Immobilizing Zwitterionic Molecular Brush in Functional Organic Interfacial Layers for Ultra-Stable Zn-Ion Batteries
Corresponding Author: Hao Liu
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 262
Abstract
Rechargeable zinc-ion batteries have emerged as one of the most promising candidates for large-scale energy storage applications due to their high safety and low cost. However, the use of Zn metal in batteries suffers from many severe issues, including dendrite growth and parasitic reactions, which often lead to short cycle lives. Herein, we propose the construction of functional organic interfacial layers (OIL) on the Zn metal anodes to address these challenges. Through a well-designed organic-assist pre-construction process, a densely packed artificial layer featuring the immobilized zwitterionic molecular brush can be constructed, which can not only efficiently facilitate the smooth Zn plating and stripping, but also introduce a stable environment for battery reactions. Through density functional theory calculations and experimental characterizations, we verify that the immobilized organic propane sulfonate on Zn anodes can significantly lower the energy barrier and increase the kinetics of Zn2+ transport. Thus, the Zn metal anode with the functional OIL can significantly improve the cycle life of the symmetric cell to over 3500 h stable operation. When paired with the H2V3O8 cathode, the aqueous Zn-ion full cells can be continuously cycled over 7000 cycles, marking an important milestone for Zn anode development for potential industrial applications.
Highlights:
1 An organic-assisted solid electrolyte interface pre-construction creates a functional organic interfacial layer (OIL-IPS@Zn) with aligned zwitterionic structures, suppressing side reactions and enhancing Zn2+ transport.
2 OIL-IPS@Zn shows superior electrolyte affinity, enabling symmetric cells to operate stably for 3500 h at 1 mA cm−2/1 mAh cm−2 and 3200 h at 50 mA cm−2/10 mAh cm−2.
3 With 99.90% Zn plating/stripping efficiency, full cells paired with H2V3O8 cathodes achieve over 7000 cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wu, S. Luo, H. Wang, L. Li, Y. Fang et al., A review of anode materials for dual-ion batteries. Nano-Micro Lett. 16(1), 252 (2024). https://doi.org/10.1007/s40820-024-01470-w
- J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614(7949), 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
- J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
- S. Chen, M. Zhang, P. Zou, B. Sun, S. Tao, Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy Environ. Sci. 15(5), 1805–1839 (2022). https://doi.org/10.1039/D2EE00004K
- C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
- G. Zhang, H. Gao, D. Zhang, J. Xiao, L. Sun et al., Transformative catalytic carbon conversion enabling superior graphitization and nanopore engineering in hard carbon anodes for sodium-ion batteries. Carbon Energy (2025). https://doi.org/10.1002/cey2.713
- J. Xu, H. Li, Y. Jin, D. Zhou, B. Sun et al., Understanding the electrical mechanisms in aqueous zinc metal batteries: from electrostatic interactions to electric field regulation. Adv. Mater. 36(3), 2309726 (2024). https://doi.org/10.1002/adma.202309726
- B. Jiang, C. Xu, C. Wu, L. Dong, J. Li et al., Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
- T. Zhang, Y. Tang, G. Fang, C. Zhang, H. Zhang et al., Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte. Adv. Funct. Mater. 30(30), 2002711 (2020). https://doi.org/10.1002/adfm.202002711
- X. Li, W. Xu, C. Zhi, Halogen-powered static conversion chemistry. Nat. Rev. Chem. 8(5), 359–375 (2024). https://doi.org/10.1038/s41570-024-00597-z
- X. Li, T. Liu, P. Li, G. Liang, Z. Huang et al., Aqueous alkaline zinc-iodine battery with two-electron transfer. ACS Nano 19(2), 2900–2908 (2025). https://doi.org/10.1021/acsnano.4c16550
- L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14(11), 5669–5689 (2021). https://doi.org/10.1039/D1EE02021H
- H. Yang, Y. Qiao, Z. Chang, H. Deng, X. Zhu et al., Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery. Adv. Mater. 33(38), 2102415 (2021). https://doi.org/10.1002/adma.202102415
- M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
- J.L. Yang, J. Li, J.W. Zhao, K. Liu, P. Yang et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34(27), e2202382 (2022). https://doi.org/10.1002/adma.202202382
