Flexible Conductive Anodes Based on 3D Hierarchical Sn/NS-CNFs@rGO Network for Sodium-Ion Batteries
Corresponding Author: Guoxiu Wang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 63
Abstract
Metallic Sn has provoked tremendous progress as an anode material for sodium-ion batteries (SIBs). However, Sn anodes suffer from a dramatic capacity fading, owing to pulverization induced by drastic volume expansion during cycling. Herein, a flexible three-dimensional (3D) hierarchical conductive network electrode is designed by constructing Sn quantum dots (QDs) encapsulated in one-dimensional N,S co-doped carbon nanofibers (NS-CNFs) sheathed within two-dimensional (2D) reduced graphene oxide (rGO) scrolls. In this ingenious strategy, 1D NS-CNFs are regarded as building blocks to prevent the aggregation and pulverization of Sn QDs during sodiation/desodiation, 2D rGO acts as electrical roads and “bridges” among NS-CNFs to improve the conductivity of the electrode and enlarge the contact area with electrolyte. Because of the unique structural merits, the flexible 3D hierarchical conductive network was directly used as binder- and current collector-free anode for SIBs, exhibiting ultra-long cycling life (373 mAh g−1 after 5000 cycles at 1 A g−1), and excellent high-rate capability (189 mAh g−1 at 10 A g−1). This work provides a facile and efficient engineering method to construct 3D hierarchical conductive electrodes for other flexible energy storage devices.
Highlights:
1 3D hierarchical conductive Sn quantum dots encapsulated in N,S co-doped carbon nanofibers sheathed within rGO scrolls (Sn/NS-CNFs@rGO) were prepared through an electrospinning process.
2 Flexible Sn/NS-CNFs@rGO electrode exhibits superior long-term cycling stability and high-rate capability in sodium-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
- L. Zeng, F. Luo, X. Xia, M.-Q. Yang, L. Xu et al., Sn doped 1T-2H MoS2 few-layer structure embedded in N/P co-doped bio-carbon for high performance sodium-ion batteries. Chem. Commun. 55(25), 3614–3617 (2019). https://doi.org/10.1039/C9CC01018A
- Y. Fang, L. Xiao, Z. Chen, X. Ai, Y. Cao, H. Yang, Recent advances in sodium-ion battery materials. Electrochem. Energy Rev. 1(3), 294–323 (2018). https://doi.org/10.1007/s41918-018-0008-x
- Y. Liao, C. Chen, D. Yin, Y. Cai, R. He, M. Zhang, Improved Na+/K+ storage properties of ReSe2-carbon nanofibers based on graphene modifications. Nano-Micro Lett. 11(1), 22 (2019). https://doi.org/10.1007/s40820-019-0248-2
- N. Xiao, Y. Pang, Y. Song, X. Wu, Z. Fu, Y. Zhou, Electrochemical behavior of sb-si nanocomposite thin films as anode materials for sodium-ion batteries. J. Inorg. Mater. 33(5), 494–500 (2018). https://doi.org/10.15541/jim20170326
- Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
- T. Wang, D. Su, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Electrode materials for sodium-ion batteries: considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 1(2), 200–237 (2018). https://doi.org/10.1007/s41918-018-0009-9
- S. Li, Z. Zhao, C. Li, Z. Liu, D. Li, SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries. Nano-Micro Lett. 11(1), 14 (2019). https://doi.org/10.1007/s40820-019-0243-7
