Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth
Corresponding Author: Yong Wang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 97
Abstract
As modern communication and detection technologies advance at a swift pace, multifunctional electromagnetic interference (EMI) shielding materials with active/positive infrared stealth, hydrophobicity, and electric-thermal conversion ability have received extensive attention. Meeting the aforesaid requirements simultaneously remains a huge challenge. In this research, the melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated via one-step electrochemical polymerization. The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays. Due to the upwardly grown PPy nanowire arrays, the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00° and outstanding stability under various harsh environments. Meanwhile, the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays. Furthermore, taking advantage of the high conductivity (128.2 S m−1), the MF@PPy foam exhibited rapid Joule heating under 3 V, resulting in dynamic infrared stealth and thermal camouflage effects. More importantly, the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm2 g−1. Strong EMI shielding was put down to the hierarchically porous PPy structure, which offered outstanding impedance matching, conduction loss, and multiple attenuations. This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays, showing great applications in both military and civilian fields.
Highlights:
1 Hierarchical melamine foam (MF)/polypyrrole (PPy) nanowire arrays (MF@PPy) were fabricated by electrochemical polymerization.
2 The 3D porous PPy micro-skeleton and the 1D PPy nanowire arrays imparted the MF@PPy foams with high electromagnetic interference shielding performance of 19,928.57 dB cm2 g−1 via multiple attenuations.
3 The PPy nanowire arrays achieved multifunctional integration including hydrophobicity, thermal insulation, and dynamic infrared thermal camouflage properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
- Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30, 2000475 (2020). https://doi.org/10.1002/adfm.202000475
- Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7, 2000979 (2020). https://doi.org/10.1002/advs.202000979
- W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27, 1702807 (2017). https://doi.org/10.1002/adfm.201702807
- M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
- L. Liang, X. Yang, C. Li, R. Yu, B. Zhang et al., MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 36, e2313939 (2024). https://doi.org/10.1002/adma.202313939
- H. Wang, Y. Jiang, Z. Ma, Y. Shi, Y. Zhu et al., Hyperelastic, robust, fire-safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency. Adv. Funct. Mater. 33, 2306884 (2023). https://doi.org/10.1002/adfm.202306884
- B.W. Liu, M. Cao, Y.Y. Zhang, Y.Z. Wang, H.B. Zhao, Multifunctional protective aerogel with superelasticity over −196 to 500 ℃. Nano Res. 15, 7797–7805 (2022). https://doi.org/10.1007/s12274-022-4699-2
- J. Ge, H.-W. Zhu, Y. Yang, Y. Xie, G. Wang, J. Huang, L. A. Shi, O. G. Schmidt, S.-H. Yu. A general and programmable synthesis of graphene-based composite aerogels by a melamine-sponge-templated hydrothermal process. CCS Chem. 2(2), 1–12 (2020). https://doi.org/10.31635/ccschem.019.201900073
- B. Wei, X. Chen, S. Yang, Construction of a 3D aluminum flake framework with a sponge template to prepare thermally conductive polymer composites. J. Mater. Chem. A 9, 10979–10991 (2021). https://doi.org/10.1039/d0ta12541e