- Y. Gao, L. Liu, Y. Jiang, D. Yu, X. Zheng et al., Design principles and mechanistic understandings of non-noble-metal bifunctional electrocatalysts for zinc-air batteries. Nano-Micro Lett. 16(1), 162 (2024). https://doi.org/10.1007/s40820-024-01366-9
- G. Nazir, A. Rehman, J.-H. Lee, C.-H. Kim, J. Gautam et al., A review of rechargeable zinc-air batteries: recent progress and future perspectives. Nano-Micro Lett. 16(1), 138 (2024). https://doi.org/10.1007/s40820-024-01328-1
- J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336), 415–418 (2017). https://doi.org/10.1126/science.aak9991
- J. Ji, Z. Zhu, H. Du, X. Qi, J. Yao et al., Zinc-contained alloy as a robustly adhered interfacial lattice locking layer for planar and stable zinc electrodeposition. Adv. Mater. 35(20), 2211961 (2023). https://doi.org/10.1002/adma.202211961
- J. Chen, J. Xiong, M. Ye, Z. Wen, Y. Zhang et al., Suppression of hydrogen evolution reaction by modulating the surface redox potential toward long-life zinc metal anodes. Adv. Funct. Mater. 34(16), 2312564 (2024). https://doi.org/10.1002/adfm.202312564
- Y. Lu, H. Zhang, H. Liu, Z. Nie, F. Xu et al., Electrolyte dynamics engineering for flexible fiber-shaped aqueous zinc-ion battery with ultralong stability. Nano Lett. 21(22), 9651–9660 (2021). https://doi.org/10.1021/acs.nanolett.1c03455
- J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang et al., Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11(29), 2101299 (2021). https://doi.org/10.1002/aenm.202101299
- T. Liu, J. Hong, J. Wang, Y. Xu, Y. Wang, Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Mater. 45, 1074–1083 (2022). https://doi.org/10.1016/j.ensm.2021.11.002
- Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
- K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13(1), 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
- S. Zhang, M. Ye, Y. Zhang, Y. Tang, X. Liu et al., Regulation of ionic distribution and desolvation activation energy enabled by in situ zinc phosphate protective layer toward highly reversible zinc metal anodes. Adv. Funct. Mater. 33(22), 2208230 (2023). https://doi.org/10.1002/adfm.202208230
- M. Zhao, Y. Lv, S. Zhao, Y. Xiao, J. Niu et al., Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high-performance zinc-ion batteries at wide temperatures. Adv. Mater. 34(49), 2206239 (2022). https://doi.org/10.1002/adma.202206239
- P. Li, J. Ren, C. Li, J. Li, K. Zhang et al., MOF-derived defect-rich CeO2 as ion-selective smart artificial SEI for dendrite-free Zn-ion battery. Chem. Eng. J. 451, 138769 (2023). https://doi.org/10.1016/j.cej.2022.138769
- H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
- Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li et al., Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49(1), 180–232 (2020). https://doi.org/10.1039/c9cs00131j
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
- P. Senguttuvan, S.-D. Han, S. Kim, A.L. Lipson, S. Tepavcevic et al., A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv. Energy Mater. 6(24), 1600826 (2016). https://doi.org/10.1002/aenm.201600826
- S.D. Han, N.N. Rajput, X. Qu, B. Pan, M. He et al., Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. ACS Appl. Mater. Interfaces 8(5), 3021–3031 (2016). https://doi.org/10.1021/acsami.5b10024
- L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem. Int. Ed. 59(43), 19292–19296 (2020). https://doi.org/10.1002/anie.202008634
- X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
- A. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem. Int. Ed. 58(9), 2760–2764 (2019). https://doi.org/10.1002/anie.201813223
- D. Li, Y. Guo, C. Zhang, X. Chen, W. Zhang et al., Unveiling organic electrode materials in aqueous zinc-ion batteries: from structural design to electrochemical performance. Nano-Micro Lett. 16(1), 194 (2024). https://doi.org/10.1007/s40820-024-01404-6
- H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10(1), 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
- Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15(11), 4748–4760 (2022). https://doi.org/10.1039/D2EE02687B
- Q. He, G. Fang, Z. Chang, Y. Zhang, S. Zhou et al., Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction. Nano-Micro Lett. 14(1), 93 (2022). https://doi.org/10.1007/s40820-022-00835-3