- F. Li, Z. Wei, A. Manthiram, Y. Feng, J. Ma, L. Mai, Sodium-based batteries: from critical materials to battery systems. J. Mater. Chem. A 7(16), 9406–9431 (2019). https://doi.org/10.1039/C8TA11999F
- D. Ma, Y. Li, H. Mi, S. Luo, P. Zhang, Z. Lin, J. Li, H. Zhang, Robust SnO2-x nanoparticle–impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem. Int. Ed. 57(29), 8901–8905 (2018). https://doi.org/10.1002/anie.201802672
- W. Xiong, Z.Y. Wang, J.Q. Zhang, C.Q. Shang, M.Y. Yang, L.Q. He, Z.G. Lu, Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries. Energy Storage Mater. 7, 229–235 (2017). https://doi.org/10.1016/j.ensm.2017.03.006
- Y. Li, H. Wang, L. Wang, Z. Mao, R. Wang, B. He, Y. Gong, X. Hu, Mesopore-induced ultrafast Na+-storage in t-Nb2O5/carbon nanofiber films toward flexible high-power Na–ion capacitors. Small 15(9), 1804539 (2019). https://doi.org/10.1002/smll.201804539
- S. Nie, L. Liu, J. Liu, J. Xie, Y. Zhang et al., Nitrogen–doped TiO2-C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium-ion batteries. Nano-Micro Lett. 10(4), 71 (2018). https://doi.org/10.1007/s40820-018-0225-1
- S.H. Qi, D.X. Wu, Y. Dong, J.Q. Liao, C.W. Foster et al., Cobalt-based electrode materials for sodium-ion batteries. Chem. Eng. J. 370, 185–207 (2019). https://doi.org/10.1016/j.cej.2019.03.166
- Q. Li, Z. Li, Z. Zhang, C. Li, J. Ma et al., Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv. Energy Mater. 6(15), 1600376 (2016). https://doi.org/10.1002/aenm.201600376
- L. Zhi, D. Jia, M. David, Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Accounts Chem. Res. 48(6), 1657–1665 (2015). https://doi.org/10.1021/acs.accounts.5b00114
- M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
- Y. Liu, Y. Xu, Y. Zhu, J.N. Culver, C.A. Lundgren, K. Xu, C. Wang, Tin–coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7(4), 3627–3634 (2013). https://doi.org/10.1021/nn400601y
- X. Ren, J. Wang, D. Zhu, Q. Li, W. Tian et al., Sn–C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy 54, 322–330 (2018). https://doi.org/10.1016/j.nanoen.2018.10.019
- H. Ying, S. Zhang, Z. Meng, Z. Sun, W.-Q. Han, Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A 5(18), 8334–8342 (2017). https://doi.org/10.1039/c7ta01480e
- Y. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv. Funct. Mater. 25(2), 214–220 (2015). https://doi.org/10.1002/adfm.201402943
- B. Ruan, H. Guo, Y. Hou, Q. Liu, Y. Deng, G. Chen, S. Chou, H. Liu, J. Wang, Carbon–encapsulated Sn@N-doped carbon nanotubes as anode materials for application in SIBs. ACS Appl. Mater. Interfaces. 9(43), 37682–37693 (2017). https://doi.org/10.1021/acsami.7b10085
- L. Xie, Z. Yang, J. Sun, H. Zhou, X. Chi et al., Bi2Se3/C nanocomposite as a new sodium-ion battery anode material. Nano-Micro Lett. 10(3), 50 (2018). https://doi.org/10.1007/s40820-018-0201-9
- M. Sha, H. Zhang, Y. Nie, K. Nie, X. Lv et al., Sn nanoparticles@nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. J. Mater. Chem. A 5(13), 6277–6283 (2017). https://doi.org/10.1039/c7ta00690j
- C. Liu, G. Shi, G. Wang, P. Mishra, S. Jia et al., Preparation and electrochemical studies of electrospun phosphorus doped porous carbon nanofibers. RSC Adv. 9(12), 6898–6906 (2019). https://doi.org/10.1039/C8RA10193K