- Z. Cheng, G. Chang, B. Xue, L. Xie, Q. Zheng, Hierarchical Ni-plated melamine sponge and MXene film synergistically supported phase change materials towards integrated shape stability, thermal management and electromagnetic interference shielding. J. Mater. Sci. Technol. 132, 132–143 (2023). https://doi.org/10.1016/j.jmst.2022.05.049
- Y. Li, X. Diao, P. Li, P. Liu, Y. Gao et al., Advanced multifunctional Co/N Co-doped carbon foam-based phase change materials for wearable thermal management. Chem. Eng. J. 485, 149858 (2024). https://doi.org/10.1016/j.cej.2024.149858
- W. Gu, J. Tan, J. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 12, 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
- Z. Xu, X. Ding, S. Li, F. Huang, B. Wang et al., Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-infrared compatible shielding. ACS Appl. Mater. Interfaces 14, 40396–40407 (2022). https://doi.org/10.1021/acsami.2c05544
- H.G. Shi, H.B. Zhao, B.W. Liu, Y.Z. Wang, Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13, 26505–26514 (2021). https://doi.org/10.1021/acsami.1c07363
- C. Liu, L. Xu, X. Xiang, Y. Zhang, L. Zhou et al., Achieving ultra-broad microwave absorption bandwidth around millimeter-wave atmospheric window through an intentional manipulation on multi-magnetic resonance behavior. Nano-Micro Lett. 16, 176 (2024). https://doi.org/10.1007/s40820-024-01395-4
- X. Guan, S. Tan, L. Wang, Y. Zhao, G. Ji, Electronic modulation strategy for mass-producible ultrastrong multifunctional biomass-based fiber aerogel devices: interfacial bridging. ACS Nano 17, 20525–20536 (2023). https://doi.org/10.1021/acsnano.3c07300
- H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
- Y. Shi, O. Ilic, H.A. Atwater, J.R. Greer, All-day fresh water harvesting by microstructured hydrogel membranes. Nat. Commun. 12, 2797 (2021). https://doi.org/10.1038/s41467-021-23174-0
- Z.H. Huang, Y. Song, X.X. Xu, X.X. Liu, Ordered polypyrrole nanowire arrays grown on a carbon cloth substrate for a high-performance pseudocapacitor electrode. ACS Appl. Mater. Interfaces 7, 25506–25513 (2015). https://doi.org/10.1021/acsami.5b08830
- C. Debiemme-Chouvy, A. Fakhry, F. Pillier, Electrosynthesis of polypyrrole nano/micro structures using an electrogenerated oriented polypyrrole nanowire array as framework. Electrochim. Acta 268, 66–72 (2018). https://doi.org/10.1016/j.electacta.2018.02.092
- B. Zhang, Y. Ying, Y. Zhu, Y. Jiang, Y. Zhang et al., Interfacial engineering in PDMS/graphene composites via anchoring polypyrrole nanowires to enhance its electro-photo thermal performance. Carbon 174, 10–23 (2021). https://doi.org/10.1016/j.carbon.2020.12.009
- W. Wang, S. You, X. Gong, D. Qi, B.K. Chandran et al., Bioinspired nanosucker array for enhancing bioelectricity generation in microbial fuel cells. Adv. Mater. 28, 270–275 (2016). https://doi.org/10.1002/adma.201503609
- Y. Geng, K. Zhang, K. Yang, P. Ying, L. Hu et al., Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. Carbon 155, 25–33 (2019). https://doi.org/10.1016/j.carbon.2019.08.055
- X. Zhao, X. Meng, H. Zou, Z. Wang, Y. Du et al., Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation. Adv. Funct. Mater. 33, 2209207 (2023). https://doi.org/10.1002/adfm.202209207
- H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017). https://doi.org/10.1002/adma.201702590
- Y. Peng, W. Zhao, F. Ni, W. Yu, X. Liu, Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano 15, 19490–19502 (2021). https://doi.org/10.1021/acsnano.1c06277
- Z. Yu, R. Gu, Y. Tian, P. Xie, B. Jin et al., Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy. Adv. Funct. Mater. 32, 2108586 (2022). https://doi.org/10.1002/adfm.202108586
