A Self-Powered Nanogenerator for the Electrical Protection of Integrated Circuits from Trace Amounts of Liquid
Corresponding Author: Yangai Liu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 5
Abstract
With the increase in the use of electronic devices in many different environments, a need has arisen for an easily implemented method for the rapid, sensitive detection of liquids in the vicinity of electronic components. In this work, a high-performance power generator that combines carbon nanoparticles and TiO2 nanowires has been fabricated by sequential electrophoretic deposition (EPD). The open-circuit voltage and short-circuit current of a single generator are found to exceed 0.7 V and 100 μA when 6 μL of water was applied. The generator is also found to have a stable and reproducible response to other liquids. An output voltage of 0.3 V was obtained after 244, 876, 931, and 184 μs, on exposure of the generator to 6 μL of water, ethanol, acetone, and methanol, respectively. The fast response time and high sensitivity to liquids show that the device has great potential for the detection of small quantities of liquid. In addition, the simple easily implemented sequential EPD method ensures the high mechanical strength of the device. This compact, reliable device provides a new method for the sensitive, rapid detection of extraneous liquids before they can impact the performance of electronic circuits, particularly those on printed circuit board.
Highlights
1 A power generator based on carbon nanoparticles and TiO2 nanowires was fabricated by sequential electrophoretic deposition.
2 Benefit from the special structure of the carbon nanoparticle films, the generator exhibited an fast and reliable response to liquids.
3 A possible system for printed circuit board protection using an array of power generators was proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xu, J. Singh, C. Premachandran, A. Khairyanto, K. Chen, N. Chen, C. Sheppard, M. Olivo, Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly. J. Micromech. Microeng. 18(12), 125005 (2008). https://doi.org/10.1088/0960-1317/18/12/125005
- C.-C. Chang, R.-J. Yang, M. Wang, J.-J. Miau, V. Lebiga, Liquid flow retardation in nanospaces due to electroviscosity: electrical double layer overlap, hydrodynamic slippage, and ambient atmospheric CO-2 dissolution. Phys. Fluids 24(7), 072001 (2012). https://doi.org/10.1063/1.4732547
- F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27(29), 4351–4357 (2015). https://doi.org/10.1002/adma.201501867
- G. Xue, Y. Xu, T. Ding, J. Li, J. Yin et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12(4), 317–321 (2017). https://doi.org/10.1038/nnano.2016.300
- H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi, L. Jiang, Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 45, 37–43 (2018). https://doi.org/10.1016/j.nanoen.2017.12.033
- D. Shen, M. Xiao, G. Zou, L. Liu, W.W. Duley, Y.N. Zhou, Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 30(18), 1705925 (2018). https://doi.org/10.1002/adma.201705925
- Y. Han, Z. Zhang, L. Qu, Power generation from graphene-water interactions. FlatChem 14, 100090 (2019). https://doi.org/10.1016/j.flatc.2019.100090
- Z. Luo, C. Liu, S. Fan, A moisture induced self-charging device for energy harvesting and storage. Nano Energy 60, 371–376 (2019). https://doi.org/10.1016/j.nanoen.2019.03.073
- D. Shen, M. Xiao, Y. Xiao, G. Zou, L. Hu et al., Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent-voltage generation. ACS Appl. Mater. Interfaces 11(15), 14249–14255 (2019). https://doi.org/10.1021/acsami.9b01523
