Nanoscale Wire Bonding of Individual Ag Nanowires on Au Substrate at Room Temperature
Corresponding Author: Wei Guo
Nano-Micro Letters,
Vol. 9 No. 3 (2017), Article Number: 26
Abstract
The controllable wire bonding of individual Ag nanowires onto a Au electrode was achieved at room temperature. The plastic deformation induced by pressure using nanoindentation could break the protective organic shell on the surface of the Ag nanowires and cause atomic contact to promote the diffusion and nanojoining at the Ag and Au interface. Severe slip bands were observed in the Ag nanowires after the deformation. A metallic bond was formed at the interface, with the Ag diffusing into the Au more than the Au diffused into the Ag. This nanoscale wire bonding might present opportunities for nanoscale packaging and nanodevice design.
Highlights:
1 A nanoscale wire-bonding of Ag nanowire with Au substrate has been realized successfully at room temperature.
2 Large plastic deformation could promote the interdiffusion and nanojoining between Ag nanowire and Au electrode.
3 The bonding interface has been examined and the bonding mechanism has been proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Xu, C. Liu, V.V. Silberschmidt, S. Pramana, T.J. White, Z. Chen, M. Sivakumar, V. Acoff, A micromechanism study of thermosonic gold wire bonding on aluminum pad. J. Appl. Phys. 108(11), 113517 (2010). doi:10.1063/1.3514005
- C.A. Palesko, E.J. Vardaman, Cost comparison for flip chip, gold wire bond, and copper wire bond packaging, in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), IEEE, pp. 10–13 (2010). doi:10.1109/ectc.2010.5490877
- A. Vafaei, A. Hu, I.A. Goldthorpe, Joining of individual silver nanowires via electrical current. Nano-Micro Lett. 6(4), 293–300 (2014). doi:10.1007/s40820-014-0001-9
- H.-W. Hsueh, F.-Y. Hung, T.-S. Lui, L.-H. Chen, Effect of the direct current on microstructure, tensile property and bonding strength of pure silver wires. Microelectron. Reliab. 53(8), 1159–1163 (2013). doi:10.1016/j.microrel.2013.04.004
- P. Liu, L. Tong, J. Wang, L. Shi, H. Tang, Challenges and developments of copper wire bonding technology. Microelectron. Reliab. 52(6), 1092–1098 (2012). doi:10.1016/j.microrel.2011.12.013
- P.S. Chauhan, A. Choubey, Z. Zhong, M.G. Pecht, Copper Wire Bonding (Springer, Berlin, 2014)
- H. Clauberg, P. Backus, B. Chylak, Nickel–palladium bond pads for copper wire bonding. Microelectron. Reliab. 51(1), 75–80 (2011). doi:10.1016/j.microrel.2010.05.001
- T.-H. Chuang, H.-C. Wang, C.-H. Tsai, C.-C. Chang, C.-H. Chuang, J.-D. Lee, H.-H. Tsai, Thermal stability of grain structure and material properties in an annealing-twinned Ag–8Au–3Pd alloy wire. Scr. Mater. 67(6), 605–608 (2012). doi:10.1016/j.scriptamat.2012.06.022
- L.J. Kai, L.Y. Hung, L.W. Wu, M.Y. Chiang, D.S. Jiang, C. Huang, Y.P. Wang, Silver alloy wire bonding, in 2012 IEEE 62nd Electronic Components and Technology Conference (ECTC), IEEE, pp. 1163–1168. doi:10.1109/ectc.2012.6248983
- H.G. Kim, S.M. Kim, J.Y. Lee, M.R. Choi, S.H. Choe et al., Microstructural evaluation of interfacial intermetallic compounds in Cu wire bonding with Al and Au pads. Acta Mater. 64, 356–366 (2014). doi:10.1016/j.actamat.2013.10.049
- P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, Y.N. Zhou, Joining of silver nanomaterials at low temperatures: processes, properties, and applications. ACS Appl. Mater. Interfaces 7(23), 12597–12618 (2015). doi:10.1021/acsami.5b02134
- K.W. Guo, A review of micro/nano welding and its future developments. Recent Pat. Nanotechnol. 3(1), 53–60 (2009). doi:10.2174/187221009787003320
- L. Dong, X. Tao, L. Zhang, X. Zhang, B.J. Nelson, Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 7(1), 58–63 (2007). doi:10.1021/nl061980+