- Z. Wang, P. Yu, J. Zhou, J. Liao, L. Zhou et al., Ultrafast and on-demand oil/water separation membrane system based on conducting polymer nanotip arrays. Nano Lett. 20, 4895–4900 (2020). https://doi.org/10.1021/acs.nanolett.0c00911
- H. Lv, Q. Pan, Y. Song, X.X. Liu, T. Liu, A review on nano-/ microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Lett. 12, 118 (2020). https://doi.org/10.1007/s40820-020-00451-z
- M. Wan, A template-free method towards conducting polymer nanostructures. Adv. Mater. 20, 2926–2932 (2008). https://doi.org/10.1002/adma.200800466
- W. Zhou, L. Lu, D. Chen, Z. Wang, J. Zhai et al., Construction of high surface potential polypyrrole nanorods with enhanced antibacterial properties. J. Mater. Chem. B 6, 3128–3135 (2018). https://doi.org/10.1039/C7TB03085A
- V.H. Pham, J.H. Dickerson, Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Appl. Mater. Interfaces 6, 14181–14188 (2014). https://doi.org/10.1021/am503503m
- Y. Liu, M. Liu, Conductive carboxylated styrene butadiene rubber composites by incorporation of polypyrrole-wrapped halloysite nanotubes. Compos. Sci. Technol. 143, 56–66 (2017). https://doi.org/10.1016/j.compscitech.2017.03.001
- W.D. Zhang, H.M. Xiao, S.Y. Fu, Preparation and characterization of novel polypyrrole-nanotube/polyaniline free-standing composite films via facile solvent-evaporation method. Compos. Sci. Technol. 72, 1812–1817 (2012). https://doi.org/10.1016/j.compscitech.2012.08.002
- M. Altgen, M. Awais, D. Altgen, A. Klüppel, M. Mäkelä et al., Distribution and curing reactions of melamine formaldehyde resin in cells of impregnation-modified wood. Sci. Rep. 10, 3366 (2020). https://doi.org/10.1038/s41598-020-60418-3
- F. Wu, A. Xie, M. Sun, Y. Wang, M. Wang, Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 3, 14358–14369 (2015). https://doi.org/10.1039/C5TA01577D
- J. Wei, Y. Teng, L. Han, J. Ge, Z. Zhang et al., “All-in-one” polypyrrole pillar hybridization flexible membranes on multimodal tactile sensors for wearable energy-storage devices and human–machine interfaces. Inorg. Chem. Front. 11, 936–946 (2024). https://doi.org/10.1039/D3QI02119J
- D. Wang, X. Zhou, R. Song, C. Fang, Z. Wang et al., Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring. Chem. Eng. J. 404, 126940 (2021). https://doi.org/10.1016/j.cej.2020.126940
- J. Zhou, S. Thaiboonrod, J. Fang, S. Cao, M. Miao et al., In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 15, 8536–8545 (2022). https://doi.org/10.1007/s12274-022-4628-4
- D.J. Merline, S. Vukusic, A.A. Abdala, Melamine formaldehyde: curing studies and reaction mechanism. Polym. J. 45, 413–419 (2013). https://doi.org/10.1038/pj.2012.162
- T.R. Manley, D.A. Higgs, Thermal stability of melamine formal-dehyde resins. J. Polym. Sci. Polym. Symp. 42, 1377–1382 (1973). https://doi.org/10.1002/polc.5070420337
- J. Mahmood, N. Arsalani, S. Naghash-Hamed, Z. Hanif, K.E. Geckeler, Preparation and characterization of hybrid polypyrrole nanops as a conducting polymer with controllable size. Sci. Rep. 14, 11653 (2024). https://doi.org/10.1038/s41598-024-61587-1
- X. Li, N. Wang, J. He, Z. Yang, F. Zhao et al., One-step preparation of highly durable superhydrophobic carbon nanothorn arrays. Small 16, e1907013 (2020). https://doi.org/10.1002/smll.201907013
- Q. Yang, J. Yang, L. Tang, H. Zhang, D. Wei et al., Superhydrophobic graphene nanowalls for electromagnetic interference shielding and infrared photodetection via a two-step transfer method. Chem. Eng. J. 454, 140159 (2023). https://doi.org/10.1016/j.cej.2022.140159
- S. Li, P. Xiao, T. Chen, Superhydrophobic solar-to-thermal materials toward cutting-edge applications. Adv. Mater. 36, e2311453 (2024). https://doi.org/10.1002/adma.202311453