- G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter 49(20), 14251–14269 (1994). https://doi.org/10.1103/physrevb.49.14251
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
- T.K. Woo, P.M. Margl, P.E. Blöchl, T. Ziegler, A combined car–parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: application to transition metal catalysis. J. Phys. Chem. B 101(40), 7877–7880 (1997). https://doi.org/10.1021/jp9717296
- C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997). https://doi.org/10.1103/physrevlett.78.2690
- Z. Wang, Y. Wang, Z. Zhang, X. Chen, W. Lie et al., Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Adv. Funct. Mater. 30(30), 2002414 (2020). https://doi.org/10.1002/adfm.202002414
- Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
- L. Zhang, J. Xiao, X. Xiao, W. Xin, Y. Geng et al., Molecular engineering of self-assembled monolayers for highly utilized Zn anodes. eScience 4(2), 100205 (2024). https://doi.org/10.1016/j.esci.2023.100205
- J. He, Y. Mu, B. Wu, F. Wu, R. Liao et al., Synergistic effects of Lewis acid–base and Coulombic interactions for high-performance Zn–I2 batteries. Energy Environ. Sci. 17(1), 323–331 (2024). https://doi.org/10.1039/D3EE03297C
- P. Wang, S. Liang, C. Chen, X. Xie, J. Chen et al., Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes. Adv. Mater. 34(33), e2202733 (2022). https://doi.org/10.1002/adma.202202733
- M. Zhou, Z. Tong, H. Li, X. Zhou, X. Li et al., Regulating preferred crystal plane with modification of exposed grain boundary toward stable Zn anode. Adv. Funct. Mater. 35(1), 2412092 (2025). https://doi.org/10.1002/adfm.202412092
- X. Li, S. Wang, D. Zhang, P. Li, Z. Chen et al., Perovskite cathodes for aqueous and organic iodine batteries operating under one and two electrons redox modes. Adv. Mater. 36(4), 2304557 (2024). https://doi.org/10.1002/adma.202304557
- Z. Song, B. Wang, W. Zhang, Q. Zhu, A.Y. Elezzabi et al., Fast and stable zinc anode-based electrochromic displays enabled by bimetallically doped vanadate and aqueous Zn2+/Na+ hybrid electrolytes. Nano-Micro Lett. 15(1), 229 (2023). https://doi.org/10.1007/s40820-023-01209-z
- H. Zhang, X. Judez, A. Santiago, M. Martinez-Ibañez, M.Á. Muñoz-Márquez et al., Fluorine-free noble salt anion for high-performance all-solid-state lithium–sulfur batteries. Adv. Energy Mater. 9(25), 1900763 (2019). https://doi.org/10.1002/aenm.201900763
- M. Qiu, H. Jia, C. Lan, H. Liu, S. Fu, An enhanced kinetics and ultra-stable zinc electrode by functionalized boron nitride intermediate layer engineering. Energy Storage Mater. 45, 1175–1182 (2022). https://doi.org/10.1016/j.ensm.2021.11.018
- W. Li, H. Xu, S. Ke, H. Zhang, H. Chen et al., Integrating electric ambipolar effect for high-performance zinc bromide batteries. Nano-Micro Lett. 17(1), 143 (2025). https://doi.org/10.1007/s40820-024-01636-6
- L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), 2007406 (2021). https://doi.org/10.1002/adma.202007406
- J. Zheng, B. Zhang, X. Chen, W. Hao, J. Yao et al., Critical solvation structures arrested active molecules for reversible Zn electrochemistry. Nano-Micro Lett. 16(1), 145 (2024). https://doi.org/10.1007/s40820-024-01361-0
- K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144(25), 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
- H. Liu, Q. Ye, D. Lei, Z. Hou, W. Hua et al., Molecular brush: an ion-redistributor to homogenize fast Zn2+ flux and deposition for calendar-life Zn batteries. Energy Environ. Sci. 16(4), 1610–1619 (2023). https://doi.org/10.1039/D2EE03952D
- Y. Zhong, Z. Cheng, H. Zhang, J. Li, D. Liu et al., Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery. Nano Energy 98, 107220 (2022). https://doi.org/10.1016/j.nanoen.2022.107220
- C. Yang, P. Woottapanit, S. Geng, K. Lolupiman, X. Zhang et al., Highly reversible Zn anode design through oriented ZnO(002) facets. Adv. Mater. 36(49), e2408908 (2024). https://doi.org/10.1002/adma.202408908
- S. Xia, Q. Luo, J. Liu, X. Yang, J. Lei et al., In situ spontaneous construction of zinc phosphate coating layer toward highly reversible zinc metal anodes. Small 20(29), 2310497 (2024). https://doi.org/10.1002/smll.202310497
- J. Dong, L. Su, H. Peng, D. Wang, H. Zong et al., Spontaneous molecule aggregation for nearly single-ion conducting Sol electrolyte to advance aqueous zinc metal batteries: the case of tetraphenylporphyrin. Angew. Chem. Int. Ed. 63(21), e202401441 (2024). https://doi.org/10.1002/anie.202401441