- H. Tohmyoh, T. Imaizumi, H. Hayashi, M. Saka, Welding of Pt nanowires by Joule heating. Scr. Mater. 57(10), 953–956 (2007). doi:10.1016/j.scriptamat.2007.07.018
- Y. Peng, T. Cullis, B. Inkson, Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett. 9(1), 91–96 (2008). doi:10.1021/nl8025339
- J. Cui, L. Yang, Y. Wang, X. Mei, W. Wang, C. Hou, Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic afm probe based on the near-field enhancement effect. ACS Appl. Mater. Interfaces 7(4), 2294–2300 (2015). doi:10.1021/am506344j
- C. Chen, L. Yan, E.S.-W. Kong, Y. Zhang, Ultrasonic nanowelding of carbon nanotubes to metal electrodes. Nanotechnology 17(9), 2192 (2006). doi:10.1088/0957-4484/17/9/019
- Y. Lu, J.Y. Huang, C. Wang, S. Sun, J. Lou, Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 5(3), 218–224 (2010). doi:10.1038/nnano.2010.4
- P. Peng, L. Liu, A.P. Gerlich, A. Hu, Y.N. Zhou, Self-oriented nanojoining of silver nanowires via surface selective activation. Part. Part. Syst. Charact. 30(5), 420–426 (2013). doi:10.1002/ppsc.201200099
- E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, M.L. Brongersma, Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11(3), 241–249 (2012). doi:10.1038/nmat3238
- L. Lin, L. Liu, P. Peng, G. Zou, W.W. Duley, Y.N. Zhou, In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation. Nanotechnology 27(12), 125201 (2016). doi:10.1088/0957-4484/27/12/125201
- X. Duan, J. Zhang, X. Ling, Z. Liu, Nano-welding by scanning probe microscope. J. Am. Chem. Soc. 127(23), 8268–8269 (2005). doi:10.1021/ja051280r
- Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, M. Qiu, Optically controlled local nanosoldering of metal nanowires. Appl. Phys. Lett. 108(19), 193101 (2016). doi:10.1063/1.4949017
- M.-S. Kim, H. Nishikawa, Silver nanoporous sheet for solid-state die attach in power device packaging. Scr. Mater. 92, 43–46 (2014). doi:10.1016/j.scriptamat.2014.08.010
- I. Akhundov, D. Kazantsev, V. Alperovich, N. Rudaya, E. Rodyakina, A. Latyshev, Formation and interaction of dislocation-induced and vicinal monatomic steps on a GaAs (001) surface under stress relaxation. Scr. Mater. 114, 125–128 (2016). doi:10.1016/j.scriptamat.2015.12.017
- C. Shin, S.W. Ma, J.H. Lee, K.B. Kim, M. Suh, N. Kim, Y.-H. Kim, Current-assisted direct Cu/Cu joining. Scr. Mater. 104, 21–24 (2015). doi:10.1016/j.scriptamat.2015.03.016
- L. Liu, D. Shen, G. Zou, P. Peng, Y. Zhou, Cold welding of Ag nanowires by large plastic deformation. Scr. Mater. 114, 112–116 (2016). doi:10.1016/j.scriptamat.2015.12.010
- H. Bei, E.P. George, J. Hay, G.M. Pharr, Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys. Rev. Lett. 95(4), 045501 (2005). doi:10.1103/PhysRevLett.95.045501
- B. Wu, A. Heidelberg, J.J. Boland, J.E. Sader, X. Sun, Y. Li, Microstructure-hardened silver nanowires. Nano Lett. 6(3), 468–472 (2006). doi:10.1021/nl052427f
- J. Kiely, J. Houston, Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57(19), 12588 (1998). doi:10.1103/PhysRevB.57.12588
- W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(06), 1564–1583 (1992). doi:10.1557/JMR.1992.1564
- Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, W. Soboyejo, Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: effects of grain size and film thickness. Mater. Sci. Eng. A 427(1), 232–240 (2006). doi:10.1016/j.msea.2006.04.080
- L. Thilly, F. Lecouturier, J. Von Stebut, Size-induced enhanced mechanical properties of nanocomposite copper/niobium wires: nanoindentation study. Acta Mater. 50(20), 5049–5065 (2002). doi:10.1016/S1359-6454(02)00351-8
- O. Kubaschewski, The diffusion rates of some metals in copper, silver, and gold. Trans. Faraday Soc. 46, 713–722 (1950). doi:10.1039/tf9504600713