- F. Xu, P. Ye, J. Peng, H. Geng, Y. Cui et al., Cerium methacrylate assisted preparation of highly thermally conductive and anticorrosive multifunctional coatings for heat conduction metals protection. Nano-Micro Lett. 15, 201 (2023). https://doi.org/10.1007/s40820-023-01163-w
- Z. Ma, R. Jiang, J. Jing, S. Kang, L. Ma et al., Lightweight dual-functional segregated nanocomposite foams for integrated infrared stealth and absorption-dominant electromagnetic interference shielding. Nano-Micro Lett. 16, 223 (2024). https://doi.org/10.1007/s40820-024-01450-0
- Y. Jia, D. Liu, D. Chen, Y. Jin, C. Chen et al., Transparent dynamic infrared emissivity regulators. Nat. Commun. 14, 5087 (2023). https://doi.org/10.1038/s41467-023-40902-w
- M. Liu, R. Qian, Y. Yang, X. Lu, L. Huang et al., Modification of phase change materials for electric-thermal, photo-thermal, and magnetic-thermal conversions: a comprehensive review. Adv. Funct. Mater. 34, 2400038 (2024). https://doi.org/10.1002/adfm.202400038
- W. Zhao, B. Zhao, Z. Wu, K. Pei, Y. Qian et al., Dopant engineering of flexible MNPs/TPU/PPy core–shell films for controllable electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15, 28410–28420 (2023). https://doi.org/10.1021/acsami.3c02454
- J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
- M. Han, Y. Gogotsi, Perspectives for electromagnetic radiation protection with MXenes. Carbon 204, 17–25 (2023). https://doi.org/10.1016/j.carbon.2022.12.036
- X.X. Wang, Q. Zheng, Y.J. Zheng, M.S. Cao, Green EMI shielding: dielectric/magnetic “genes” and design philosophy. Carbon 206, 124–141 (2023). https://doi.org/10.1016/j.carbon.2023.02.012
- Q. Lv, Z. Peng, H. Pei, X. Zhang, Y. Chen et al., 3D printing of periodic porous metamaterials for tunable electromagnetic shielding across broad frequencies. Nano-Micro Lett. 16, 279 (2024). https://doi.org/10.1007/s40820-024-01502-5
- X. Shen, J.K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2023). https://doi.org/10.1007/s12274-022-4938-6
- X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33, 2213431 (2023). https://doi.org/10.1002/adfm.202213431
- S. Wang, D. Li, W. Meng, L. Jiang, D. Fang, Scalable, superelastic, and superhydrophobic MXene/silver nanowire/melamine hybrid sponges for high-performance electromagnetic interference shielding. J. Mater. Chem. C 10, 5336–5344 (2022). https://doi.org/10.1039/D2TC00516F
- W. Mo, S. Li, L. Xu, L. Zhu, Y. Liu et al., Construction of three-dimensional network hierarchy structure based on melamine foam for electromagnetic shielding. ACS Appl. Nano Mater. 7, 797–808 (2024). https://doi.org/10.1021/acsanm.3c04914
- B. Fu, P. Ren, Z. Guo, Y. Du, Y. Jin et al., Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Compos. Part B Eng. 215, 108813 (2021). https://doi.org/10.1016/j.compositesb.2021.108813
- X. Jin, J. Wang, L. Dai, X. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
- G.Y. Yang, S.Z. Wang, H.T. Sun, X.M. Yao, C.B. Li et al., Ultralight, conductive Ti3C2Tx MXene/PEDOT: PSS hybrid aerogels for electromagnetic interference shielding dominated by the absorption mechanism. ACS Appl. Mater. Interfaces 13, 57521–57531 (2021). https://doi.org/10.1021/acsami.1c13303
- S. Wu, T.Y. Zhu, Z. Zeng, D.X. Sun, J.H. Yang et al., Lightweight multifunctional electromagnetic shielding composites achieved by depositing Ag@MXene hybrid ps on wood-based aerogel. Compos. Part A Appl. Sci. Manuf. 182, 108193 (2024). https://doi.org/10.1016/j.compositesa.2024.108193
- J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan et al., Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158, 45–54 (2020). https://doi.org/10.1016/j.carbon.2019.11.075