- D. Wang, Q. Shao, X. Cao, M. Qin, Y. He et al., pH modulation and molecular layer construction for stable zinc batteries. J. Energy Chem. 102, 179–188 (2025). https://doi.org/10.1016/j.jechem.2024.10.048
- S. Liu, Q. Han, C. He, Z. Xu, P. Huang et al., Ion-sieving separator functionalized by natural mineral coating toward ultrastable Zn metal anodes. ACS Nano 18(37), 25880–25892 (2024). https://doi.org/10.1021/acsnano.4c09678
- D. Li, T. Sun, T. Ma, W. Zhang, Q. Sun et al., Regulating Zn2+ solvation shell through charge-concentrated anions for high Zn plating/stripping coulombic efficiency. Adv. Funct. Mater. 34(44), 2405145 (2024). https://doi.org/10.1002/adfm.202405145
- H. Wang, W. Ye, B. Yin, K. Wang, M.S. Riaz et al., Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes. Angew. Chem. Int. Ed. 62(10), e202218872 (2023). https://doi.org/10.1002/anie.202218872
- X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33(52), 2105951 (2021). https://doi.org/10.1002/adma.202105951
- Q. Deng, S. You, W. Min, Y. Xu, W. Lin et al., Polymer molecules adsorption-induced zincophilic-hydrophobic protective layer enables highly stable Zn metal anodes. Adv. Mater. 36(16), 2312924 (2024). https://doi.org/10.1002/adma.202312924
- F. Duan, X. Yin, J. Ba, J. Li, Y. Yu et al., A hydrophobic and zincophilic interfacial nanofilm as a protective layer for stable Zn anodes. Adv. Funct. Mater. 34(10), 2310342 (2024). https://doi.org/10.1002/adfm.202310342
- W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
- R. Xu, Y. Xiao, R. Zhang, X.-B. Cheng, C.-Z. Zhao et al., Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv. Mater. 31(19), 1808392 (2019). https://doi.org/10.1002/adma.201808392
- A. Zhou, H. Wang, F. Zhang, X. Hu, Z. Song et al., Amphipathic phenylalanine-induced nucleophilic-hydrophobic interface toward highly reversible Zn anode. Nano-Micro Lett. 16(1), 164 (2024). https://doi.org/10.1007/s40820-024-01380-x
- P. Li, J. Zhang, Y. Chen, L. Zhang, Z. Zhao et al., Interfacial H2O structure matters: realizing stable zinc anodes with trace acesulfame-K in aqueous electrolyte. Adv. Funct. Mater. 34(27), 2316605 (2024). https://doi.org/10.1002/adfm.202316605
- G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li et al., A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 14(1), 6526 (2023). https://doi.org/10.1038/s41467-023-42333-z
- X. Li, C. Cai, P. Hu, B. Zhang, P. Wu et al., Gradient pores enhance charge storage density of carbonaceous cathodes for Zn-ion capacitor. Adv. Mater. 36(23), e2400184 (2024). https://doi.org/10.1002/adma.202400184
- C. Chen, T. Wang, X. Zhao, A. Wu, S. Li et al., Customizing hydrophilic terminations for 2 MXene toward superior hybrid-ion storage in aqueous zinc batteries. Adv. Funct. Mater. 34(9), 2308508 (2024). https://doi.org/10.1002/adfm.202308508
- D. Sha, C. Lu, W. He, J. Ding, H. Zhang et al., Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano 16(2), 2711–2720 (2022). https://doi.org/10.1021/acsnano.1c09639
- K. Fu, T. Liu, M. Xie, Y. Wu, Z. Li et al., Water-lean inner Helmholtz plane enabled by tetrahydropyran for highly reversible zinc metal anode. Adv. Funct. Mater. 34(46), 2407895 (2024). https://doi.org/10.1002/adfm.202407895
- Z. Feng, Y. Zhang, J. Sun, Y. Liu, H. Jiang et al., Dual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries. Chem. Eng. J. 433, 133795 (2022). https://doi.org/10.1016/j.cej.2021.133795
- X. Jia, C. Liu, Z. Wang, D. Huang, G. Cao, Weakly polarized organic cation-modified hydrated vanadium oxides for high-energy efficiency aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 129 (2024). https://doi.org/10.1007/s40820-024-01339-y
- X. Cai, X. Wang, Z. Bie, Z. Jiao, Y. Li et al., A layer-by-layer self-assembled bio-macromolecule film for stable zinc anode. Adv. Mater. 36(3), e2306734 (2024). https://doi.org/10.1002/adma.202306734
- C. Zhao, Y. Du, Z. Guo, A. Chen, N. Liu et al., Missing-linker bifunctional MIL-125(Ti)-Zn interface modulation layer to simultaneously suppress hydrogen evolution reaction and dendrites for Zn metal anodes. Energy Storage Mater. 53, 322–330 (2022). https://doi.org/10.1016/j.ensm.2022.09.014
- X. Li, Y. Wang, J. Lu, P. Li, Z. Huang et al., Constructing static two-electron lithium-bromide battery. Sci. Adv. 10(24), eadl0587 (2024). https://doi.org/10.1126/sciadv.adl0587
