Resistive Switching Memory of TiO2 Nanowire Networks Grown on Ti Foil by a Single Hydrothermal Method
Corresponding Author: Norman Y. Zhou
Nano-Micro Letters,
Vol. 9 No. 2 (2017), Article Number: 15
Abstract
The resistive switching characteristics of TiO2 nanowire networks directly grown on Ti foil by a single-step hydrothermal technique are discussed in this paper. The Ti foil serves as the supply of Ti atoms for growth of the TiO2 nanowires, making the preparation straightforward. It also acts as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation process. The Al/TiO2 nanowire networks/Ti device fabricated in this way displayed a highly repeatable and electroforming-free bipolar resistive behavior with retention for more than 104 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO2 nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under applied electric field. This provides a facile way to obtain metal oxide nanowire-based ReRAM device in the future.
Highlights:
1 TiO2 nanowire networks were grown on Ti foil by a one-step hydrothermal method.
2 Obtained Al/TiO2 nanowire networks/Ti devices showed forming-free resistive switching behavior. Good retention and endurance performance was achieved for the fabricated devices.
3 Switching mechanism is due to migration of oxygen vacancies under electric field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.Y. Jeong, J.Y. Lee, S.-Y. Choi, Interface-engineered amorphous TiO2-based resistive memory devices. Adv. Funct. Mater. 20(22), 3912–3917 (2010). doi:10.1002/adfm.201001254
- B. Wang, T. Ren, S. Chen, B. Zhang, R. Zhang, J. Qi, S. Chu, J. Huang, J. Liu, Resistive switching in Ga- and Sb-doped ZnO single nanowire devices. J. Mater. Chem. C 3, 11881–11885 (2015). doi:10.1039/C5TC02102B
- K. Oka, T. Yanagida, K. Nagashima, T. Kawai, J.S. Kim, B.H. Park, Resistive-switching memory effects of NiO nanowire/metal junctions. J. Am. Chem. Soc. 132(19), 6634–6635 (2010). doi:10.1021/ja101742f
- K. Oka, T. Yanagida, K. Nagashima, M. Kanai, T. Kawai, J.-S. Kim, B.H. Park, Spatial nonuniformity in resistive-switching memory effects of NiO. J. Am. Chem. Soc. 133(12), 12482–12485 (2011). doi:10.1021/ja206063m
- D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). doi:10.1038/nature06932
- J.J. Yang, M.D. Pickett, X. Li, D.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008). doi:10.1038/nnano.2008.160
- C.-H. Huang, J.-S. Huang, S.-M. Lin, W.-Y. Chang, J.-H. He, Y.-L. Chueh, ZnO1-x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 6(9), 8407–8414 (2012). doi:10.1021/nn303233r
- Z.-J. Liu, J.-Y. Gan, T.-R. Yew, ZnO-based one diode-one resistor device structure for crossbar memory applications. Appl. Phys. Lett. 100(15), 153503 (2012). doi:10.1063/1.3701722
- T. Sasaki, H. Ueda, T. Kanki, H. Tanaka, Electrochemical gating-induced reversible and drastic resistance switching in VO2 nanowires. Sci. Rep. 5, 17080 (2015). doi:10.1038/srep17080
- S. Gao, F. Zeng, M. Wang, G. Wang, C. Song, F. Pan, Tuning the switching behavior of binary oxide-based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: a case study on the Ta2O5–Ta system. Phys. Chem. Chem. Phys. 17(19), 12849–12856 (2015). doi:10.1039/C5CP01235J
- M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang et al., A fast, high-endurance and scalable nonvolatile memory device made from asymmetric Ta2O5-x /TaO2-x bilayer structures. Nat. Mater. 10(8), 625–630 (2011). doi:10.1038/nmat3070