- Y. Xiao, D. Shen, G. Zou, A. Wu, L. Liu, W.W. Duley, Y.N. Zhou, Self-powered, flexible and remote-controlled breath monitor based on TiO2 nanowire networks. Nanotechnology 30(32), 325503 (2019). https://doi.org/10.1088/1361-6528/ab1b93
- G. Zhang, Z. Duan, X. Qi, Y. Xu, L. Li et al., Harvesting environment energy from water-evaporation over free-standing graphene oxide sponges. Carbon 148, 1–8 (2019). https://doi.org/10.1016/j.carbon.2019.03.041
- J. Li, K. Liu, G. Xue, T. Ding, P. Yang et al., Electricity generation from water droplets via capillary infiltrating. Nano Energy 48, 211–216 (2018). https://doi.org/10.1016/j.nanoen.2018.02.061
- T. Ding, K. Liu, J. Li, G. Xue, Q. Chen, L. Huang, B. Hu, J. Zhou, All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 27(22), 1700551 (2017). https://doi.org/10.1002/adfm.201700551
- B. Ji, N. Chen, C. Shao, Q. Liu, J. Gao, T. Xu, H. Cheng, L. Qu, Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@ TiO2 nanowires. J. Mater. Chem. A 7(12), 6766–6772 (2019). https://doi.org/10.1039/c8ta12328d
- X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, H-TiO2@ MnO2//H-TiO2@ C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25(2), 267–272 (2013). https://doi.org/10.1002/adma.201203410
- J. Zou, Q. Zhang, K. Huang, N. Marzari, Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J. Phys. Chem. C 114(24), 10725–10729 (2010). https://doi.org/10.1021/jp1011236
- S. Zhang, L. Lou, C. Lee, Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor. Appl. Phys. Lett. 100(2), 023111 (2012). https://doi.org/10.1063/1.3675878
- W. Zhuoran, W. Heng, L. Bin, Q. Wenzhe, Z. Jun et al., Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano 5(10), 8412–8419 (2011). https://doi.org/10.1021/nn203315k
- J.H. Prosser, T. Brugarolas, S. Lee, A.J. Nolte, D. Lee, Avoiding cracks in nanoparticle films. Nano Lett. 12(10), 5287–5291 (2012). https://doi.org/10.1021/nl302555k
- Y.R. Choi, J.-H. Han, Y.S. Cho, H.-S. Han, H.B. Chae, S.M. Park, S.J. Youn, Efficacy of cap-assisted endoscopy for routine examining the ampulla of water. World J. Gastroenterol. 19(13), 2037 (2013). https://doi.org/10.3748/wjg.v19.i13.2037
- R. Sprycha, Zeta potential and surface charge components at anatase/electrolyte interface. J. Colloid Interface Sci. 110(1), 278–281 (1986). https://doi.org/10.1016/0021-9797(86)90378-4
- M. Kosmulski, E. Matijević, Zeta potential of anatase (TiO2) in mixed solvents. Colloids Surf. 64(1), 57–65 (1992). https://doi.org/10.1016/0166-6622(92)80162-u
References
Y. Xu, J. Singh, C. Premachandran, A. Khairyanto, K. Chen, N. Chen, C. Sheppard, M. Olivo, Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly. J. Micromech. Microeng. 18(12), 125005 (2008). https://doi.org/10.1088/0960-1317/18/12/125005
C.-C. Chang, R.-J. Yang, M. Wang, J.-J. Miau, V. Lebiga, Liquid flow retardation in nanospaces due to electroviscosity: electrical double layer overlap, hydrodynamic slippage, and ambient atmospheric CO-2 dissolution. Phys. Fluids 24(7), 072001 (2012). https://doi.org/10.1063/1.4732547
F. Zhao, H. Cheng, Z. Zhang, L. Jiang, L. Qu, Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27(29), 4351–4357 (2015). https://doi.org/10.1002/adma.201501867
G. Xue, Y. Xu, T. Ding, J. Li, J. Yin et al., Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12(4), 317–321 (2017). https://doi.org/10.1038/nnano.2016.300