- M. Zhu, X. Yan, H. Xu, Y. Xu, L. Kong, Ultralight, compressible, and anisotropic MXene@Wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 182, 806–814 (2021). https://doi.org/10.1016/j.carbon.2021.06.054
References
Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu et al., Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 14, 59 (2022). https://doi.org/10.1007/s40820-022-00800-0
Q. Song, F. Ye, L. Kong, Q. Shen, L. Han et al., Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv. Funct. Mater. 30, 2000475 (2020). https://doi.org/10.1002/adfm.202000475
Z. Zeng, C. Wang, G. Siqueira, D. Han, A. Huch et al., Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 7, 2000979 (2020). https://doi.org/10.1002/advs.202000979
W.T. Cao, F.F. Chen, Y.J. Zhu, Y.G. Zhang, Y.Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12, 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
R. Sun, H.B. Zhang, J. Liu, X. Xie, R. Yang et al., Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 27, 1702807 (2017). https://doi.org/10.1002/adfm.201702807
M. Zhou, S. Tan, J. Wang, Y. Wu, L. Liang et al., “Three-in-one” multi-scale structural design of carbon fiber-based composites for personal electromagnetic protection and thermal management. Nano-Micro Lett. 15, 176 (2023). https://doi.org/10.1007/s40820-023-01144-z
L. Liang, X. Yang, C. Li, R. Yu, B. Zhang et al., MXene-enabled pneumatic multiscale shape morphing for adaptive, programmable and multimodal radar-infrared compatible camouflage. Adv. Mater. 36, e2313939 (2024). https://doi.org/10.1002/adma.202313939
H. Wang, Y. Jiang, Z. Ma, Y. Shi, Y. Zhu et al., Hyperelastic, robust, fire-safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency. Adv. Funct. Mater. 33, 2306884 (2023). https://doi.org/10.1002/adfm.202306884
B.W. Liu, M. Cao, Y.Y. Zhang, Y.Z. Wang, H.B. Zhao, Multifunctional protective aerogel with superelasticity over −196 to 500 ℃. Nano Res. 15, 7797–7805 (2022). https://doi.org/10.1007/s12274-022-4699-2
J. Ge, H.-W. Zhu, Y. Yang, Y. Xie, G. Wang, J. Huang, L. A. Shi, O. G. Schmidt, S.-H. Yu. A general and programmable synthesis of graphene-based composite aerogels by a melamine-sponge-templated hydrothermal process. CCS Chem. 2(2), 1–12 (2020). https://doi.org/10.31635/ccschem.019.201900073
B. Wei, X. Chen, S. Yang, Construction of a 3D aluminum flake framework with a sponge template to prepare thermally conductive polymer composites. J. Mater. Chem. A 9, 10979–10991 (2021). https://doi.org/10.1039/d0ta12541e
Z. Cheng, G. Chang, B. Xue, L. Xie, Q. Zheng, Hierarchical Ni-plated melamine sponge and MXene film synergistically supported phase change materials towards integrated shape stability, thermal management and electromagnetic interference shielding. J. Mater. Sci. Technol. 132, 132–143 (2023). https://doi.org/10.1016/j.jmst.2022.05.049
Y. Li, X. Diao, P. Li, P. Liu, Y. Gao et al., Advanced multifunctional Co/N Co-doped carbon foam-based phase change materials for wearable thermal management. Chem. Eng. J. 485, 149858 (2024). https://doi.org/10.1016/j.cej.2024.149858
W. Gu, J. Tan, J. Chen, Z. Zhang, Y. Zhao et al., Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl. Mater. Interfaces 12, 28727–28737 (2020). https://doi.org/10.1021/acsami.0c09202
Z. Xu, X. Ding, S. Li, F. Huang, B. Wang et al., Oxidation-resistant MXene-based melamine foam with ultralow-percolation thresholds for electromagnetic-infrared compatible shielding. ACS Appl. Mater. Interfaces 14, 40396–40407 (2022). https://doi.org/10.1021/acsami.2c05544
H.G. Shi, H.B. Zhao, B.W. Liu, Y.Z. Wang, Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 13, 26505–26514 (2021). https://doi.org/10.1021/acsami.1c07363