- W. Mallard, A. Gardner, R.F. Bass, L. Slifkin, Self-diffusion in silver–gold solid solutions. Phys. Rev. 129(2), 617 (1963). doi:10.1103/PhysRev.129.617
- C. Liang, K. Terabe, T. Hasegawa, M. Aono, Formation of metastable silver nanowires of hexagonal structure and their structural transformation under electron beam irradiation. Jpn. J. Appl. Phys. 45(7R), 6046 (2006). doi:10.1143/JJAP.45.6046
- Z. Fan, M. Bosman, X. Huang, D. Huang, Y. Yu et al., Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 6, 7384 (2015). doi:10.1038/ncomms8684
References
H. Xu, C. Liu, V.V. Silberschmidt, S. Pramana, T.J. White, Z. Chen, M. Sivakumar, V. Acoff, A micromechanism study of thermosonic gold wire bonding on aluminum pad. J. Appl. Phys. 108(11), 113517 (2010). doi:10.1063/1.3514005
C.A. Palesko, E.J. Vardaman, Cost comparison for flip chip, gold wire bond, and copper wire bond packaging, in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC), IEEE, pp. 10–13 (2010). doi:10.1109/ectc.2010.5490877
A. Vafaei, A. Hu, I.A. Goldthorpe, Joining of individual silver nanowires via electrical current. Nano-Micro Lett. 6(4), 293–300 (2014). doi:10.1007/s40820-014-0001-9
H.-W. Hsueh, F.-Y. Hung, T.-S. Lui, L.-H. Chen, Effect of the direct current on microstructure, tensile property and bonding strength of pure silver wires. Microelectron. Reliab. 53(8), 1159–1163 (2013). doi:10.1016/j.microrel.2013.04.004
P. Liu, L. Tong, J. Wang, L. Shi, H. Tang, Challenges and developments of copper wire bonding technology. Microelectron. Reliab. 52(6), 1092–1098 (2012). doi:10.1016/j.microrel.2011.12.013
P.S. Chauhan, A. Choubey, Z. Zhong, M.G. Pecht, Copper Wire Bonding (Springer, Berlin, 2014)
H. Clauberg, P. Backus, B. Chylak, Nickel–palladium bond pads for copper wire bonding. Microelectron. Reliab. 51(1), 75–80 (2011). doi:10.1016/j.microrel.2010.05.001
T.-H. Chuang, H.-C. Wang, C.-H. Tsai, C.-C. Chang, C.-H. Chuang, J.-D. Lee, H.-H. Tsai, Thermal stability of grain structure and material properties in an annealing-twinned Ag–8Au–3Pd alloy wire. Scr. Mater. 67(6), 605–608 (2012). doi:10.1016/j.scriptamat.2012.06.022
L.J. Kai, L.Y. Hung, L.W. Wu, M.Y. Chiang, D.S. Jiang, C. Huang, Y.P. Wang, Silver alloy wire bonding, in 2012 IEEE 62nd Electronic Components and Technology Conference (ECTC), IEEE, pp. 1163–1168. doi:10.1109/ectc.2012.6248983
H.G. Kim, S.M. Kim, J.Y. Lee, M.R. Choi, S.H. Choe et al., Microstructural evaluation of interfacial intermetallic compounds in Cu wire bonding with Al and Au pads. Acta Mater. 64, 356–366 (2014). doi:10.1016/j.actamat.2013.10.049
P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, Y.N. Zhou, Joining of silver nanomaterials at low temperatures: processes, properties, and applications. ACS Appl. Mater. Interfaces 7(23), 12597–12618 (2015). doi:10.1021/acsami.5b02134
K.W. Guo, A review of micro/nano welding and its future developments. Recent Pat. Nanotechnol. 3(1), 53–60 (2009). doi:10.2174/187221009787003320
L. Dong, X. Tao, L. Zhang, X. Zhang, B.J. Nelson, Nanorobotic spot welding: controlled metal deposition with attogram precision from copper-filled carbon nanotubes. Nano Lett. 7(1), 58–63 (2007). doi:10.1021/nl061980+
H. Tohmyoh, T. Imaizumi, H. Hayashi, M. Saka, Welding of Pt nanowires by Joule heating. Scr. Mater. 57(10), 953–956 (2007). doi:10.1016/j.scriptamat.2007.07.018
Y. Peng, T. Cullis, B. Inkson, Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder. Nano Lett. 9(1), 91–96 (2008). doi:10.1021/nl8025339
J. Cui, L. Yang, Y. Wang, X. Mei, W. Wang, C. Hou, Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic afm probe based on the near-field enhancement effect. ACS Appl. Mater. Interfaces 7(4), 2294–2300 (2015). doi:10.1021/am506344j