- Y. Peng, R. Tan, J. Ma, Q. Li, T. Wang, X. Duan, Electrospun Li3V2(PO4)3 nanocubes/carbon nanofibers as free-standing cathodes for high-performance lithium-ion batteries. J. Mater. Chem. A 7(24), 14681–14688 (2019). https://doi.org/10.1039/C9TA02740H
- X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu, H. Wu, S. Dou, Graphene-scroll-sheathed α–MnS coaxial nanocables embedded in N, S co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
- Y. Jeon, X. Han, K. Fu, J. Dai, J.H. Kim, L. Hu, T. Song, U. Paik, Flash-induced reduced graphene oxide as a Sn anode host for high performance sodium ion batteries. J. Mater. Chem. A 4(47), 18306–18313 (2016). https://doi.org/10.1039/c6ta07582g
- L. Ji, W. Zhou, V. Chabot, A. Yu, X. Xiao, Reduced graphene oxide/tin-antimony nanocomposites as anode materials for advanced sodium-ion batteries. ACS Appl. Mater. Interfaces. 7(44), 24895–24901 (2015). https://doi.org/10.1021/acsami.5b08274
- J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang, L. Luo, F. Wang, G. Wang, Rational design of free-standing 3D porous Mxene/RGO hybrid aerogels as polysulfides reservoir for high–energy lithium-sulfur batteries. J. Mater. Chem. A 7(11), 6507–6513 (2019). https://doi.org/10.1039/C9TA00212J
- X. Wang, X. Li, Q. Li, H. Li, J. Xu et al., Improved electrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10(3), 46 (2018). https://doi.org/10.1007/s40820-018-0200-x
- MathSciNet
- X. Wen, X. Wei, L. Yanga, P. Shen, Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. J. Mater. Chem. A 3, 2090–2096 (2015). https://doi.org/10.1039/C4TA05575F
- Y. Zhou, Y. Zhu, B. Xu, X. Zhang, K.A. Al-Ghanim, S. Mahboob, Cobalt sulfide confined in N-doped porous branched carbon nanotubes for lithium-ion batteries. Nano-Micro Lett. 11(1), 29 (2019). https://doi.org/10.1007/s40820-019-0259-z
- Q. Shao, J. Liu, Q. Wu, Q. Li, H.-G. Wang, Y. Li, Q. Duan, In situ coupling strategy for anchoring monodisperse Co9S8 nanoparticles on S and N dual-doped graphene as a bifunctional electrocatalyst for rechargeable Zn-Air battery. Nano-Micro Lett. 11(1), 4 (2019). https://doi.org/10.1007/s40820-018-0231-3
- Y. Liu, Y. Qiao, G. Wei, S. Li, Z. Lu, X. Wang, X. Lou, Sodium storage mechanism of N, S co-doped nanoporous carbon: experimental design and theoretical evaluation. Energy Storage Mater. 11, 274–281 (2018). https://doi.org/10.1016/j.ensm.2017.09.003
- B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, Y. Li, Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4(7), 1700107 (2017). https://doi.org/10.1002/advs.201700107
- J. Zhi, A.Z. Yazdi, G. Valappil, J. Haime, P. Chen, Artificial solid electrolyte interphase for aqueous lithium energy storage systems. Sci. Adv. 3(9), 15 (2017). https://doi.org/10.1126/sciadv.1701010
- W. Zhang, P. Cao, L. Li, K. Yang, K. Wang, S. Liu, Z. Yu, Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries. Chem. Eng. J. 348, 599–607 (2018). https://doi.org/10.1016/j.cej.2018.05.024
- Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 16(5), 3321–3328 (2016). https://doi.org/10.1021/acs.nanolett.6b00942
