymer for ultra-efficient electromagnetic interference shielding. Compos. B 212, 108690 (2021). https://doi.org/10.1016/j.compositesb.2021.108690
M. Sang, Y.X. Wu, S. Liu, L.F. Bai, S. Wang et al., Flexible and lightweight melamine sponge/MXene/polyborosiloxane (MSMP) hybrid structure for high-performance electromagnetic interference shielding and anti-impact safe-guarding. Compos. B 211, 108669 (2021). https://doi.org/10.1016/j.compositesb.2021.108669
G. Sang, P. Xu, T. Yan, V. Murugadoss, N. Naik et al., Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 13, 153 (2021). https://doi.org/10.1007/s40820-021-00677-5
B. Zhao, S. Wang, C. Zhao, R. Li, S.M. Hamidinejad et al., Synergism between carbon materials and Ni chains in flexible poly(vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon 127, 469–478 (2018). https://doi.org/10.1016/j.carbon.2017.11.032
H. Zhang, G. Zhang, M. Tang, L. Zhou, J. Li et al., Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem. Eng. J. 353, 381–393 (2018). https://doi.org/10.1016/j.cej.2018.07.144
S. Kuester, N.R. Demarquette, J.C. Ferreira, B.G. Soares, G.M.O. Barra, Hybrid nanocomposites of thermoplastic elastomer and carbon nanoadditives for electromagnetic shielding. Eur. Polym. J. 88, 328–339 (2017). https://doi.org/10.1016/j.eurpolymj.2017.01.023
S.K. Singh, T. Sharan, A.K. Singh, Enhancing the axial ratio bandwidth of circularly polarized open ground slot CPW-fed antenna for multiband wireless communications. Eng. Sci. 17, 274–284 (2021). https://doi.org/10.30919/es8d557
K. Hegde, R. Dilli, Wireless sensor networks: network life time enhancement using an improved grey wolf optimization algorithm. Eng. Sci. 19, 186–197 (2022). https://doi.org/10.30919/es8d717
J. Xu, J. Cao, M. Guo, S. Yang, H. Yao et al., Metamaterial mechanical antenna for very low frequency wireless communication. Adv. Compos. Hybrid Mater. 4(3), 761–767 (2021). https://doi.org/10.1007/s42114-021-00278-1
G.Y. Li, J. Li, Z.J. Li, Y.P. Zhang, X. Zhang et al., Hierarchical PVDF-HFP/ZnO composite nanofiber-based highly sensitive piezoelectric sensor for wireless workout monitoring. Adv. Compos. Hybrid Mater. 5(2), 766–775 (2021). https://doi.org/10.1007/s42114-021-00331-z
Z. Zhang, M. Liu, M.M. Ibrahim, H. Wu, Y. Wu et al., Flexible polystyrene/graphene composites with epsilon-near-zero properties. Adv. Compos. Hybrid Mater. 5(2), 1054–1066 (2022). https://doi.org/10.1007/s42114-022-00486-3
P. Xie, Z. Shi, M. Feng, K. Sun, Y. Liu et al., Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv. Compos. Hybrid Mater. 5(2), 679–695 (2022). https://doi.org/10.1007/s42114-022-00479-2
Y. Zhang, J. Kong, J. Gu, New generation electromagnetic materials: harvesting instead of dissipation solo. Sci. Bull. 67(14), 1413–1415 (2022). https://doi.org/10.1016/j.scib.2022.06.017
Y. Wang, P. Wang, Z. Du, C. Liu, C. Shen et al., Electromagnetic interference shielding enhancement of poly(lactic acid)-based carbonaceous nanocomposites by poly(ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv. Compos. Hybrid Mater. 5(1), 209–219 (2021). https://doi.org/10.1007/s42114-021-00320-2
P. Song, B. Liu, C. Liang, K. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
H. Cheng, Z. Lu, Q. Gao, Y. Zuo, X. Liu et al., PVDF-Ni/PE-CNTs composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng. Sci. 16, 331–340 (2021). https://doi.org/10.30919/es8d518
N. Wu, W. Du, Q. Hu, S. Vupputuri, Q. Jiang, Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng. Sci. 13, 11–23 (2020). https://doi.org/10.30919/es8d1149
B. Dai, Y. Ma, F. Dong, J. Yu, M. Ma et al., Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater. 5(2), 704–754 (2022). https://doi.org/10.1007/s42114-022-00510-6
H. Cheng, L. Xing, Y. Zuo, Y. Pan, M. Huang et al., Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5(2), 755–765 (2022). https://doi.org/10.1007/s42114-022-00487-2
F. Yao, W. Xie, C. Ma, D. Wang, Z.M. El-Bahy et al., Superb electromagnetic shielding polymer nanocomposites filled with 3-dimensional p-phenylenediamine/aniline copolymer nanofibers@copper foam hybrid nanofillers. Compos. B 245, 110236 (2022). https://doi.org/10.1016/j.compositesb.2022.110236
X. Xu, F. Yao, O.A.A. Ali, W. Xie, S.F. Mahmoud et al., Adjustable core-sheath architecture of polyaniline-decorated hollow carbon nanofiber nanocomposites with negative permittivity for superb electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5(3), 2002–2011 (2022). https://doi.org/10.1007/s42114-022-00538-8
Y. Zhang, Z. Ma, K. Ruan, J. Gu, Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 15(6), 5601–5609 (2022). https://doi.org/10.1007/s12274-022-4358-7
Q. Gao, Y. Pan, G. Zheng, C. Liu, C. Shen et al., Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv. Compos. Hybrid Mater. 4(2), 274–285 (2021). https://doi.org/10.1007/s42114-021-00221-4
H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng et al., Ultrathin flexible poly(vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv. Compos. Hybrid Mater. 4(3), 505–513 (2021). https://doi.org/10.1007/s42114-021-00224-1
Y. Guo, D. Wang, T. Bai, H. Liu, Y. Zheng et al., Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv. Compos. Hybrid Mater. 4(3), 602–613 (2021). https://doi.org/10.1007/s42114-021-00279-0