- K.D. Liang, C.H. Huang, C.C. Lai, J.S. Huang, H.W. Tsai et al., Single CuOx nanowire memristor: forming-free resistive switching behavior. ACS Appl. Mater. Interfaces 6(19), 16537–16544 (2014). doi:10.1021/am502741m
- K. Park, J.S. Lee, Flexible resistive switching memory with a Ni/CuO/Ni structure using an electrochemical deposition process. Nanotechnology 27(12), 125203 (2016). doi:10.1088/0957-4484/27/12/125203
- T. Chang, S.-H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011). doi:10.1021/nn202983n
- K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, R. Waser, TiO2-a prototypical memristive material. Nanotechnology 22(25), 254001(2011). doi:10.1088/0957-4484/22/25/254001
- S.C. Oh, H.Y. Jung, H. Lee, Effect of the top electrode materials on the resistive switching characteristics of TiO2 thin film. J. Appl. Phys. 109(12), 124511 (2011). doi:10.1063/1.3596576
- E. Hernández-Rodríguez, A. Márquez-Herrera, E. Zaleta-Alejandre, M. Meléndez-Lira, Wld Cruz, M. Zapata-Torres, Effect of electrode type in the resistive switching behaviour of TiO2 thin films. J. Phys D-Appl. Phys. 46(4), 045103 (2013). doi:10.1088/0022-3727/46/4/045103
- X.L. Shao, L.W. Zhou, K.J. Yoon, H. Jiang, J.S. Zhao, K.L. Zhang, S. Yoo, C.S. Hwang, Electronic resistance switching in the Al/TiOx/Al structure for forming-free and area-scalable memory. Nanoscale 7(25), 11063–11074 (2015). doi:10.1039/C4NR06417H
- C. Hu, M.D. McDaniel, A. Posadas, A.A. Demkov, J.G. Ekerdt, E.T. Yu, Highly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO2 resistive memory on silicon. Nano Lett. 14(8), 4360–4367 (2014). doi:10.1021/nl501249q
- Y. Du, H. Pan, S. Wang, T. Wu, Y.O. Feng, J. Pan, A.T.S. Wee, Symmetrical negative differential resistance behavior of a resistive switching device. ACS Nano 6(3), 2517–2524 (2012). doi:10.1021/nn204907t
- L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, T. Prodromakis, Memory impedance in TiO2 based metal-insulator-metal devices. Sci. Rep. 4, 4522 (2014). doi:10.1038/srep04522
- D. Jana, S. Samanta, S. Roy, Y.F. Lin, S. Maikap, Observation of resistive switching memory by reducing device zize in a new Cr/CrOx/TiOx/TiN structure. Nano-Micro Lett. 7(4), 392–399 (2015). doi:10.1007/s40820-015-0055-3
- C. O’Kelly, J.A. Fairfield, J.J. Boland, A single nanoscale junction with programmable multilevel memory. ACS Nano 8(11), 11724–11729 (2014). doi:10.1021/nn505139m
- L. Lin, L. Liu, K. Musselman, G. Zou, W.W. Duley, Y.N. Zhou, Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory. Adv. Funct. Mater. 26, 5979–5986 (2016). doi:10.1002/adfm.201601143
- F. Zhang, X. Gan, X. Li, L. Wu, X. Gao, R. Zheng, Y. He, X. Liu, R. Yang, Realization of rectifying and resistive switching behaviors of TiO2 nanorod arrays for nonvolatile memory. Electrochem. Solid-State Lett. 14(10), H422–H425 (2011). doi:10.1149/1.3617442
- V. Senthilkumar, A. Kathalingam, V. Kannan, K. Senthil, J.-K. Rhee, Reproducible resistive switching in hydrothermal processed TiO2 nanorod film for non-volatile memory applications. Sens. Actuators A 194, 135–139 (2013). doi:10.1016/j.sna.2013.02.009
- D. Chu, A. Younis, S. Li, Direct growth of TiO2 nanotubes on transparent substrates and their resistive switching characteristics. J. Phys D-Appl. Phys. 45(35), 355306 (2012). doi:10.1088/0022-3727/45/35/355306
- B. Liu, J.E. Boercker, E.S. Aydil, Oriented single crystalline titanium dioxide nanowires. Nanotechnology 19(50), 505604 (2008). doi:10.1088/0957-4484/19/50/505604