- G. Zhang, J. Zhu, W. Zeng, S. Hou, F. Gong, F. Li, C.C. Li, H. Duan, Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy 9, 61–70 (2014). https://doi.org/10.1016/j.nanoen.2014.06.030
- C. Wu, J. Lin, R. Chu, J. Zheng, Y. Chen, J. Zhang, H. Guo, Reduced graphene oxide as a dual-functional enhancer wrapped over silicon/porous carbon nanofibers for high–performance lithium-ion battery anodes. J. Mater. Sci. 52(13), 7984–7996 (2017). https://doi.org/10.1007/s10853-017-1001-1
- Y. Liu, Y. Yang, X. Wang, Y. Dong, Y. Tang, Z. Yu, Z. Zhao, J. Qiu, Flexible paper-like free–standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces. 9(18), 15484–15491 (2017). https://doi.org/10.1021/acsami.7b02394
- N. Zhang, F. Liu, S.-D. Xu, F.-Y. Wang, Q. Yu, L. Liu, Nitrogen-phosphorus co-doped hollow carbon microspheres with hierarchical micro-meso-macroporous shells as efficient electrodes for supercapacitors. J. Mater. Chem. A 5(43), 22631–22640 (2017). https://doi.org/10.1039/c7ta07488c
- X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou et al., SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10(8), 1757–1763 (2017). https://doi.org/10.1039/c7ee01628j
- F. Pan, W. Zhang, J. Ma, N. Yao, L. Xu, Y.-S. He, X. Yang, Z.-F. Ma, Integrating in situ solvothermal approach synthesized nanostructured tin anchored on graphene sheets into film anodes for sodium-ion batteries. Electrochim. Acta 196, 572–578 (2016). https://doi.org/10.1016/j.electacta.2016.02.204
- H.-G. Wang, C. Jiang, C. Yuan, Q. Wu, Q. Li, Q. Duan, Complexing agent engineered strategy for anchoring SnO2 nanoparticles on sulfur/nitrogen co-doped graphene for superior lithium and sodium ion storage. Chem. Eng. J. 332, 237–244 (2018). https://doi.org/10.1016/j.cej.2017.09.081
- S. Chen, Z. Ao, B. Su, X. Xie, G. Wang, Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries. Energy Storage Mater. 5, 180–190 (2016). https://doi.org/10.1016/j.ensm.2016.07.001
- M. Han, C. Zhu, Q. Zhao, C. Chen, Z. Tao, W. Xie, F. Cheng, J. Chen, In situ atomic force microscopic studies of single tin nanoparticle: sodiation and desodiation in liquid electrolyte. ACS Appl. Mater. Interfaces. 9(34), 28620–28626 (2017). https://doi.org/10.1021/acsami.7b08870
- W. Dong, S. Yang, B. Liang, D. Shen, W. Sun et al., C/Sn/rGO nanocomposites as higher initial coulombic efficiency anode for sodium-ion batteries. Chemistryselect 2(35), 11739–11746 (2017). https://doi.org/10.1002/slct.201702062
- Y.C. Liu, N. Zhang, L.F. Jiao, Z.L. Tao, J. Chen, Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv. Funct. Mater. 25(2), 214–220 (2015). https://doi.org/10.1002/adfm.201402943
- W. Shao, F. Hu, C. Song, J. Wang, C. Liu, Z. Weng, X. Jian, Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. J. Mater. Chem. A 7(11), 6363–6373 (2019). https://doi.org/10.1039/C8TA11921J
- S. Chen, Z. Ao, B. Sun, X. Xie, G. Wang, Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries. Energy Storage Mater. 5, 180–190 (2016). https://doi.org/10.1016/j.ensm.2016.07.001
- Y. Liu, Y. Xu, Y. Zhu, J.N. Culver, C.A. Lundgren, K. Xu, C. Wang, Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7(4), 3627–3634 (2013). https://doi.org/10.1021/nn400601y