- J. Xiao, H. Gao, Y. Xiao, S. Wang, C. Gong et al., A hydro-stable and phase-transition-free P2-type cathode with superior cycling stability for high-voltage sodium-ion batteries. Chem. Eng. J. 506, 160010 (2025). https://doi.org/10.1016/j.cej.2025.160010
References
H. Wu, S. Luo, H. Wang, L. Li, Y. Fang et al., A review of anode materials for dual-ion batteries. Nano-Micro Lett. 16(1), 252 (2024). https://doi.org/10.1007/s40820-024-01470-w
J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan et al., Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 614(7949), 694–700 (2023). https://doi.org/10.1038/s41586-022-05627-8
J. Zheng, Q. Zhao, T. Tang, J. Yin, C.D. Quilty et al., Reversible epitaxial electrodeposition of metals in battery anodes. Science 366(6465), 645–648 (2019). https://doi.org/10.1126/science.aax6873
S. Chen, M. Zhang, P. Zou, B. Sun, S. Tao, Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy Environ. Sci. 15(5), 1805–1839 (2022). https://doi.org/10.1039/D2EE00004K
C. Xu, Z. Yang, X. Zhang, M. Xia, H. Yan et al., Prussian blue analogues in aqueous batteries and desalination batteries. Nano-Micro Lett. 13(1), 166 (2021). https://doi.org/10.1007/s40820-021-00700-9
G. Zhang, H. Gao, D. Zhang, J. Xiao, L. Sun et al., Transformative catalytic carbon conversion enabling superior graphitization and nanopore engineering in hard carbon anodes for sodium-ion batteries. Carbon Energy (2025). https://doi.org/10.1002/cey2.713
J. Xu, H. Li, Y. Jin, D. Zhou, B. Sun et al., Understanding the electrical mechanisms in aqueous zinc metal batteries: from electrostatic interactions to electric field regulation. Adv. Mater. 36(3), 2309726 (2024). https://doi.org/10.1002/adma.202309726
B. Jiang, C. Xu, C. Wu, L. Dong, J. Li et al., Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 229, 422–428 (2017). https://doi.org/10.1016/j.electacta.2017.01.163
T. Zhang, Y. Tang, G. Fang, C. Zhang, H. Zhang et al., Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte. Adv. Funct. Mater. 30(30), 2002711 (2020). https://doi.org/10.1002/adfm.202002711
X. Li, W. Xu, C. Zhi, Halogen-powered static conversion chemistry. Nat. Rev. Chem. 8(5), 359–375 (2024). https://doi.org/10.1038/s41570-024-00597-z
X. Li, T. Liu, P. Li, G. Liang, Z. Huang et al., Aqueous alkaline zinc-iodine battery with two-electron transfer. ACS Nano 19(2), 2900–2908 (2025). https://doi.org/10.1021/acsnano.4c16550
L. Yuan, J. Hao, C.-C. Kao, C. Wu, H.-K. Liu et al., Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14(11), 5669–5689 (2021). https://doi.org/10.1039/D1EE02021H
H. Yang, Y. Qiao, Z. Chang, H. Deng, X. Zhu et al., Reducing water activity by zeolite molecular sieve membrane for long-life rechargeable zinc battery. Adv. Mater. 33(38), 2102415 (2021). https://doi.org/10.1002/adma.202102415
M. Song, H. Tan, D. Chao, H.J. Fan, Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28(41), 1802564 (2018). https://doi.org/10.1002/adfm.201802564
J.L. Yang, J. Li, J.W. Zhao, K. Liu, P. Yang et al., Stable zinc anodes enabled by a zincophilic polyanionic hydrogel layer. Adv. Mater. 34(27), e2202382 (2022). https://doi.org/10.1002/adma.202202382
Y. Gao, L. Liu, Y. Jiang, D. Yu, X. Zheng et al., Design principles and mechanistic understandings of non-noble-metal bifunctional electrocatalysts for zinc-air batteries. Nano-Micro Lett. 16(1), 162 (2024). https://doi.org/10.1007/s40820-024-01366-9
G. Nazir, A. Rehman, J.-H. Lee, C.-H. Kim, J. Gautam et al., A review of rechargeable zinc-air batteries: recent progress and future perspectives. Nano-Micro Lett. 16(1), 138 (2024). https://doi.org/10.1007/s40820-024-01328-1
J.F. Parker, C.N. Chervin, I.R. Pala, M. Machler, M.F. Burz et al., Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356(6336), 415–418 (2017). https://doi.org/10.1126/science.aak9991
J. Ji, Z. Zhu, H. Du, X. Qi, J. Yao et al., Zinc-contained alloy as a robustly adhered interfacial lattice locking layer for planar and stable zinc electrodeposition. Adv. Mater. 35(20), 2211961 (2023). https://doi.org/10.1002/adma.202211961
J. Chen, J. Xiong, M. Ye, Z. Wen, Y. Zhang et al., Suppression of hydrogen evolution reaction by modulating the surface redox potential toward long-life zinc metal anodes. Adv. Funct. Mater. 34(16), 2312564 (2024). https://doi.org/10.1002/adfm.202312564