C. Chen, L. Yan, E.S.-W. Kong, Y. Zhang, Ultrasonic nanowelding of carbon nanotubes to metal electrodes. Nanotechnology 17(9), 2192 (2006). doi:10.1088/0957-4484/17/9/019
Y. Lu, J.Y. Huang, C. Wang, S. Sun, J. Lou, Cold welding of ultrathin gold nanowires. Nat. Nanotechnol. 5(3), 218–224 (2010). doi:10.1038/nnano.2010.4
P. Peng, L. Liu, A.P. Gerlich, A. Hu, Y.N. Zhou, Self-oriented nanojoining of silver nanowires via surface selective activation. Part. Part. Syst. Charact. 30(5), 420–426 (2013). doi:10.1002/ppsc.201200099
E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, M.L. Brongersma, Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11(3), 241–249 (2012). doi:10.1038/nmat3238
L. Lin, L. Liu, P. Peng, G. Zou, W.W. Duley, Y.N. Zhou, In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation. Nanotechnology 27(12), 125201 (2016). doi:10.1088/0957-4484/27/12/125201
X. Duan, J. Zhang, X. Ling, Z. Liu, Nano-welding by scanning probe microscope. J. Am. Chem. Soc. 127(23), 8268–8269 (2005). doi:10.1021/ja051280r
Q. Li, G. Liu, H. Yang, W. Wang, S. Luo, S. Dai, M. Qiu, Optically controlled local nanosoldering of metal nanowires. Appl. Phys. Lett. 108(19), 193101 (2016). doi:10.1063/1.4949017
M.-S. Kim, H. Nishikawa, Silver nanoporous sheet for solid-state die attach in power device packaging. Scr. Mater. 92, 43–46 (2014). doi:10.1016/j.scriptamat.2014.08.010
I. Akhundov, D. Kazantsev, V. Alperovich, N. Rudaya, E. Rodyakina, A. Latyshev, Formation and interaction of dislocation-induced and vicinal monatomic steps on a GaAs (001) surface under stress relaxation. Scr. Mater. 114, 125–128 (2016). doi:10.1016/j.scriptamat.2015.12.017
C. Shin, S.W. Ma, J.H. Lee, K.B. Kim, M. Suh, N. Kim, Y.-H. Kim, Current-assisted direct Cu/Cu joining. Scr. Mater. 104, 21–24 (2015). doi:10.1016/j.scriptamat.2015.03.016
L. Liu, D. Shen, G. Zou, P. Peng, Y. Zhou, Cold welding of Ag nanowires by large plastic deformation. Scr. Mater. 114, 112–116 (2016). doi:10.1016/j.scriptamat.2015.12.010
H. Bei, E.P. George, J. Hay, G.M. Pharr, Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys. Rev. Lett. 95(4), 045501 (2005). doi:10.1103/PhysRevLett.95.045501
B. Wu, A. Heidelberg, J.J. Boland, J.E. Sader, X. Sun, Y. Li, Microstructure-hardened silver nanowires. Nano Lett. 6(3), 468–472 (2006). doi:10.1021/nl052427f
J. Kiely, J. Houston, Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B 57(19), 12588 (1998). doi:10.1103/PhysRevB.57.12588
W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(06), 1564–1583 (1992). doi:10.1557/JMR.1992.1564
Y. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, W. Soboyejo, Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: effects of grain size and film thickness. Mater. Sci. Eng. A 427(1), 232–240 (2006). doi:10.1016/j.msea.2006.04.080
L. Thilly, F. Lecouturier, J. Von Stebut, Size-induced enhanced mechanical properties of nanocomposite copper/niobium wires: nanoindentation study. Acta Mater. 50(20), 5049–5065 (2002). doi:10.1016/S1359-6454(02)00351-8
O. Kubaschewski, The diffusion rates of some metals in copper, silver, and gold. Trans. Faraday Soc. 46, 713–722 (1950). doi:10.1039/tf9504600713
W. Mallard, A. Gardner, R.F. Bass, L. Slifkin, Self-diffusion in silver–gold solid solutions. Phys. Rev. 129(2), 617 (1963). doi:10.1103/PhysRev.129.617
C. Liang, K. Terabe, T. Hasegawa, M. Aono, Formation of metastable silver nanowires of hexagonal structure and their structural transformation under electron beam irradiation. Jpn. J. Appl. Phys. 45(7R), 6046 (2006). doi:10.1143/JJAP.45.6046
Z. Fan, M. Bosman, X. Huang, D. Huang, Y. Yu et al., Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 6, 7384 (2015). doi:10.1038/ncomms8684