C. Liu, L. Xu, X. Xiang, Y. Zhang, L. Zhou et al., Achieving ultra-broad microwave absorption bandwidth around millimeter-wave atmospheric window through an intentional manipulation on multi-magnetic resonance behavior. Nano-Micro Lett. 16, 176 (2024). https://doi.org/10.1007/s40820-024-01395-4
X. Guan, S. Tan, L. Wang, Y. Zhao, G. Ji, Electronic modulation strategy for mass-producible ultrastrong multifunctional biomass-based fiber aerogel devices: interfacial bridging. ACS Nano 17, 20525–20536 (2023). https://doi.org/10.1021/acsnano.3c07300
H. Cheng, Y. Pan, X. Wang, C. Liu, C. Shen et al., Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 14, 63 (2022). https://doi.org/10.1007/s40820-022-00812-w
Y. Shi, O. Ilic, H.A. Atwater, J.R. Greer, All-day fresh water harvesting by microstructured hydrogel membranes. Nat. Commun. 12, 2797 (2021). https://doi.org/10.1038/s41467-021-23174-0
Z.H. Huang, Y. Song, X.X. Xu, X.X. Liu, Ordered polypyrrole nanowire arrays grown on a carbon cloth substrate for a high-performance pseudocapacitor electrode. ACS Appl. Mater. Interfaces 7, 25506–25513 (2015). https://doi.org/10.1021/acsami.5b08830
C. Debiemme-Chouvy, A. Fakhry, F. Pillier, Electrosynthesis of polypyrrole nano/micro structures using an electrogenerated oriented polypyrrole nanowire array as framework. Electrochim. Acta 268, 66–72 (2018). https://doi.org/10.1016/j.electacta.2018.02.092
B. Zhang, Y. Ying, Y. Zhu, Y. Jiang, Y. Zhang et al., Interfacial engineering in PDMS/graphene composites via anchoring polypyrrole nanowires to enhance its electro-photo thermal performance. Carbon 174, 10–23 (2021). https://doi.org/10.1016/j.carbon.2020.12.009
W. Wang, S. You, X. Gong, D. Qi, B.K. Chandran et al., Bioinspired nanosucker array for enhancing bioelectricity generation in microbial fuel cells. Adv. Mater. 28, 270–275 (2016). https://doi.org/10.1002/adma.201503609
Y. Geng, K. Zhang, K. Yang, P. Ying, L. Hu et al., Constructing hierarchical carbon framework and quantifying water transfer for novel solar evaporation configuration. Carbon 155, 25–33 (2019). https://doi.org/10.1016/j.carbon.2019.08.055
X. Zhao, X. Meng, H. Zou, Z. Wang, Y. Du et al., Topographic manipulation of graphene oxide by polyaniline nanocone arrays enables high-performance solar-driven water evaporation. Adv. Funct. Mater. 33, 2209207 (2023). https://doi.org/10.1002/adfm.202209207
H. Ren, M. Tang, B. Guan, K. Wang, J. Yang et al., Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017). https://doi.org/10.1002/adma.201702590
Y. Peng, W. Zhao, F. Ni, W. Yu, X. Liu, Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency. ACS Nano 15, 19490–19502 (2021). https://doi.org/10.1021/acsnano.1c06277
Z. Yu, R. Gu, Y. Tian, P. Xie, B. Jin et al., Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy. Adv. Funct. Mater. 32, 2108586 (2022). https://doi.org/10.1002/adfm.202108586
Z. Wang, P. Yu, J. Zhou, J. Liao, L. Zhou et al., Ultrafast and on-demand oil/water separation membrane system based on conducting polymer nanotip arrays. Nano Lett. 20, 4895–4900 (2020). https://doi.org/10.1021/acs.nanolett.0c00911
H. Lv, Q. Pan, Y. Song, X.X. Liu, T. Liu, A review on nano-/ microstructured materials constructed by electrochemical technologies for supercapacitors. Nano-Micro Lett. 12, 118 (2020). https://doi.org/10.1007/s40820-020-00451-z
M. Wan, A template-free method towards conducting polymer nanostructures. Adv. Mater. 20, 2926–2932 (2008). https://doi.org/10.1002/adma.200800466
W. Zhou, L. Lu, D. Chen, Z. Wang, J. Zhai et al., Construction of high surface potential polypyrrole nanorods with enhanced antibacterial properties. J. Mater. Chem. B 6, 3128–3135 (2018). https://doi.org/10.1039/C7TB03085A