Y. Lu, H. Zhang, H. Liu, Z. Nie, F. Xu et al., Electrolyte dynamics engineering for flexible fiber-shaped aqueous zinc-ion battery with ultralong stability. Nano Lett. 21(22), 9651–9660 (2021). https://doi.org/10.1021/acs.nanolett.1c03455
J. Cao, D. Zhang, C. Gu, X. Wang, S. Wang et al., Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 11(29), 2101299 (2021). https://doi.org/10.1002/aenm.202101299
T. Liu, J. Hong, J. Wang, Y. Xu, Y. Wang, Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan. Energy Storage Mater. 45, 1074–1083 (2022). https://doi.org/10.1016/j.ensm.2021.11.002
Q. Zhang, J. Luan, X. Huang, Q. Wang, D. Sun et al., Revealing the role of crystal orientation of protective layers for stable zinc anode. Nat. Commun. 11(1), 3961 (2020). https://doi.org/10.1038/s41467-020-17752-x
K. Wu, J. Yi, X. Liu, Y. Sun, J. Cui et al., Regulating Zn deposition via an artificial solid-electrolyte interface with aligned dipoles for long life Zn anode. Nano-Micro Lett. 13(1), 79 (2021). https://doi.org/10.1007/s40820-021-00599-2
S. Zhang, M. Ye, Y. Zhang, Y. Tang, X. Liu et al., Regulation of ionic distribution and desolvation activation energy enabled by in situ zinc phosphate protective layer toward highly reversible zinc metal anodes. Adv. Funct. Mater. 33(22), 2208230 (2023). https://doi.org/10.1002/adfm.202208230
M. Zhao, Y. Lv, S. Zhao, Y. Xiao, J. Niu et al., Simultaneously stabilizing both electrodes and electrolytes by a self-separating organometallics interface for high-performance zinc-ion batteries at wide temperatures. Adv. Mater. 34(49), 2206239 (2022). https://doi.org/10.1002/adma.202206239
P. Li, J. Ren, C. Li, J. Li, K. Zhang et al., MOF-derived defect-rich CeO2 as ion-selective smart artificial SEI for dendrite-free Zn-ion battery. Chem. Eng. J. 451, 138769 (2023). https://doi.org/10.1016/j.cej.2022.138769
H. Yang, Z. Chang, Y. Qiao, H. Deng, X. Mu et al., Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 59(24), 9377–9381 (2020). https://doi.org/10.1002/anie.202001844
Z. Liu, Y. Huang, Y. Huang, Q. Yang, X. Li et al., Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49(1), 180–232 (2020). https://doi.org/10.1039/c9cs00131j
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
P. Senguttuvan, S.-D. Han, S. Kim, A.L. Lipson, S. Tepavcevic et al., A high power rechargeable nonaqueous multivalent Zn/V2O5 battery. Adv. Energy Mater. 6(24), 1600826 (2016). https://doi.org/10.1002/aenm.201600826
S.D. Han, N.N. Rajput, X. Qu, B. Pan, M. He et al., Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes. ACS Appl. Mater. Interfaces 8(5), 3021–3031 (2016). https://doi.org/10.1021/acsami.5b10024
L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem. Int. Ed. 59(43), 19292–19296 (2020). https://doi.org/10.1002/anie.202008634
X. Zeng, J. Mao, J. Hao, J. Liu, S. Liu et al., Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 33(11), 2007416 (2021). https://doi.org/10.1002/adma.202007416
A. Naveed, H. Yang, J. Yang, Y. Nuli, J. Wang, Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew. Chem. Int. Ed. 58(9), 2760–2764 (2019). https://doi.org/10.1002/anie.201813223
D. Li, Y. Guo, C. Zhang, X. Chen, W. Zhang et al., Unveiling organic electrode materials in aqueous zinc-ion batteries: from structural design to electrochemical performance. Nano-Micro Lett. 16(1), 194 (2024). https://doi.org/10.1007/s40820-024-01404-6
H. Qiu, X. Du, J. Zhao, Y. Wang, J. Ju et al., Zinc anode-compatible in situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10(1), 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3
Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15(11), 4748–4760 (2022). https://doi.org/10.1039/D2EE02687B
Q. He, G. Fang, Z. Chang, Y. Zhang, S. Zhou et al., Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction. Nano-Micro Lett. 14(1), 93 (2022). https://doi.org/10.1007/s40820-022-00835-3
G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter 49(20), 14251–14269 (1994). https://doi.org/10.1103/physrevb.49.14251
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/physrevb.59.1758
T.K. Woo, P.M. Margl, P.E. Blöchl, T. Ziegler, A combined car–parrinello QM/MM implementation for ab initio molecular dynamics simulations of extended systems: application to transition metal catalysis. J. Phys. Chem. B 101(40), 7877–7880 (1997). https://doi.org/10.1021/jp9717296
C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693 (1997). https://doi.org/10.1103/physrevlett.78.2690