- S. Li, Z. Wang, J. Liu, L. Yang, Y. Guo, L. Cheng, M. Lei, W. Wang, Yolk-shell Sn@C eggette-like nanostructure: application in lithium-ion and sodium-ion batteries. ACS Appl. Mater. Interfaces. 8(30), 19438–19445 (2016). https://doi.org/10.1021/acsami.6b04736
- M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
- B. Luo, T. Qiu, D. Ye, L. Wang, L. Zhi, Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium–ion storage. Nano Energy 22, 232–240 (2016). https://doi.org/10.1016/j.nanoen.2016.02.024
- J. Song, C. Zhang, X. Guo, J. Zhang, L. Luo, H. Liu, F. Wang, G. Wang, Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high–rate lithium-sulfur batteries. J. Mater. Chem. A 6(34), 16610–16616 (2018). https://doi.org/10.1039/C8TA04800B
References
M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-ion batteries. Adv. Funct. Mater. 23(8), 947–958 (2013). https://doi.org/10.1002/adfm.201200691
L. Zeng, F. Luo, X. Xia, M.-Q. Yang, L. Xu et al., Sn doped 1T-2H MoS2 few-layer structure embedded in N/P co-doped bio-carbon for high performance sodium-ion batteries. Chem. Commun. 55(25), 3614–3617 (2019). https://doi.org/10.1039/C9CC01018A
Y. Fang, L. Xiao, Z. Chen, X. Ai, Y. Cao, H. Yang, Recent advances in sodium-ion battery materials. Electrochem. Energy Rev. 1(3), 294–323 (2018). https://doi.org/10.1007/s41918-018-0008-x
Y. Liao, C. Chen, D. Yin, Y. Cai, R. He, M. Zhang, Improved Na+/K+ storage properties of ReSe2-carbon nanofibers based on graphene modifications. Nano-Micro Lett. 11(1), 22 (2019). https://doi.org/10.1007/s40820-019-0248-2
N. Xiao, Y. Pang, Y. Song, X. Wu, Z. Fu, Y. Zhou, Electrochemical behavior of sb-si nanocomposite thin films as anode materials for sodium-ion batteries. J. Inorg. Mater. 33(5), 494–500 (2018). https://doi.org/10.15541/jim20170326
Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011). https://doi.org/10.1021/cr100290v
T. Wang, D. Su, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Electrode materials for sodium-ion batteries: considerations on crystal structures and sodium storage mechanisms. Electrochem. Energy Rev. 1(2), 200–237 (2018). https://doi.org/10.1007/s41918-018-0009-9
S. Li, Z. Zhao, C. Li, Z. Liu, D. Li, SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries. Nano-Micro Lett. 11(1), 14 (2019). https://doi.org/10.1007/s40820-019-0243-7
F. Li, Z. Wei, A. Manthiram, Y. Feng, J. Ma, L. Mai, Sodium-based batteries: from critical materials to battery systems. J. Mater. Chem. A 7(16), 9406–9431 (2019). https://doi.org/10.1039/C8TA11999F
D. Ma, Y. Li, H. Mi, S. Luo, P. Zhang, Z. Lin, J. Li, H. Zhang, Robust SnO2-x nanoparticle–impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angew. Chem. Int. Ed. 57(29), 8901–8905 (2018). https://doi.org/10.1002/anie.201802672
W. Xiong, Z.Y. Wang, J.Q. Zhang, C.Q. Shang, M.Y. Yang, L.Q. He, Z.G. Lu, Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries. Energy Storage Mater. 7, 229–235 (2017). https://doi.org/10.1016/j.ensm.2017.03.006
Y. Li, H. Wang, L. Wang, Z. Mao, R. Wang, B. He, Y. Gong, X. Hu, Mesopore-induced ultrafast Na+-storage in t-Nb2O5/carbon nanofiber films toward flexible high-power Na–ion capacitors. Small 15(9), 1804539 (2019). https://doi.org/10.1002/smll.201804539