- J.-Y. Liao, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy Environ. Sci. 5(2), 5750–5757 (2012). doi:10.1039/C1EE02766B
- W.Q. Wu, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, D.B. Kuang, Hierarchical oriented anatase TiO2 nanostructure arrays on flexible substrate for efficient dye-sensitized solar cells. Sci. Rep. 3, 1892 (2013). doi:10.1038/srep01892
- S. Ren, W. Liu, One-step photochemical deposition of PdAu alloyed nanoparticles on TiO2 nanowires for ultra-sensitive H2 detection. J. Mater. Chem. A 4(6), 2236–2245 (2016). doi:10.1039/C5TA06917C
- K. Huo, X. Zhang, J. Fu, G. Qian, Y. Xin, B. Zhu, H. Ni, P.K. Chu, Synthesis and field emission properties of rutile TiO2 nanowires arrays grown directly on a Ti metal self-source substrate. J. Nanosci. Nanotechnol. 9(5), 3341–3346 (2009). doi:10.1166/jnn.2009.VC09
- Y. Wu, M. Long, W. Cai, S. Dai, C. Chen, D. Wu, J. Bai, Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate. Nanotechnology 20(18), 185703 (2009). doi:10.1088/0957-4484/20/18/185703
- T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of Anatase, TiO2. J. Raman Spectrosc. 7(6), 321–324 (1978). doi:10.1002/jrs.1250070606
- D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010). doi:10.1038/nnano.2009.456
- K.M. Kim, B.J. Choi, Y.C. Shin, S. Choi, C.S. Hwang, Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films. Appl. Phys. Lett. 91(1), 012907 (2007). doi:10.1063/1.2749846
- P.C. Wang, P.G. Li, Y.S. Zhi, D.Y. Guo, A.Q. Pan, J.M. Zhan, H. Liu, J.Q. Shen, W.H. Tang, Bias tuning charge-releasing leading to negative differential resistance in amorphous gallium oxide/Nb:SrTiO3 heterostructure. Appl. Phys. Lett. 107(26), 262110 (2015). doi:10.1063/1.4939437
- M.K. Hota, D.H. Nagaraju, M.N. Hedhili, H.N. Alshareef, Electroforming free resistive switching memory in two-dimensional VO x nanosheets. Appl. Phys. Lett. 107(16), 163106 (2015). doi:10.1063/1.4933335
- Y. Sun, X. Yan, X. Zheng, Y. Liu, Y. Zhao, Y. Shen, Q. Liao, Y. Zhang, High On-Off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing. ACS Appl. Mater. Interfaces 7(13), 7382–7388 (2015). doi:10.1021/acsami.5b01080
- A. Barman, C.P. Saini, P.K. Sarkar, A. Roy, B. Satpati, D. Kanjilal, S.K. Ghosh, S. Dhar, A. Kanjilal, Probing electron density across Ar+ irradiation-induced self-organized TiO2−x nanochannels for memory application. Appl. Phys. Lett. 108(24), 244104 (2016). doi:10.1063/1.4954166
- R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories- nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009). doi:10.1002/adma.200900375
- J.J. Yang, J.P. Strachan, F. Miao, M.-X. Zhang, M.D. Pickett, W. Yi, D.A.A. Ohlberg, G. Medeiros-Ribeiro, R.S. Williams, Metal/TiO2 interfaces for memristive switches. Appl. Phys. A 102(4), 785–789 (2011). doi:10.1007/s00339-011-6265-8
- C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, T.-Y. Tseng, C. Hu, Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode. J. Appl. Phys. 102(9), 094101 (2007). doi:10.1063/1.2802990
- D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75(7), 076502 (2012). doi:10.1088/0034-4885/75/7/076502
- H. Young Jeong, S. Kyu Kim, J. Yong Lee, S.Y. Choi, Role of Interface Reaction on Resistive Switching of Metal/Amorphous TiO2/Al RRAM Devices. J. Electrochem. Soc. 158(10), H979–H982 (2011). doi:10.1149/1.3622295
- H.Y. Jeong, J.Y. Lee, S.-Y. Choi, J.W. Kim, Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 95(16), 162108 (2009). doi:10.1063/1.3251784