H. Cheng, Y. Huang, L. Qu, Q. Cheng, G. Shi, L. Jiang, Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 45, 37–43 (2018). https://doi.org/10.1016/j.nanoen.2017.12.033
D. Shen, M. Xiao, G. Zou, L. Liu, W.W. Duley, Y.N. Zhou, Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 30(18), 1705925 (2018). https://doi.org/10.1002/adma.201705925
Y. Han, Z. Zhang, L. Qu, Power generation from graphene-water interactions. FlatChem 14, 100090 (2019). https://doi.org/10.1016/j.flatc.2019.100090
Z. Luo, C. Liu, S. Fan, A moisture induced self-charging device for energy harvesting and storage. Nano Energy 60, 371–376 (2019). https://doi.org/10.1016/j.nanoen.2019.03.073
D. Shen, M. Xiao, Y. Xiao, G. Zou, L. Hu et al., Self-powered, rapid-response, and highly flexible humidity sensors based on moisture-dependent-voltage generation. ACS Appl. Mater. Interfaces 11(15), 14249–14255 (2019). https://doi.org/10.1021/acsami.9b01523
Y. Xiao, D. Shen, G. Zou, A. Wu, L. Liu, W.W. Duley, Y.N. Zhou, Self-powered, flexible and remote-controlled breath monitor based on TiO2 nanowire networks. Nanotechnology 30(32), 325503 (2019). https://doi.org/10.1088/1361-6528/ab1b93
G. Zhang, Z. Duan, X. Qi, Y. Xu, L. Li et al., Harvesting environment energy from water-evaporation over free-standing graphene oxide sponges. Carbon 148, 1–8 (2019). https://doi.org/10.1016/j.carbon.2019.03.041
J. Li, K. Liu, G. Xue, T. Ding, P. Yang et al., Electricity generation from water droplets via capillary infiltrating. Nano Energy 48, 211–216 (2018). https://doi.org/10.1016/j.nanoen.2018.02.061
T. Ding, K. Liu, J. Li, G. Xue, Q. Chen, L. Huang, B. Hu, J. Zhou, All-printed porous carbon film for electricity generation from evaporation-driven water flow. Adv. Funct. Mater. 27(22), 1700551 (2017). https://doi.org/10.1002/adfm.201700551
B. Ji, N. Chen, C. Shao, Q. Liu, J. Gao, T. Xu, H. Cheng, L. Qu, Intelligent multiple-liquid evaporation power generation platform using distinctive Jaboticaba-like carbon nanosphere@ TiO2 nanowires. J. Mater. Chem. A 7(12), 6766–6772 (2019). https://doi.org/10.1039/c8ta12328d
X. Lu, M. Yu, G. Wang, T. Zhai, S. Xie, Y. Ling, Y. Tong, Y. Li, H-TiO2@ MnO2//H-TiO2@ C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 25(2), 267–272 (2013). https://doi.org/10.1002/adma.201203410
J. Zou, Q. Zhang, K. Huang, N. Marzari, Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J. Phys. Chem. C 114(24), 10725–10729 (2010). https://doi.org/10.1021/jp1011236
S. Zhang, L. Lou, C. Lee, Piezoresistive silicon nanowire based nanoelectromechanical system cantilever air flow sensor. Appl. Phys. Lett. 100(2), 023111 (2012). https://doi.org/10.1063/1.3675878
W. Zhuoran, W. Heng, L. Bin, Q. Wenzhe, Z. Jun et al., Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano 5(10), 8412–8419 (2011). https://doi.org/10.1021/nn203315k
J.H. Prosser, T. Brugarolas, S. Lee, A.J. Nolte, D. Lee, Avoiding cracks in nanoparticle films. Nano Lett. 12(10), 5287–5291 (2012). https://doi.org/10.1021/nl302555k
Y.R. Choi, J.-H. Han, Y.S. Cho, H.-S. Han, H.B. Chae, S.M. Park, S.J. Youn, Efficacy of cap-assisted endoscopy for routine examining the ampulla of water. World J. Gastroenterol. 19(13), 2037 (2013). https://doi.org/10.3748/wjg.v19.i13.2037
R. Sprycha, Zeta potential and surface charge components at anatase/electrolyte interface. J. Colloid Interface Sci. 110(1), 278–281 (1986). https://doi.org/10.1016/0021-9797(86)90378-4
M. Kosmulski, E. Matijević, Zeta potential of anatase (TiO2) in mixed solvents. Colloids Surf. 64(1), 57–65 (1992). https://doi.org/10.1016/0166-6622(92)80162-u