Z. Wang, Y. Wang, Z. Zhang, X. Chen, W. Lie et al., Building artificial solid-electrolyte interphase with uniform intermolecular ionic bonds toward dendrite-free lithium metal anodes. Adv. Funct. Mater. 30(30), 2002414 (2020). https://doi.org/10.1002/adfm.202002414
Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 58(44), 15841–15847 (2019). https://doi.org/10.1002/anie.201907830
L. Zhang, J. Xiao, X. Xiao, W. Xin, Y. Geng et al., Molecular engineering of self-assembled monolayers for highly utilized Zn anodes. eScience 4(2), 100205 (2024). https://doi.org/10.1016/j.esci.2023.100205
J. He, Y. Mu, B. Wu, F. Wu, R. Liao et al., Synergistic effects of Lewis acid–base and Coulombic interactions for high-performance Zn–I2 batteries. Energy Environ. Sci. 17(1), 323–331 (2024). https://doi.org/10.1039/D3EE03297C
P. Wang, S. Liang, C. Chen, X. Xie, J. Chen et al., Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes. Adv. Mater. 34(33), e2202733 (2022). https://doi.org/10.1002/adma.202202733
M. Zhou, Z. Tong, H. Li, X. Zhou, X. Li et al., Regulating preferred crystal plane with modification of exposed grain boundary toward stable Zn anode. Adv. Funct. Mater. 35(1), 2412092 (2025). https://doi.org/10.1002/adfm.202412092
X. Li, S. Wang, D. Zhang, P. Li, Z. Chen et al., Perovskite cathodes for aqueous and organic iodine batteries operating under one and two electrons redox modes. Adv. Mater. 36(4), 2304557 (2024). https://doi.org/10.1002/adma.202304557
Z. Song, B. Wang, W. Zhang, Q. Zhu, A.Y. Elezzabi et al., Fast and stable zinc anode-based electrochromic displays enabled by bimetallically doped vanadate and aqueous Zn2+/Na+ hybrid electrolytes. Nano-Micro Lett. 15(1), 229 (2023). https://doi.org/10.1007/s40820-023-01209-z
H. Zhang, X. Judez, A. Santiago, M. Martinez-Ibañez, M.Á. Muñoz-Márquez et al., Fluorine-free noble salt anion for high-performance all-solid-state lithium–sulfur batteries. Adv. Energy Mater. 9(25), 1900763 (2019). https://doi.org/10.1002/aenm.201900763
M. Qiu, H. Jia, C. Lan, H. Liu, S. Fu, An enhanced kinetics and ultra-stable zinc electrode by functionalized boron nitride intermediate layer engineering. Energy Storage Mater. 45, 1175–1182 (2022). https://doi.org/10.1016/j.ensm.2021.11.018
W. Li, H. Xu, S. Ke, H. Zhang, H. Chen et al., Integrating electric ambipolar effect for high-performance zinc bromide batteries. Nano-Micro Lett. 17(1), 143 (2025). https://doi.org/10.1007/s40820-024-01636-6
L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), 2007406 (2021). https://doi.org/10.1002/adma.202007406
J. Zheng, B. Zhang, X. Chen, W. Hao, J. Yao et al., Critical solvation structures arrested active molecules for reversible Zn electrochemistry. Nano-Micro Lett. 16(1), 145 (2024). https://doi.org/10.1007/s40820-024-01361-0
K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144(25), 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
H. Liu, Q. Ye, D. Lei, Z. Hou, W. Hua et al., Molecular brush: an ion-redistributor to homogenize fast Zn2+ flux and deposition for calendar-life Zn batteries. Energy Environ. Sci. 16(4), 1610–1619 (2023). https://doi.org/10.1039/D2EE03952D
Y. Zhong, Z. Cheng, H. Zhang, J. Li, D. Liu et al., Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery. Nano Energy 98, 107220 (2022). https://doi.org/10.1016/j.nanoen.2022.107220
C. Yang, P. Woottapanit, S. Geng, K. Lolupiman, X. Zhang et al., Highly reversible Zn anode design through oriented ZnO(002) facets. Adv. Mater. 36(49), e2408908 (2024). https://doi.org/10.1002/adma.202408908
S. Xia, Q. Luo, J. Liu, X. Yang, J. Lei et al., In situ spontaneous construction of zinc phosphate coating layer toward highly reversible zinc metal anodes. Small 20(29), 2310497 (2024). https://doi.org/10.1002/smll.202310497
J. Dong, L. Su, H. Peng, D. Wang, H. Zong et al., Spontaneous molecule aggregation for nearly single-ion conducting Sol electrolyte to advance aqueous zinc metal batteries: the case of tetraphenylporphyrin. Angew. Chem. Int. Ed. 63(21), e202401441 (2024). https://doi.org/10.1002/anie.202401441
D. Wang, Q. Shao, X. Cao, M. Qin, Y. He et al., pH modulation and molecular layer construction for stable zinc batteries. J. Energy Chem. 102, 179–188 (2025). https://doi.org/10.1016/j.jechem.2024.10.048
S. Liu, Q. Han, C. He, Z. Xu, P. Huang et al., Ion-sieving separator functionalized by natural mineral coating toward ultrastable Zn metal anodes. ACS Nano 18(37), 25880–25892 (2024). https://doi.org/10.1021/acsnano.4c09678