- A. Weibel, R. Bouchet, P. Knauth, Electrical properties and defect chemistry of anatase (TiO2). Solid State Ion. 177(3–4), 229–236 (2006). doi:10.1016/j.ssi.2005.11.002
- B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi et al., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98(3), 033715 (2005). doi:10.1063/1.2001146
- S. Kim, H.Y. Jeong, S.-Y. Choi, Y.-K. Choi, Comprehensive modeling of resistive switching in the Al/TiOx/TiO2/Al heterostructure based on space-charge-limited conduction. Appl. Phys. Lett. 97(3), 033508 (2010). doi:10.1063/1.3467461
References
H.Y. Jeong, J.Y. Lee, S.-Y. Choi, Interface-engineered amorphous TiO2-based resistive memory devices. Adv. Funct. Mater. 20(22), 3912–3917 (2010). doi:10.1002/adfm.201001254
B. Wang, T. Ren, S. Chen, B. Zhang, R. Zhang, J. Qi, S. Chu, J. Huang, J. Liu, Resistive switching in Ga- and Sb-doped ZnO single nanowire devices. J. Mater. Chem. C 3, 11881–11885 (2015). doi:10.1039/C5TC02102B
K. Oka, T. Yanagida, K. Nagashima, T. Kawai, J.S. Kim, B.H. Park, Resistive-switching memory effects of NiO nanowire/metal junctions. J. Am. Chem. Soc. 132(19), 6634–6635 (2010). doi:10.1021/ja101742f
K. Oka, T. Yanagida, K. Nagashima, M. Kanai, T. Kawai, J.-S. Kim, B.H. Park, Spatial nonuniformity in resistive-switching memory effects of NiO. J. Am. Chem. Soc. 133(12), 12482–12485 (2011). doi:10.1021/ja206063m
D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008). doi:10.1038/nature06932
J.J. Yang, M.D. Pickett, X. Li, D.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008). doi:10.1038/nnano.2008.160
C.-H. Huang, J.-S. Huang, S.-M. Lin, W.-Y. Chang, J.-H. He, Y.-L. Chueh, ZnO1-x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 6(9), 8407–8414 (2012). doi:10.1021/nn303233r
Z.-J. Liu, J.-Y. Gan, T.-R. Yew, ZnO-based one diode-one resistor device structure for crossbar memory applications. Appl. Phys. Lett. 100(15), 153503 (2012). doi:10.1063/1.3701722
T. Sasaki, H. Ueda, T. Kanki, H. Tanaka, Electrochemical gating-induced reversible and drastic resistance switching in VO2 nanowires. Sci. Rep. 5, 17080 (2015). doi:10.1038/srep17080
S. Gao, F. Zeng, M. Wang, G. Wang, C. Song, F. Pan, Tuning the switching behavior of binary oxide-based resistive memory devices by inserting an ultra-thin chemically active metal nanolayer: a case study on the Ta2O5–Ta system. Phys. Chem. Chem. Phys. 17(19), 12849–12856 (2015). doi:10.1039/C5CP01235J
M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang et al., A fast, high-endurance and scalable nonvolatile memory device made from asymmetric Ta2O5-x /TaO2-x bilayer structures. Nat. Mater. 10(8), 625–630 (2011). doi:10.1038/nmat3070
K.D. Liang, C.H. Huang, C.C. Lai, J.S. Huang, H.W. Tsai et al., Single CuOx nanowire memristor: forming-free resistive switching behavior. ACS Appl. Mater. Interfaces 6(19), 16537–16544 (2014). doi:10.1021/am502741m
K. Park, J.S. Lee, Flexible resistive switching memory with a Ni/CuO/Ni structure using an electrochemical deposition process. Nanotechnology 27(12), 125203 (2016). doi:10.1088/0957-4484/27/12/125203
T. Chang, S.-H. Jo, W. Lu, Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5(9), 7669–7676 (2011). doi:10.1021/nn202983n
K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, R. Waser, TiO2-a prototypical memristive material. Nanotechnology 22(25), 254001(2011). doi:10.1088/0957-4484/22/25/254001