S. Nie, L. Liu, J. Liu, J. Xie, Y. Zhang et al., Nitrogen–doped TiO2-C composite nanofibers with high-capacity and long-cycle life as anode materials for sodium-ion batteries. Nano-Micro Lett. 10(4), 71 (2018). https://doi.org/10.1007/s40820-018-0225-1
S.H. Qi, D.X. Wu, Y. Dong, J.Q. Liao, C.W. Foster et al., Cobalt-based electrode materials for sodium-ion batteries. Chem. Eng. J. 370, 185–207 (2019). https://doi.org/10.1016/j.cej.2019.03.166
Q. Li, Z. Li, Z. Zhang, C. Li, J. Ma et al., Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv. Energy Mater. 6(15), 1600376 (2016). https://doi.org/10.1002/aenm.201600376
L. Zhi, D. Jia, M. David, Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Accounts Chem. Res. 48(6), 1657–1665 (2015). https://doi.org/10.1021/acs.accounts.5b00114
M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
Y. Liu, Y. Xu, Y. Zhu, J.N. Culver, C.A. Lundgren, K. Xu, C. Wang, Tin–coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7(4), 3627–3634 (2013). https://doi.org/10.1021/nn400601y
X. Ren, J. Wang, D. Zhu, Q. Li, W. Tian et al., Sn–C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy 54, 322–330 (2018). https://doi.org/10.1016/j.nanoen.2018.10.019
H. Ying, S. Zhang, Z. Meng, Z. Sun, W.-Q. Han, Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. J. Mater. Chem. A 5(18), 8334–8342 (2017). https://doi.org/10.1039/c7ta01480e
Y. Liu, N. Zhang, L. Jiao, Z. Tao, J. Chen, Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv. Funct. Mater. 25(2), 214–220 (2015). https://doi.org/10.1002/adfm.201402943
B. Ruan, H. Guo, Y. Hou, Q. Liu, Y. Deng, G. Chen, S. Chou, H. Liu, J. Wang, Carbon–encapsulated Sn@N-doped carbon nanotubes as anode materials for application in SIBs. ACS Appl. Mater. Interfaces. 9(43), 37682–37693 (2017). https://doi.org/10.1021/acsami.7b10085
L. Xie, Z. Yang, J. Sun, H. Zhou, X. Chi et al., Bi2Se3/C nanocomposite as a new sodium-ion battery anode material. Nano-Micro Lett. 10(3), 50 (2018). https://doi.org/10.1007/s40820-018-0201-9
M. Sha, H. Zhang, Y. Nie, K. Nie, X. Lv et al., Sn nanoparticles@nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. J. Mater. Chem. A 5(13), 6277–6283 (2017). https://doi.org/10.1039/c7ta00690j
C. Liu, G. Shi, G. Wang, P. Mishra, S. Jia et al., Preparation and electrochemical studies of electrospun phosphorus doped porous carbon nanofibers. RSC Adv. 9(12), 6898–6906 (2019). https://doi.org/10.1039/C8RA10193K
Y. Peng, R. Tan, J. Ma, Q. Li, T. Wang, X. Duan, Electrospun Li3V2(PO4)3 nanocubes/carbon nanofibers as free-standing cathodes for high-performance lithium-ion batteries. J. Mater. Chem. A 7(24), 14681–14688 (2019). https://doi.org/10.1039/C9TA02740H
X. Gao, B. Wang, Y. Zhang, H. Liu, H. Liu, H. Wu, S. Dou, Graphene-scroll-sheathed α–MnS coaxial nanocables embedded in N, S co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46–55 (2019). https://doi.org/10.1016/j.ensm.2018.04.027
Y. Jeon, X. Han, K. Fu, J. Dai, J.H. Kim, L. Hu, T. Song, U. Paik, Flash-induced reduced graphene oxide as a Sn anode host for high performance sodium ion batteries. J. Mater. Chem. A 4(47), 18306–18313 (2016). https://doi.org/10.1039/c6ta07582g
L. Ji, W. Zhou, V. Chabot, A. Yu, X. Xiao, Reduced graphene oxide/tin-antimony nanocomposites as anode materials for advanced sodium-ion batteries. ACS Appl. Mater. Interfaces. 7(44), 24895–24901 (2015). https://doi.org/10.1021/acsami.5b08274