V.H. Pham, J.H. Dickerson, Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials. ACS Appl. Mater. Interfaces 6, 14181–14188 (2014). https://doi.org/10.1021/am503503m
Y. Liu, M. Liu, Conductive carboxylated styrene butadiene rubber composites by incorporation of polypyrrole-wrapped halloysite nanotubes. Compos. Sci. Technol. 143, 56–66 (2017). https://doi.org/10.1016/j.compscitech.2017.03.001
W.D. Zhang, H.M. Xiao, S.Y. Fu, Preparation and characterization of novel polypyrrole-nanotube/polyaniline free-standing composite films via facile solvent-evaporation method. Compos. Sci. Technol. 72, 1812–1817 (2012). https://doi.org/10.1016/j.compscitech.2012.08.002
M. Altgen, M. Awais, D. Altgen, A. Klüppel, M. Mäkelä et al., Distribution and curing reactions of melamine formaldehyde resin in cells of impregnation-modified wood. Sci. Rep. 10, 3366 (2020). https://doi.org/10.1038/s41598-020-60418-3
F. Wu, A. Xie, M. Sun, Y. Wang, M. Wang, Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A 3, 14358–14369 (2015). https://doi.org/10.1039/C5TA01577D
J. Wei, Y. Teng, L. Han, J. Ge, Z. Zhang et al., “All-in-one” polypyrrole pillar hybridization flexible membranes on multimodal tactile sensors for wearable energy-storage devices and human–machine interfaces. Inorg. Chem. Front. 11, 936–946 (2024). https://doi.org/10.1039/D3QI02119J
D. Wang, X. Zhou, R. Song, C. Fang, Z. Wang et al., Freestanding silver/polypyrrole composite film for multifunctional sensor with biomimetic micropattern for physiological signals monitoring. Chem. Eng. J. 404, 126940 (2021). https://doi.org/10.1016/j.cej.2020.126940
J. Zhou, S. Thaiboonrod, J. Fang, S. Cao, M. Miao et al., In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability. Nano Res. 15, 8536–8545 (2022). https://doi.org/10.1007/s12274-022-4628-4
D.J. Merline, S. Vukusic, A.A. Abdala, Melamine formaldehyde: curing studies and reaction mechanism. Polym. J. 45, 413–419 (2013). https://doi.org/10.1038/pj.2012.162
T.R. Manley, D.A. Higgs, Thermal stability of melamine formal-dehyde resins. J. Polym. Sci. Polym. Symp. 42, 1377–1382 (1973). https://doi.org/10.1002/polc.5070420337
J. Mahmood, N. Arsalani, S. Naghash-Hamed, Z. Hanif, K.E. Geckeler, Preparation and characterization of hybrid polypyrrole nanops as a conducting polymer with controllable size. Sci. Rep. 14, 11653 (2024). https://doi.org/10.1038/s41598-024-61587-1
X. Li, N. Wang, J. He, Z. Yang, F. Zhao et al., One-step preparation of highly durable superhydrophobic carbon nanothorn arrays. Small 16, e1907013 (2020). https://doi.org/10.1002/smll.201907013
Q. Yang, J. Yang, L. Tang, H. Zhang, D. Wei et al., Superhydrophobic graphene nanowalls for electromagnetic interference shielding and infrared photodetection via a two-step transfer method. Chem. Eng. J. 454, 140159 (2023). https://doi.org/10.1016/j.cej.2022.140159
S. Li, P. Xiao, T. Chen, Superhydrophobic solar-to-thermal materials toward cutting-edge applications. Adv. Mater. 36, e2311453 (2024). https://doi.org/10.1002/adma.202311453
F. Xu, P. Ye, J. Peng, H. Geng, Y. Cui et al., Cerium methacrylate assisted preparation of highly thermally conductive and anticorrosive multifunctional coatings for heat conduction metals protection. Nano-Micro Lett. 15, 201 (2023). https://doi.org/10.1007/s40820-023-01163-w
Z. Ma, R. Jiang, J. Jing, S. Kang, L. Ma et al., Lightweight dual-functional segregated nanocomposite foams for integrated infrared stealth and absorption-dominant electromagnetic interference shielding. Nano-Micro Lett. 16, 223 (2024). https://doi.org/10.1007/s40820-024-01450-0