S.C. Oh, H.Y. Jung, H. Lee, Effect of the top electrode materials on the resistive switching characteristics of TiO2 thin film. J. Appl. Phys. 109(12), 124511 (2011). doi:10.1063/1.3596576
E. Hernández-Rodríguez, A. Márquez-Herrera, E. Zaleta-Alejandre, M. Meléndez-Lira, Wld Cruz, M. Zapata-Torres, Effect of electrode type in the resistive switching behaviour of TiO2 thin films. J. Phys D-Appl. Phys. 46(4), 045103 (2013). doi:10.1088/0022-3727/46/4/045103
X.L. Shao, L.W. Zhou, K.J. Yoon, H. Jiang, J.S. Zhao, K.L. Zhang, S. Yoo, C.S. Hwang, Electronic resistance switching in the Al/TiOx/Al structure for forming-free and area-scalable memory. Nanoscale 7(25), 11063–11074 (2015). doi:10.1039/C4NR06417H
C. Hu, M.D. McDaniel, A. Posadas, A.A. Demkov, J.G. Ekerdt, E.T. Yu, Highly controllable and stable quantized conductance and resistive switching mechanism in single-crystal TiO2 resistive memory on silicon. Nano Lett. 14(8), 4360–4367 (2014). doi:10.1021/nl501249q
Y. Du, H. Pan, S. Wang, T. Wu, Y.O. Feng, J. Pan, A.T.S. Wee, Symmetrical negative differential resistance behavior of a resistive switching device. ACS Nano 6(3), 2517–2524 (2012). doi:10.1021/nn204907t
L. Qingjiang, A. Khiat, I. Salaoru, C. Papavassiliou, X. Hui, T. Prodromakis, Memory impedance in TiO2 based metal-insulator-metal devices. Sci. Rep. 4, 4522 (2014). doi:10.1038/srep04522
D. Jana, S. Samanta, S. Roy, Y.F. Lin, S. Maikap, Observation of resistive switching memory by reducing device zize in a new Cr/CrOx/TiOx/TiN structure. Nano-Micro Lett. 7(4), 392–399 (2015). doi:10.1007/s40820-015-0055-3
C. O’Kelly, J.A. Fairfield, J.J. Boland, A single nanoscale junction with programmable multilevel memory. ACS Nano 8(11), 11724–11729 (2014). doi:10.1021/nn505139m
L. Lin, L. Liu, K. Musselman, G. Zou, W.W. Duley, Y.N. Zhou, Plasmonic-radiation-enhanced metal oxide nanowire heterojunctions for controllable multilevel memory. Adv. Funct. Mater. 26, 5979–5986 (2016). doi:10.1002/adfm.201601143
F. Zhang, X. Gan, X. Li, L. Wu, X. Gao, R. Zheng, Y. He, X. Liu, R. Yang, Realization of rectifying and resistive switching behaviors of TiO2 nanorod arrays for nonvolatile memory. Electrochem. Solid-State Lett. 14(10), H422–H425 (2011). doi:10.1149/1.3617442
V. Senthilkumar, A. Kathalingam, V. Kannan, K. Senthil, J.-K. Rhee, Reproducible resistive switching in hydrothermal processed TiO2 nanorod film for non-volatile memory applications. Sens. Actuators A 194, 135–139 (2013). doi:10.1016/j.sna.2013.02.009
D. Chu, A. Younis, S. Li, Direct growth of TiO2 nanotubes on transparent substrates and their resistive switching characteristics. J. Phys D-Appl. Phys. 45(35), 355306 (2012). doi:10.1088/0022-3727/45/35/355306
B. Liu, J.E. Boercker, E.S. Aydil, Oriented single crystalline titanium dioxide nanowires. Nanotechnology 19(50), 505604 (2008). doi:10.1088/0957-4484/19/50/505604
J.-Y. Liao, B.-X. Lei, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy Environ. Sci. 5(2), 5750–5757 (2012). doi:10.1039/C1EE02766B
W.Q. Wu, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, D.B. Kuang, Hierarchical oriented anatase TiO2 nanostructure arrays on flexible substrate for efficient dye-sensitized solar cells. Sci. Rep. 3, 1892 (2013). doi:10.1038/srep01892
S. Ren, W. Liu, One-step photochemical deposition of PdAu alloyed nanoparticles on TiO2 nanowires for ultra-sensitive H2 detection. J. Mater. Chem. A 4(6), 2236–2245 (2016). doi:10.1039/C5TA06917C