J. Song, X. Guo, J. Zhang, Y. Chen, C. Zhang, L. Luo, F. Wang, G. Wang, Rational design of free-standing 3D porous Mxene/RGO hybrid aerogels as polysulfides reservoir for high–energy lithium-sulfur batteries. J. Mater. Chem. A 7(11), 6507–6513 (2019). https://doi.org/10.1039/C9TA00212J
X. Wang, X. Li, Q. Li, H. Li, J. Xu et al., Improved electrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nano-Micro Lett. 10(3), 46 (2018). https://doi.org/10.1007/s40820-018-0200-x
MathSciNet
X. Wen, X. Wei, L. Yanga, P. Shen, Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. J. Mater. Chem. A 3, 2090–2096 (2015). https://doi.org/10.1039/C4TA05575F
Y. Zhou, Y. Zhu, B. Xu, X. Zhang, K.A. Al-Ghanim, S. Mahboob, Cobalt sulfide confined in N-doped porous branched carbon nanotubes for lithium-ion batteries. Nano-Micro Lett. 11(1), 29 (2019). https://doi.org/10.1007/s40820-019-0259-z
Q. Shao, J. Liu, Q. Wu, Q. Li, H.-G. Wang, Y. Li, Q. Duan, In situ coupling strategy for anchoring monodisperse Co9S8 nanoparticles on S and N dual-doped graphene as a bifunctional electrocatalyst for rechargeable Zn-Air battery. Nano-Micro Lett. 11(1), 4 (2019). https://doi.org/10.1007/s40820-018-0231-3
Y. Liu, Y. Qiao, G. Wei, S. Li, Z. Lu, X. Wang, X. Lou, Sodium storage mechanism of N, S co-doped nanoporous carbon: experimental design and theoretical evaluation. Energy Storage Mater. 11, 274–281 (2018). https://doi.org/10.1016/j.ensm.2017.09.003
B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, Y. Li, Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4(7), 1700107 (2017). https://doi.org/10.1002/advs.201700107
J. Zhi, A.Z. Yazdi, G. Valappil, J. Haime, P. Chen, Artificial solid electrolyte interphase for aqueous lithium energy storage systems. Sci. Adv. 3(9), 15 (2017). https://doi.org/10.1126/sciadv.1701010
W. Zhang, P. Cao, L. Li, K. Yang, K. Wang, S. Liu, Z. Yu, Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries. Chem. Eng. J. 348, 599–607 (2018). https://doi.org/10.1016/j.cej.2018.05.024
Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 16(5), 3321–3328 (2016). https://doi.org/10.1021/acs.nanolett.6b00942
G. Zhang, J. Zhu, W. Zeng, S. Hou, F. Gong, F. Li, C.C. Li, H. Duan, Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy 9, 61–70 (2014). https://doi.org/10.1016/j.nanoen.2014.06.030
C. Wu, J. Lin, R. Chu, J. Zheng, Y. Chen, J. Zhang, H. Guo, Reduced graphene oxide as a dual-functional enhancer wrapped over silicon/porous carbon nanofibers for high–performance lithium-ion battery anodes. J. Mater. Sci. 52(13), 7984–7996 (2017). https://doi.org/10.1007/s10853-017-1001-1
Y. Liu, Y. Yang, X. Wang, Y. Dong, Y. Tang, Z. Yu, Z. Zhao, J. Qiu, Flexible paper-like free–standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces. 9(18), 15484–15491 (2017). https://doi.org/10.1021/acsami.7b02394
N. Zhang, F. Liu, S.-D. Xu, F.-Y. Wang, Q. Yu, L. Liu, Nitrogen-phosphorus co-doped hollow carbon microspheres with hierarchical micro-meso-macroporous shells as efficient electrodes for supercapacitors. J. Mater. Chem. A 5(43), 22631–22640 (2017). https://doi.org/10.1039/c7ta07488c