Y. Jia, D. Liu, D. Chen, Y. Jin, C. Chen et al., Transparent dynamic infrared emissivity regulators. Nat. Commun. 14, 5087 (2023). https://doi.org/10.1038/s41467-023-40902-w
M. Liu, R. Qian, Y. Yang, X. Lu, L. Huang et al., Modification of phase change materials for electric-thermal, photo-thermal, and magnetic-thermal conversions: a comprehensive review. Adv. Funct. Mater. 34, 2400038 (2024). https://doi.org/10.1002/adfm.202400038
W. Zhao, B. Zhao, Z. Wu, K. Pei, Y. Qian et al., Dopant engineering of flexible MNPs/TPU/PPy core–shell films for controllable electromagnetic interference shielding. ACS Appl. Mater. Interfaces 15, 28410–28420 (2023). https://doi.org/10.1021/acsami.3c02454
J. Cheng, C. Li, Y. Xiong, H. Zhang, H. Raza et al., Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nano-Micro Lett. 14, 80 (2022). https://doi.org/10.1007/s40820-022-00823-7
M. Han, Y. Gogotsi, Perspectives for electromagnetic radiation protection with MXenes. Carbon 204, 17–25 (2023). https://doi.org/10.1016/j.carbon.2022.12.036
X.X. Wang, Q. Zheng, Y.J. Zheng, M.S. Cao, Green EMI shielding: dielectric/magnetic “genes” and design philosophy. Carbon 206, 124–141 (2023). https://doi.org/10.1016/j.carbon.2023.02.012
Q. Lv, Z. Peng, H. Pei, X. Zhang, Y. Chen et al., 3D printing of periodic porous metamaterials for tunable electromagnetic shielding across broad frequencies. Nano-Micro Lett. 16, 279 (2024). https://doi.org/10.1007/s40820-024-01502-5
X. Shen, J.K. Kim, Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding. Nano Res. 16, 1387–1413 (2023). https://doi.org/10.1007/s12274-022-4938-6
X. Ma, J. Pan, H. Guo, J. Wang, C. Zhang et al., Ultrathin wood-derived conductive carbon composite film for electromagnetic shielding and electric heating management. Adv. Funct. Mater. 33, 2213431 (2023). https://doi.org/10.1002/adfm.202213431
S. Wang, D. Li, W. Meng, L. Jiang, D. Fang, Scalable, superelastic, and superhydrophobic MXene/silver nanowire/melamine hybrid sponges for high-performance electromagnetic interference shielding. J. Mater. Chem. C 10, 5336–5344 (2022). https://doi.org/10.1039/D2TC00516F
W. Mo, S. Li, L. Xu, L. Zhu, Y. Liu et al., Construction of three-dimensional network hierarchy structure based on melamine foam for electromagnetic shielding. ACS Appl. Nano Mater. 7, 797–808 (2024). https://doi.org/10.1021/acsanm.3c04914
B. Fu, P. Ren, Z. Guo, Y. Du, Y. Jin et al., Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Compos. Part B Eng. 215, 108813 (2021). https://doi.org/10.1016/j.compositesb.2021.108813
X. Jin, J. Wang, L. Dai, X. Liu, L. Li et al., Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 380, 122475 (2020). https://doi.org/10.1016/j.cej.2019.122475
G.Y. Yang, S.Z. Wang, H.T. Sun, X.M. Yao, C.B. Li et al., Ultralight, conductive Ti3C2Tx MXene/PEDOT: PSS hybrid aerogels for electromagnetic interference shielding dominated by the absorption mechanism. ACS Appl. Mater. Interfaces 13, 57521–57531 (2021). https://doi.org/10.1021/acsami.1c13303
S. Wu, T.Y. Zhu, Z. Zeng, D.X. Sun, J.H. Yang et al., Lightweight multifunctional electromagnetic shielding composites achieved by depositing Ag@MXene hybrid ps on wood-based aerogel. Compos. Part A Appl. Sci. Manuf. 182, 108193 (2024). https://doi.org/10.1016/j.compositesa.2024.108193
J. Li, Y. Ding, N. Yu, Q. Gao, X. Fan et al., Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon 158, 45–54 (2020). https://doi.org/10.1016/j.carbon.2019.11.075
M. Zhu, X. Yan, H. Xu, Y. Xu, L. Kong, Ultralight, compressible, and anisotropic MXene@Wood nanocomposite aerogel with excellent electromagnetic wave shielding and absorbing properties at different directions. Carbon 182, 806–814 (2021). https://doi.org/10.1016/j.carbon.2021.06.054