K. Huo, X. Zhang, J. Fu, G. Qian, Y. Xin, B. Zhu, H. Ni, P.K. Chu, Synthesis and field emission properties of rutile TiO2 nanowires arrays grown directly on a Ti metal self-source substrate. J. Nanosci. Nanotechnol. 9(5), 3341–3346 (2009). doi:10.1166/jnn.2009.VC09
Y. Wu, M. Long, W. Cai, S. Dai, C. Chen, D. Wu, J. Bai, Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate. Nanotechnology 20(18), 185703 (2009). doi:10.1088/0957-4484/20/18/185703
T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of Anatase, TiO2. J. Raman Spectrosc. 7(6), 321–324 (1978). doi:10.1002/jrs.1250070606
D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010). doi:10.1038/nnano.2009.456
K.M. Kim, B.J. Choi, Y.C. Shin, S. Choi, C.S. Hwang, Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films. Appl. Phys. Lett. 91(1), 012907 (2007). doi:10.1063/1.2749846
P.C. Wang, P.G. Li, Y.S. Zhi, D.Y. Guo, A.Q. Pan, J.M. Zhan, H. Liu, J.Q. Shen, W.H. Tang, Bias tuning charge-releasing leading to negative differential resistance in amorphous gallium oxide/Nb:SrTiO3 heterostructure. Appl. Phys. Lett. 107(26), 262110 (2015). doi:10.1063/1.4939437
M.K. Hota, D.H. Nagaraju, M.N. Hedhili, H.N. Alshareef, Electroforming free resistive switching memory in two-dimensional VO x nanosheets. Appl. Phys. Lett. 107(16), 163106 (2015). doi:10.1063/1.4933335
Y. Sun, X. Yan, X. Zheng, Y. Liu, Y. Zhao, Y. Shen, Q. Liao, Y. Zhang, High On-Off ratio improvement of ZnO-based forming-free memristor by surface hydrogen annealing. ACS Appl. Mater. Interfaces 7(13), 7382–7388 (2015). doi:10.1021/acsami.5b01080
A. Barman, C.P. Saini, P.K. Sarkar, A. Roy, B. Satpati, D. Kanjilal, S.K. Ghosh, S. Dhar, A. Kanjilal, Probing electron density across Ar+ irradiation-induced self-organized TiO2−x nanochannels for memory application. Appl. Phys. Lett. 108(24), 244104 (2016). doi:10.1063/1.4954166
R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories- nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009). doi:10.1002/adma.200900375
J.J. Yang, J.P. Strachan, F. Miao, M.-X. Zhang, M.D. Pickett, W. Yi, D.A.A. Ohlberg, G. Medeiros-Ribeiro, R.S. Williams, Metal/TiO2 interfaces for memristive switches. Appl. Phys. A 102(4), 785–789 (2011). doi:10.1007/s00339-011-6265-8
C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, T.-Y. Tseng, C. Hu, Modified resistive switching behavior of ZrO2 memory films based on the interface layer formed by using Ti top electrode. J. Appl. Phys. 102(9), 094101 (2007). doi:10.1063/1.2802990
D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75(7), 076502 (2012). doi:10.1088/0034-4885/75/7/076502
H. Young Jeong, S. Kyu Kim, J. Yong Lee, S.Y. Choi, Role of Interface Reaction on Resistive Switching of Metal/Amorphous TiO2/Al RRAM Devices. J. Electrochem. Soc. 158(10), H979–H982 (2011). doi:10.1149/1.3622295
H.Y. Jeong, J.Y. Lee, S.-Y. Choi, J.W. Kim, Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 95(16), 162108 (2009). doi:10.1063/1.3251784
A. Weibel, R. Bouchet, P. Knauth, Electrical properties and defect chemistry of anatase (TiO2). Solid State Ion. 177(3–4), 229–236 (2006). doi:10.1016/j.ssi.2005.11.002
B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi et al., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98(3), 033715 (2005). doi:10.1063/1.2001146
S. Kim, H.Y. Jeong, S.-Y. Choi, Y.-K. Choi, Comprehensive modeling of resistive switching in the Al/TiOx/TiO2/Al heterostructure based on space-charge-limited conduction. Appl. Phys. Lett. 97(3), 033508 (2010). doi:10.1063/1.3467461