X. Xiong, C. Yang, G. Wang, Y. Lin, X. Ou et al., SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries. Energy Environ. Sci. 10(8), 1757–1763 (2017). https://doi.org/10.1039/c7ee01628j
F. Pan, W. Zhang, J. Ma, N. Yao, L. Xu, Y.-S. He, X. Yang, Z.-F. Ma, Integrating in situ solvothermal approach synthesized nanostructured tin anchored on graphene sheets into film anodes for sodium-ion batteries. Electrochim. Acta 196, 572–578 (2016). https://doi.org/10.1016/j.electacta.2016.02.204
H.-G. Wang, C. Jiang, C. Yuan, Q. Wu, Q. Li, Q. Duan, Complexing agent engineered strategy for anchoring SnO2 nanoparticles on sulfur/nitrogen co-doped graphene for superior lithium and sodium ion storage. Chem. Eng. J. 332, 237–244 (2018). https://doi.org/10.1016/j.cej.2017.09.081
S. Chen, Z. Ao, B. Su, X. Xie, G. Wang, Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries. Energy Storage Mater. 5, 180–190 (2016). https://doi.org/10.1016/j.ensm.2016.07.001
M. Han, C. Zhu, Q. Zhao, C. Chen, Z. Tao, W. Xie, F. Cheng, J. Chen, In situ atomic force microscopic studies of single tin nanoparticle: sodiation and desodiation in liquid electrolyte. ACS Appl. Mater. Interfaces. 9(34), 28620–28626 (2017). https://doi.org/10.1021/acsami.7b08870
W. Dong, S. Yang, B. Liang, D. Shen, W. Sun et al., C/Sn/rGO nanocomposites as higher initial coulombic efficiency anode for sodium-ion batteries. Chemistryselect 2(35), 11739–11746 (2017). https://doi.org/10.1002/slct.201702062
Y.C. Liu, N. Zhang, L.F. Jiao, Z.L. Tao, J. Chen, Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv. Funct. Mater. 25(2), 214–220 (2015). https://doi.org/10.1002/adfm.201402943
W. Shao, F. Hu, C. Song, J. Wang, C. Liu, Z. Weng, X. Jian, Hierarchical N/S co-doped carbon anodes fabricated through a facile ionothermal polymerization for high-performance sodium ion batteries. J. Mater. Chem. A 7(11), 6363–6373 (2019). https://doi.org/10.1039/C8TA11921J
S. Chen, Z. Ao, B. Sun, X. Xie, G. Wang, Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries. Energy Storage Mater. 5, 180–190 (2016). https://doi.org/10.1016/j.ensm.2016.07.001
Y. Liu, Y. Xu, Y. Zhu, J.N. Culver, C.A. Lundgren, K. Xu, C. Wang, Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7(4), 3627–3634 (2013). https://doi.org/10.1021/nn400601y
S. Li, Z. Wang, J. Liu, L. Yang, Y. Guo, L. Cheng, M. Lei, W. Wang, Yolk-shell Sn@C eggette-like nanostructure: application in lithium-ion and sodium-ion batteries. ACS Appl. Mater. Interfaces. 8(30), 19438–19445 (2016). https://doi.org/10.1021/acsami.6b04736
M. Mao, F. Yan, C. Cui, J. Ma, M. Zhang, T. Wang, C. Wang, Pipe-wire TiO2–Sn@carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett. 17(6), 3830–3836 (2017). https://doi.org/10.1021/acs.nanolett.7b01152
B. Luo, T. Qiu, D. Ye, L. Wang, L. Zhi, Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium–ion storage. Nano Energy 22, 232–240 (2016). https://doi.org/10.1016/j.nanoen.2016.02.024
J. Song, C. Zhang, X. Guo, J. Zhang, L. Luo, H. Liu, F. Wang, G. Wang, Entrapping polysulfides by using ultrathin hollow carbon sphere-functionalized separators in high–rate lithium-sulfur batteries. J. Mater. Chem. A 6(34), 16610–16616 (2018). https://doi.org/10.1039/C8TA04800B