D. Li, T. Sun, T. Ma, W. Zhang, Q. Sun et al., Regulating Zn2+ solvation shell through charge-concentrated anions for high Zn plating/stripping coulombic efficiency. Adv. Funct. Mater. 34(44), 2405145 (2024). https://doi.org/10.1002/adfm.202405145
H. Wang, W. Ye, B. Yin, K. Wang, M.S. Riaz et al., Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes. Angew. Chem. Int. Ed. 62(10), e202218872 (2023). https://doi.org/10.1002/anie.202218872
X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33(52), 2105951 (2021). https://doi.org/10.1002/adma.202105951
Q. Deng, S. You, W. Min, Y. Xu, W. Lin et al., Polymer molecules adsorption-induced zincophilic-hydrophobic protective layer enables highly stable Zn metal anodes. Adv. Mater. 36(16), 2312924 (2024). https://doi.org/10.1002/adma.202312924
F. Duan, X. Yin, J. Ba, J. Li, Y. Yu et al., A hydrophobic and zincophilic interfacial nanofilm as a protective layer for stable Zn anodes. Adv. Funct. Mater. 34(10), 2310342 (2024). https://doi.org/10.1002/adfm.202310342
W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan et al., Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 13(1), 5348 (2022). https://doi.org/10.1038/s41467-022-32955-0
R. Xu, Y. Xiao, R. Zhang, X.-B. Cheng, C.-Z. Zhao et al., Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries. Adv. Mater. 31(19), 1808392 (2019). https://doi.org/10.1002/adma.201808392
A. Zhou, H. Wang, F. Zhang, X. Hu, Z. Song et al., Amphipathic phenylalanine-induced nucleophilic-hydrophobic interface toward highly reversible Zn anode. Nano-Micro Lett. 16(1), 164 (2024). https://doi.org/10.1007/s40820-024-01380-x
P. Li, J. Zhang, Y. Chen, L. Zhang, Z. Zhao et al., Interfacial H2O structure matters: realizing stable zinc anodes with trace acesulfame-K in aqueous electrolyte. Adv. Funct. Mater. 34(27), 2316605 (2024). https://doi.org/10.1002/adfm.202316605
G. Li, Z. Zhao, S. Zhang, L. Sun, M. Li et al., A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery. Nat. Commun. 14(1), 6526 (2023). https://doi.org/10.1038/s41467-023-42333-z
X. Li, C. Cai, P. Hu, B. Zhang, P. Wu et al., Gradient pores enhance charge storage density of carbonaceous cathodes for Zn-ion capacitor. Adv. Mater. 36(23), e2400184 (2024). https://doi.org/10.1002/adma.202400184
C. Chen, T. Wang, X. Zhao, A. Wu, S. Li et al., Customizing hydrophilic terminations for 2 MXene toward superior hybrid-ion storage in aqueous zinc batteries. Adv. Funct. Mater. 34(9), 2308508 (2024). https://doi.org/10.1002/adfm.202308508
D. Sha, C. Lu, W. He, J. Ding, H. Zhang et al., Surface selenization strategy for V2CTx MXene toward superior Zn-ion storage. ACS Nano 16(2), 2711–2720 (2022). https://doi.org/10.1021/acsnano.1c09639
K. Fu, T. Liu, M. Xie, Y. Wu, Z. Li et al., Water-lean inner Helmholtz plane enabled by tetrahydropyran for highly reversible zinc metal anode. Adv. Funct. Mater. 34(46), 2407895 (2024). https://doi.org/10.1002/adfm.202407895
Z. Feng, Y. Zhang, J. Sun, Y. Liu, H. Jiang et al., Dual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries. Chem. Eng. J. 433, 133795 (2022). https://doi.org/10.1016/j.cej.2021.133795
X. Jia, C. Liu, Z. Wang, D. Huang, G. Cao, Weakly polarized organic cation-modified hydrated vanadium oxides for high-energy efficiency aqueous zinc-ion batteries. Nano-Micro Lett. 16(1), 129 (2024). https://doi.org/10.1007/s40820-024-01339-y
X. Cai, X. Wang, Z. Bie, Z. Jiao, Y. Li et al., A layer-by-layer self-assembled bio-macromolecule film for stable zinc anode. Adv. Mater. 36(3), e2306734 (2024). https://doi.org/10.1002/adma.202306734
C. Zhao, Y. Du, Z. Guo, A. Chen, N. Liu et al., Missing-linker bifunctional MIL-125(Ti)-Zn interface modulation layer to simultaneously suppress hydrogen evolution reaction and dendrites for Zn metal anodes. Energy Storage Mater. 53, 322–330 (2022). https://doi.org/10.1016/j.ensm.2022.09.014
X. Li, Y. Wang, J. Lu, P. Li, Z. Huang et al., Constructing static two-electron lithium-bromide battery. Sci. Adv. 10(24), eadl0587 (2024). https://doi.org/10.1126/sciadv.adl0587
J. Xiao, H. Gao, Y. Xiao, S. Wang, C. Gong et al., A hydro-stable and phase-transition-free P2-type cathode with superior cycling stability for high-voltage sodium-ion batteries. Chem. Eng. J. 506, 160010 (2025). https://doi.org/10.1016/j.cej.2025.160010